/* * H.26L/H.264/AVC/JVT/14496-10/... cavlc bitstream decoding * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * H.264 / AVC / MPEG4 part10 cavlc bitstream decoding. * @author Michael Niedermayer <michaelni@gmx.at> */ #define CABAC(h) 0 #define UNCHECKED_BITSTREAM_READER 1 #include "internal.h" #include "avcodec.h" #include "h264.h" #include "h264data.h" // FIXME FIXME FIXME #include "h264_mvpred.h" #include "golomb.h" #include "mpegutils.h" #include "libavutil/avassert.h" static const uint8_t golomb_to_inter_cbp_gray[16]={ 0, 1, 2, 4, 8, 3, 5,10,12,15, 7,11,13,14, 6, 9, }; static const uint8_t golomb_to_intra4x4_cbp_gray[16]={ 15, 0, 7,11,13,14, 3, 5,10,12, 1, 2, 4, 8, 6, 9, }; static const uint8_t chroma_dc_coeff_token_len[4*5]={ 2, 0, 0, 0, 6, 1, 0, 0, 6, 6, 3, 0, 6, 7, 7, 6, 6, 8, 8, 7, }; static const uint8_t chroma_dc_coeff_token_bits[4*5]={ 1, 0, 0, 0, 7, 1, 0, 0, 4, 6, 1, 0, 3, 3, 2, 5, 2, 3, 2, 0, }; static const uint8_t chroma422_dc_coeff_token_len[4*9]={ 1, 0, 0, 0, 7, 2, 0, 0, 7, 7, 3, 0, 9, 7, 7, 5, 9, 9, 7, 6, 10, 10, 9, 7, 11, 11, 10, 7, 12, 12, 11, 10, 13, 12, 12, 11, }; static const uint8_t chroma422_dc_coeff_token_bits[4*9]={ 1, 0, 0, 0, 15, 1, 0, 0, 14, 13, 1, 0, 7, 12, 11, 1, 6, 5, 10, 1, 7, 6, 4, 9, 7, 6, 5, 8, 7, 6, 5, 4, 7, 5, 4, 4, }; static const uint8_t coeff_token_len[4][4*17]={ { 1, 0, 0, 0, 6, 2, 0, 0, 8, 6, 3, 0, 9, 8, 7, 5, 10, 9, 8, 6, 11,10, 9, 7, 13,11,10, 8, 13,13,11, 9, 13,13,13,10, 14,14,13,11, 14,14,14,13, 15,15,14,14, 15,15,15,14, 16,15,15,15, 16,16,16,15, 16,16,16,16, 16,16,16,16, }, { 2, 0, 0, 0, 6, 2, 0, 0, 6, 5, 3, 0, 7, 6, 6, 4, 8, 6, 6, 4, 8, 7, 7, 5, 9, 8, 8, 6, 11, 9, 9, 6, 11,11,11, 7, 12,11,11, 9, 12,12,12,11, 12,12,12,11, 13,13,13,12, 13,13,13,13, 13,14,13,13, 14,14,14,13, 14,14,14,14, }, { 4, 0, 0, 0, 6, 4, 0, 0, 6, 5, 4, 0, 6, 5, 5, 4, 7, 5, 5, 4, 7, 5, 5, 4, 7, 6, 6, 4, 7, 6, 6, 4, 8, 7, 7, 5, 8, 8, 7, 6, 9, 8, 8, 7, 9, 9, 8, 8, 9, 9, 9, 8, 10, 9, 9, 9, 10,10,10,10, 10,10,10,10, 10,10,10,10, }, { 6, 0, 0, 0, 6, 6, 0, 0, 6, 6, 6, 0, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, } }; static const uint8_t coeff_token_bits[4][4*17]={ { 1, 0, 0, 0, 5, 1, 0, 0, 7, 4, 1, 0, 7, 6, 5, 3, 7, 6, 5, 3, 7, 6, 5, 4, 15, 6, 5, 4, 11,14, 5, 4, 8,10,13, 4, 15,14, 9, 4, 11,10,13,12, 15,14, 9,12, 11,10,13, 8, 15, 1, 9,12, 11,14,13, 8, 7,10, 9,12, 4, 6, 5, 8, }, { 3, 0, 0, 0, 11, 2, 0, 0, 7, 7, 3, 0, 7,10, 9, 5, 7, 6, 5, 4, 4, 6, 5, 6, 7, 6, 5, 8, 15, 6, 5, 4, 11,14,13, 4, 15,10, 9, 4, 11,14,13,12, 8,10, 9, 8, 15,14,13,12, 11,10, 9,12, 7,11, 6, 8, 9, 8,10, 1, 7, 6, 5, 4, }, { 15, 0, 0, 0, 15,14, 0, 0, 11,15,13, 0, 8,12,14,12, 15,10,11,11, 11, 8, 9,10, 9,14,13, 9, 8,10, 9, 8, 15,14,13,13, 11,14,10,12, 15,10,13,12, 11,14, 9,12, 8,10,13, 8, 13, 7, 9,12, 9,12,11,10, 5, 8, 7, 6, 1, 4, 3, 2, }, { 3, 0, 0, 0, 0, 1, 0, 0, 4, 5, 6, 0, 8, 9,10,11, 12,13,14,15, 16,17,18,19, 20,21,22,23, 24,25,26,27, 28,29,30,31, 32,33,34,35, 36,37,38,39, 40,41,42,43, 44,45,46,47, 48,49,50,51, 52,53,54,55, 56,57,58,59, 60,61,62,63, } }; static const uint8_t total_zeros_len[16][16]= { {1,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9}, {3,3,3,3,3,4,4,4,4,5,5,6,6,6,6}, {4,3,3,3,4,4,3,3,4,5,5,6,5,6}, {5,3,4,4,3,3,3,4,3,4,5,5,5}, {4,4,4,3,3,3,3,3,4,5,4,5}, {6,5,3,3,3,3,3,3,4,3,6}, {6,5,3,3,3,2,3,4,3,6}, {6,4,5,3,2,2,3,3,6}, {6,6,4,2,2,3,2,5}, {5,5,3,2,2,2,4}, {4,4,3,3,1,3}, {4,4,2,1,3}, {3,3,1,2}, {2,2,1}, {1,1}, }; static const uint8_t total_zeros_bits[16][16]= { {1,3,2,3,2,3,2,3,2,3,2,3,2,3,2,1}, {7,6,5,4,3,5,4,3,2,3,2,3,2,1,0}, {5,7,6,5,4,3,4,3,2,3,2,1,1,0}, {3,7,5,4,6,5,4,3,3,2,2,1,0}, {5,4,3,7,6,5,4,3,2,1,1,0}, {1,1,7,6,5,4,3,2,1,1,0}, {1,1,5,4,3,3,2,1,1,0}, {1,1,1,3,3,2,2,1,0}, {1,0,1,3,2,1,1,1}, {1,0,1,3,2,1,1}, {0,1,1,2,1,3}, {0,1,1,1,1}, {0,1,1,1}, {0,1,1}, {0,1}, }; static const uint8_t chroma_dc_total_zeros_len[3][4]= { { 1, 2, 3, 3,}, { 1, 2, 2, 0,}, { 1, 1, 0, 0,}, }; static const uint8_t chroma_dc_total_zeros_bits[3][4]= { { 1, 1, 1, 0,}, { 1, 1, 0, 0,}, { 1, 0, 0, 0,}, }; static const uint8_t chroma422_dc_total_zeros_len[7][8]= { { 1, 3, 3, 4, 4, 4, 5, 5 }, { 3, 2, 3, 3, 3, 3, 3 }, { 3, 3, 2, 2, 3, 3 }, { 3, 2, 2, 2, 3 }, { 2, 2, 2, 2 }, { 2, 2, 1 }, { 1, 1 }, }; static const uint8_t chroma422_dc_total_zeros_bits[7][8]= { { 1, 2, 3, 2, 3, 1, 1, 0 }, { 0, 1, 1, 4, 5, 6, 7 }, { 0, 1, 1, 2, 6, 7 }, { 6, 0, 1, 2, 7 }, { 0, 1, 2, 3 }, { 0, 1, 1 }, { 0, 1 }, }; static const uint8_t run_len[7][16]={ {1,1}, {1,2,2}, {2,2,2,2}, {2,2,2,3,3}, {2,2,3,3,3,3}, {2,3,3,3,3,3,3}, {3,3,3,3,3,3,3,4,5,6,7,8,9,10,11}, }; static const uint8_t run_bits[7][16]={ {1,0}, {1,1,0}, {3,2,1,0}, {3,2,1,1,0}, {3,2,3,2,1,0}, {3,0,1,3,2,5,4}, {7,6,5,4,3,2,1,1,1,1,1,1,1,1,1}, }; static VLC coeff_token_vlc[4]; static VLC_TYPE coeff_token_vlc_tables[520+332+280+256][2]; static const int coeff_token_vlc_tables_size[4]={520,332,280,256}; static VLC chroma_dc_coeff_token_vlc; static VLC_TYPE chroma_dc_coeff_token_vlc_table[256][2]; static const int chroma_dc_coeff_token_vlc_table_size = 256; static VLC chroma422_dc_coeff_token_vlc; static VLC_TYPE chroma422_dc_coeff_token_vlc_table[8192][2]; static const int chroma422_dc_coeff_token_vlc_table_size = 8192; static VLC total_zeros_vlc[15]; static VLC_TYPE total_zeros_vlc_tables[15][512][2]; static const int total_zeros_vlc_tables_size = 512; static VLC chroma_dc_total_zeros_vlc[3]; static VLC_TYPE chroma_dc_total_zeros_vlc_tables[3][8][2]; static const int chroma_dc_total_zeros_vlc_tables_size = 8; static VLC chroma422_dc_total_zeros_vlc[7]; static VLC_TYPE chroma422_dc_total_zeros_vlc_tables[7][32][2]; static const int chroma422_dc_total_zeros_vlc_tables_size = 32; static VLC run_vlc[6]; static VLC_TYPE run_vlc_tables[6][8][2]; static const int run_vlc_tables_size = 8; static VLC run7_vlc; static VLC_TYPE run7_vlc_table[96][2]; static const int run7_vlc_table_size = 96; #define LEVEL_TAB_BITS 8 static int8_t cavlc_level_tab[7][1<<LEVEL_TAB_BITS][2]; #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8 #define CHROMA422_DC_COEFF_TOKEN_VLC_BITS 13 #define COEFF_TOKEN_VLC_BITS 8 #define TOTAL_ZEROS_VLC_BITS 9 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3 #define CHROMA422_DC_TOTAL_ZEROS_VLC_BITS 5 #define RUN_VLC_BITS 3 #define RUN7_VLC_BITS 6 /** * Get the predicted number of non-zero coefficients. * @param n block index */ static inline int pred_non_zero_count(H264Context *h, int n){ const int index8= scan8[n]; const int left= h->non_zero_count_cache[index8 - 1]; const int top = h->non_zero_count_cache[index8 - 8]; int i= left + top; if(i<64) i= (i+1)>>1; tprintf(h->avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31); return i&31; } static av_cold void init_cavlc_level_tab(void){ int suffix_length; unsigned int i; for(suffix_length=0; suffix_length<7; suffix_length++){ for(i=0; i<(1<<LEVEL_TAB_BITS); i++){ int prefix= LEVEL_TAB_BITS - av_log2(2*i); if(prefix + 1 + suffix_length <= LEVEL_TAB_BITS){ int level_code = (prefix << suffix_length) + (i >> (av_log2(i) - suffix_length)) - (1 << suffix_length); int mask = -(level_code&1); level_code = (((2 + level_code) >> 1) ^ mask) - mask; cavlc_level_tab[suffix_length][i][0]= level_code; cavlc_level_tab[suffix_length][i][1]= prefix + 1 + suffix_length; }else if(prefix + 1 <= LEVEL_TAB_BITS){ cavlc_level_tab[suffix_length][i][0]= prefix+100; cavlc_level_tab[suffix_length][i][1]= prefix + 1; }else{ cavlc_level_tab[suffix_length][i][0]= LEVEL_TAB_BITS+100; cavlc_level_tab[suffix_length][i][1]= LEVEL_TAB_BITS; } } } } av_cold void ff_h264_decode_init_vlc(void){ static int done = 0; if (!done) { int i; int offset; done = 1; chroma_dc_coeff_token_vlc.table = chroma_dc_coeff_token_vlc_table; chroma_dc_coeff_token_vlc.table_allocated = chroma_dc_coeff_token_vlc_table_size; init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5, &chroma_dc_coeff_token_len [0], 1, 1, &chroma_dc_coeff_token_bits[0], 1, 1, INIT_VLC_USE_NEW_STATIC); chroma422_dc_coeff_token_vlc.table = chroma422_dc_coeff_token_vlc_table; chroma422_dc_coeff_token_vlc.table_allocated = chroma422_dc_coeff_token_vlc_table_size; init_vlc(&chroma422_dc_coeff_token_vlc, CHROMA422_DC_COEFF_TOKEN_VLC_BITS, 4*9, &chroma422_dc_coeff_token_len [0], 1, 1, &chroma422_dc_coeff_token_bits[0], 1, 1, INIT_VLC_USE_NEW_STATIC); offset = 0; for(i=0; i<4; i++){ coeff_token_vlc[i].table = coeff_token_vlc_tables+offset; coeff_token_vlc[i].table_allocated = coeff_token_vlc_tables_size[i]; init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17, &coeff_token_len [i][0], 1, 1, &coeff_token_bits[i][0], 1, 1, INIT_VLC_USE_NEW_STATIC); offset += coeff_token_vlc_tables_size[i]; } /* * This is a one time safety check to make sure that * the packed static coeff_token_vlc table sizes * were initialized correctly. */ av_assert0(offset == FF_ARRAY_ELEMS(coeff_token_vlc_tables)); for(i=0; i<3; i++){ chroma_dc_total_zeros_vlc[i].table = chroma_dc_total_zeros_vlc_tables[i]; chroma_dc_total_zeros_vlc[i].table_allocated = chroma_dc_total_zeros_vlc_tables_size; init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4, &chroma_dc_total_zeros_len [i][0], 1, 1, &chroma_dc_total_zeros_bits[i][0], 1, 1, INIT_VLC_USE_NEW_STATIC); } for(i=0; i<7; i++){ chroma422_dc_total_zeros_vlc[i].table = chroma422_dc_total_zeros_vlc_tables[i]; chroma422_dc_total_zeros_vlc[i].table_allocated = chroma422_dc_total_zeros_vlc_tables_size; init_vlc(&chroma422_dc_total_zeros_vlc[i], CHROMA422_DC_TOTAL_ZEROS_VLC_BITS, 8, &chroma422_dc_total_zeros_len [i][0], 1, 1, &chroma422_dc_total_zeros_bits[i][0], 1, 1, INIT_VLC_USE_NEW_STATIC); } for(i=0; i<15; i++){ total_zeros_vlc[i].table = total_zeros_vlc_tables[i]; total_zeros_vlc[i].table_allocated = total_zeros_vlc_tables_size; init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16, &total_zeros_len [i][0], 1, 1, &total_zeros_bits[i][0], 1, 1, INIT_VLC_USE_NEW_STATIC); } for(i=0; i<6; i++){ run_vlc[i].table = run_vlc_tables[i]; run_vlc[i].table_allocated = run_vlc_tables_size; init_vlc(&run_vlc[i], RUN_VLC_BITS, 7, &run_len [i][0], 1, 1, &run_bits[i][0], 1, 1, INIT_VLC_USE_NEW_STATIC); } run7_vlc.table = run7_vlc_table, run7_vlc.table_allocated = run7_vlc_table_size; init_vlc(&run7_vlc, RUN7_VLC_BITS, 16, &run_len [6][0], 1, 1, &run_bits[6][0], 1, 1, INIT_VLC_USE_NEW_STATIC); init_cavlc_level_tab(); } } /** * */ static inline int get_level_prefix(GetBitContext *gb){ unsigned int buf; int log; OPEN_READER(re, gb); UPDATE_CACHE(re, gb); buf=GET_CACHE(re, gb); log= 32 - av_log2(buf); #ifdef TRACE print_bin(buf>>(32-log), log); av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__); #endif LAST_SKIP_BITS(re, gb, log); CLOSE_READER(re, gb); return log-1; } /** * Decode a residual block. * @param n block index * @param scantable scantable * @param max_coeff number of coefficients in the block * @return <0 if an error occurred */ static int decode_residual(H264Context *h, GetBitContext *gb, int16_t *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){ static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3}; int level[16]; int zeros_left, coeff_token, total_coeff, i, trailing_ones, run_before; //FIXME put trailing_onex into the context if(max_coeff <= 8){ if (max_coeff == 4) coeff_token = get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1); else coeff_token = get_vlc2(gb, chroma422_dc_coeff_token_vlc.table, CHROMA422_DC_COEFF_TOKEN_VLC_BITS, 1); total_coeff= coeff_token>>2; }else{ if(n >= LUMA_DC_BLOCK_INDEX){ total_coeff= pred_non_zero_count(h, (n - LUMA_DC_BLOCK_INDEX)*16); coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2); total_coeff= coeff_token>>2; }else{ total_coeff= pred_non_zero_count(h, n); coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2); total_coeff= coeff_token>>2; } } h->non_zero_count_cache[ scan8[n] ]= total_coeff; //FIXME set last_non_zero? if(total_coeff==0) return 0; if(total_coeff > (unsigned)max_coeff) { av_log(h->avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", h->mb_x, h->mb_y, total_coeff); return -1; } trailing_ones= coeff_token&3; tprintf(h->avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff); av_assert2(total_coeff<=16); i = show_bits(gb, 3); skip_bits(gb, trailing_ones); level[0] = 1-((i&4)>>1); level[1] = 1-((i&2) ); level[2] = 1-((i&1)<<1); if(trailing_ones<total_coeff) { int mask, prefix; int suffix_length = total_coeff > 10 & trailing_ones < 3; int bitsi= show_bits(gb, LEVEL_TAB_BITS); int level_code= cavlc_level_tab[suffix_length][bitsi][0]; skip_bits(gb, cavlc_level_tab[suffix_length][bitsi][1]); if(level_code >= 100){ prefix= level_code - 100; if(prefix == LEVEL_TAB_BITS) prefix += get_level_prefix(gb); //first coefficient has suffix_length equal to 0 or 1 if(prefix<14){ //FIXME try to build a large unified VLC table for all this if(suffix_length) level_code= (prefix<<1) + get_bits1(gb); //part else level_code= prefix; //part }else if(prefix==14){ if(suffix_length) level_code= (prefix<<1) + get_bits1(gb); //part else level_code= prefix + get_bits(gb, 4); //part }else{ level_code= 30; if(prefix>=16){ if(prefix > 25+3){ av_log(h->avctx, AV_LOG_ERROR, "Invalid level prefix\n"); return -1; } level_code += (1<<(prefix-3))-4096; } level_code += get_bits(gb, prefix-3); //part } if(trailing_ones < 3) level_code += 2; suffix_length = 2; mask= -(level_code&1); level[trailing_ones]= (((2+level_code)>>1) ^ mask) - mask; }else{ level_code += ((level_code>>31)|1) & -(trailing_ones < 3); suffix_length = 1 + (level_code + 3U > 6U); level[trailing_ones]= level_code; } //remaining coefficients have suffix_length > 0 for(i=trailing_ones+1;i<total_coeff;i++) { static const unsigned int suffix_limit[7] = {0,3,6,12,24,48,INT_MAX }; int bitsi= show_bits(gb, LEVEL_TAB_BITS); level_code= cavlc_level_tab[suffix_length][bitsi][0]; skip_bits(gb, cavlc_level_tab[suffix_length][bitsi][1]); if(level_code >= 100){ prefix= level_code - 100; if(prefix == LEVEL_TAB_BITS){ prefix += get_level_prefix(gb); } if(prefix<15){ level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length); }else{ level_code = 15<<suffix_length; if (prefix>=16) { if(prefix > 25+3){ av_log(h->avctx, AV_LOG_ERROR, "Invalid level prefix\n"); return AVERROR_INVALIDDATA; } level_code += (1<<(prefix-3))-4096; } level_code += get_bits(gb, prefix-3); } mask= -(level_code&1); level_code= (((2+level_code)>>1) ^ mask) - mask; } level[i]= level_code; suffix_length+= suffix_limit[suffix_length] + level_code > 2U*suffix_limit[suffix_length]; } } if(total_coeff == max_coeff) zeros_left=0; else{ if (max_coeff <= 8) { if (max_coeff == 4) zeros_left = get_vlc2(gb, (chroma_dc_total_zeros_vlc-1)[total_coeff].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1); else zeros_left = get_vlc2(gb, (chroma422_dc_total_zeros_vlc-1)[total_coeff].table, CHROMA422_DC_TOTAL_ZEROS_VLC_BITS, 1); } else { zeros_left= get_vlc2(gb, (total_zeros_vlc-1)[ total_coeff ].table, TOTAL_ZEROS_VLC_BITS, 1); } } #define STORE_BLOCK(type) \ scantable += zeros_left + total_coeff - 1; \ if(n >= LUMA_DC_BLOCK_INDEX){ \ ((type*)block)[*scantable] = level[0]; \ for(i=1;i<total_coeff && zeros_left > 0;i++) { \ if(zeros_left < 7) \ run_before= get_vlc2(gb, (run_vlc-1)[zeros_left].table, RUN_VLC_BITS, 1); \ else \ run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2); \ zeros_left -= run_before; \ scantable -= 1 + run_before; \ ((type*)block)[*scantable]= level[i]; \ } \ for(;i<total_coeff;i++) { \ scantable--; \ ((type*)block)[*scantable]= level[i]; \ } \ }else{ \ ((type*)block)[*scantable] = ((int)(level[0] * qmul[*scantable] + 32))>>6; \ for(i=1;i<total_coeff && zeros_left > 0;i++) { \ if(zeros_left < 7) \ run_before= get_vlc2(gb, (run_vlc-1)[zeros_left].table, RUN_VLC_BITS, 1); \ else \ run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2); \ zeros_left -= run_before; \ scantable -= 1 + run_before; \ ((type*)block)[*scantable]= ((int)(level[i] * qmul[*scantable] + 32))>>6; \ } \ for(;i<total_coeff;i++) { \ scantable--; \ ((type*)block)[*scantable]= ((int)(level[i] * qmul[*scantable] + 32))>>6; \ } \ } if (h->pixel_shift) { STORE_BLOCK(int32_t) } else { STORE_BLOCK(int16_t) } if(zeros_left<0){ av_log(h->avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", h->mb_x, h->mb_y); return -1; } return 0; } static av_always_inline int decode_luma_residual(H264Context *h, GetBitContext *gb, const uint8_t *scan, const uint8_t *scan8x8, int pixel_shift, int mb_type, int cbp, int p){ int i4x4, i8x8; int qscale = p == 0 ? h->qscale : h->chroma_qp[p-1]; if(IS_INTRA16x16(mb_type)){ AV_ZERO128(h->mb_luma_dc[p]+0); AV_ZERO128(h->mb_luma_dc[p]+8); AV_ZERO128(h->mb_luma_dc[p]+16); AV_ZERO128(h->mb_luma_dc[p]+24); if( decode_residual(h, h->intra_gb_ptr, h->mb_luma_dc[p], LUMA_DC_BLOCK_INDEX+p, scan, NULL, 16) < 0){ return -1; //FIXME continue if partitioned and other return -1 too } av_assert2((cbp&15) == 0 || (cbp&15) == 15); if(cbp&15){ for(i8x8=0; i8x8<4; i8x8++){ for(i4x4=0; i4x4<4; i4x4++){ const int index= i4x4 + 4*i8x8 + p*16; if( decode_residual(h, h->intra_gb_ptr, h->mb + (16*index << pixel_shift), index, scan + 1, h->dequant4_coeff[p][qscale], 15) < 0 ){ return -1; } } } return 0xf; }else{ fill_rectangle(&h->non_zero_count_cache[scan8[p*16]], 4, 4, 8, 0, 1); return 0; } }else{ int cqm = (IS_INTRA( mb_type ) ? 0:3)+p; /* For CAVLC 4:4:4, we need to keep track of the luma 8x8 CBP for deblocking nnz purposes. */ int new_cbp = 0; for(i8x8=0; i8x8<4; i8x8++){ if(cbp & (1<<i8x8)){ if(IS_8x8DCT(mb_type)){ int16_t *buf = &h->mb[64*i8x8+256*p << pixel_shift]; uint8_t *nnz; for(i4x4=0; i4x4<4; i4x4++){ const int index= i4x4 + 4*i8x8 + p*16; if( decode_residual(h, gb, buf, index, scan8x8+16*i4x4, h->dequant8_coeff[cqm][qscale], 16) < 0 ) return -1; } nnz= &h->non_zero_count_cache[ scan8[4*i8x8+p*16] ]; nnz[0] += nnz[1] + nnz[8] + nnz[9]; new_cbp |= !!nnz[0] << i8x8; }else{ for(i4x4=0; i4x4<4; i4x4++){ const int index= i4x4 + 4*i8x8 + p*16; if( decode_residual(h, gb, h->mb + (16*index << pixel_shift), index, scan, h->dequant4_coeff[cqm][qscale], 16) < 0 ){ return -1; } new_cbp |= h->non_zero_count_cache[ scan8[index] ] << i8x8; } } }else{ uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8+p*16] ]; nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0; } } return new_cbp; } } int ff_h264_decode_mb_cavlc(H264Context *h){ int mb_xy; int partition_count; unsigned int mb_type, cbp; int dct8x8_allowed= h->pps.transform_8x8_mode; int decode_chroma = h->sps.chroma_format_idc == 1 || h->sps.chroma_format_idc == 2; const int pixel_shift = h->pixel_shift; unsigned local_ref_count[2]; mb_xy = h->mb_xy = h->mb_x + h->mb_y*h->mb_stride; tprintf(h->avctx, "pic:%d mb:%d/%d\n", h->frame_num, h->mb_x, h->mb_y); cbp = 0; /* avoid warning. FIXME: find a solution without slowing down the code */ if(h->slice_type_nos != AV_PICTURE_TYPE_I){ if(h->mb_skip_run==-1) h->mb_skip_run= get_ue_golomb_long(&h->gb); if (h->mb_skip_run--) { if(FRAME_MBAFF(h) && (h->mb_y&1) == 0){ if(h->mb_skip_run==0) h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&h->gb); } decode_mb_skip(h); return 0; } } if (FRAME_MBAFF(h)) { if( (h->mb_y&1) == 0 ) h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&h->gb); } h->prev_mb_skipped= 0; mb_type= get_ue_golomb(&h->gb); if(h->slice_type_nos == AV_PICTURE_TYPE_B){ if(mb_type < 23){ partition_count= b_mb_type_info[mb_type].partition_count; mb_type= b_mb_type_info[mb_type].type; }else{ mb_type -= 23; goto decode_intra_mb; } }else if(h->slice_type_nos == AV_PICTURE_TYPE_P){ if(mb_type < 5){ partition_count= p_mb_type_info[mb_type].partition_count; mb_type= p_mb_type_info[mb_type].type; }else{ mb_type -= 5; goto decode_intra_mb; } }else{ av_assert2(h->slice_type_nos == AV_PICTURE_TYPE_I); if(h->slice_type == AV_PICTURE_TYPE_SI && mb_type) mb_type--; decode_intra_mb: if(mb_type > 25){ av_log(h->avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_picture_type_char(h->slice_type), h->mb_x, h->mb_y); return -1; } partition_count=0; cbp= i_mb_type_info[mb_type].cbp; h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode; mb_type= i_mb_type_info[mb_type].type; } if(MB_FIELD(h)) mb_type |= MB_TYPE_INTERLACED; h->slice_table[ mb_xy ]= h->slice_num; if(IS_INTRA_PCM(mb_type)){ const int mb_size = ff_h264_mb_sizes[h->sps.chroma_format_idc] * h->sps.bit_depth_luma; // We assume these blocks are very rare so we do not optimize it. h->intra_pcm_ptr = align_get_bits(&h->gb); if (get_bits_left(&h->gb) < mb_size) { av_log(h->avctx, AV_LOG_ERROR, "Not enough data for an intra PCM block.\n"); return AVERROR_INVALIDDATA; } skip_bits_long(&h->gb, mb_size); // In deblocking, the quantizer is 0 h->cur_pic.qscale_table[mb_xy] = 0; // All coeffs are present memset(h->non_zero_count[mb_xy], 16, 48); h->cur_pic.mb_type[mb_xy] = mb_type; return 0; } local_ref_count[0] = h->ref_count[0] << MB_MBAFF(h); local_ref_count[1] = h->ref_count[1] << MB_MBAFF(h); fill_decode_neighbors(h, mb_type); fill_decode_caches(h, mb_type); //mb_pred if(IS_INTRA(mb_type)){ int pred_mode; // init_top_left_availability(h); if(IS_INTRA4x4(mb_type)){ int i; int di = 1; if(dct8x8_allowed && get_bits1(&h->gb)){ mb_type |= MB_TYPE_8x8DCT; di = 4; } // fill_intra4x4_pred_table(h); for(i=0; i<16; i+=di){ int mode= pred_intra_mode(h, i); if(!get_bits1(&h->gb)){ const int rem_mode= get_bits(&h->gb, 3); mode = rem_mode + (rem_mode >= mode); } if(di==4) fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 ); else h->intra4x4_pred_mode_cache[ scan8[i] ] = mode; } write_back_intra_pred_mode(h); if( ff_h264_check_intra4x4_pred_mode(h) < 0) return -1; }else{ h->intra16x16_pred_mode= ff_h264_check_intra_pred_mode(h, h->intra16x16_pred_mode, 0); if(h->intra16x16_pred_mode < 0) return -1; } if(decode_chroma){ pred_mode= ff_h264_check_intra_pred_mode(h, get_ue_golomb_31(&h->gb), 1); if(pred_mode < 0) return -1; h->chroma_pred_mode= pred_mode; } else { h->chroma_pred_mode = DC_128_PRED8x8; } }else if(partition_count==4){ int i, j, sub_partition_count[4], list, ref[2][4]; if(h->slice_type_nos == AV_PICTURE_TYPE_B){ for(i=0; i<4; i++){ h->sub_mb_type[i]= get_ue_golomb_31(&h->gb); if(h->sub_mb_type[i] >=13){ av_log(h->avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], h->mb_x, h->mb_y); return -1; } sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count; h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type; } if( IS_DIRECT(h->sub_mb_type[0]|h->sub_mb_type[1]|h->sub_mb_type[2]|h->sub_mb_type[3])) { ff_h264_pred_direct_motion(h, &mb_type); h->ref_cache[0][scan8[4]] = h->ref_cache[1][scan8[4]] = h->ref_cache[0][scan8[12]] = h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE; } }else{ av_assert2(h->slice_type_nos == AV_PICTURE_TYPE_P); //FIXME SP correct ? for(i=0; i<4; i++){ h->sub_mb_type[i]= get_ue_golomb_31(&h->gb); if(h->sub_mb_type[i] >=4){ av_log(h->avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], h->mb_x, h->mb_y); return -1; } sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count; h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type; } } for(list=0; list<h->list_count; list++){ int ref_count = IS_REF0(mb_type) ? 1 : local_ref_count[list]; for(i=0; i<4; i++){ if(IS_DIRECT(h->sub_mb_type[i])) continue; if(IS_DIR(h->sub_mb_type[i], 0, list)){ unsigned int tmp; if(ref_count == 1){ tmp= 0; }else if(ref_count == 2){ tmp= get_bits1(&h->gb)^1; }else{ tmp= get_ue_golomb_31(&h->gb); if(tmp>=ref_count){ av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp); return -1; } } ref[list][i]= tmp; }else{ //FIXME ref[list][i] = -1; } } } if(dct8x8_allowed) dct8x8_allowed = get_dct8x8_allowed(h); for(list=0; list<h->list_count; list++){ for(i=0; i<4; i++){ if(IS_DIRECT(h->sub_mb_type[i])) { h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ]; continue; } h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]= h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i]; if(IS_DIR(h->sub_mb_type[i], 0, list)){ const int sub_mb_type= h->sub_mb_type[i]; const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1; for(j=0; j<sub_partition_count[i]; j++){ int mx, my; const int index= 4*i + block_width*j; int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ]; pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my); mx += get_se_golomb(&h->gb); my += get_se_golomb(&h->gb); tprintf(h->avctx, "final mv:%d %d\n", mx, my); if(IS_SUB_8X8(sub_mb_type)){ mv_cache[ 1 ][0]= mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx; mv_cache[ 1 ][1]= mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my; }else if(IS_SUB_8X4(sub_mb_type)){ mv_cache[ 1 ][0]= mx; mv_cache[ 1 ][1]= my; }else if(IS_SUB_4X8(sub_mb_type)){ mv_cache[ 8 ][0]= mx; mv_cache[ 8 ][1]= my; } mv_cache[ 0 ][0]= mx; mv_cache[ 0 ][1]= my; } }else{ uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0]; p[0] = p[1]= p[8] = p[9]= 0; } } } }else if(IS_DIRECT(mb_type)){ ff_h264_pred_direct_motion(h, &mb_type); dct8x8_allowed &= h->sps.direct_8x8_inference_flag; }else{ int list, mx, my, i; //FIXME we should set ref_idx_l? to 0 if we use that later ... if(IS_16X16(mb_type)){ for(list=0; list<h->list_count; list++){ unsigned int val; if(IS_DIR(mb_type, 0, list)){ if(local_ref_count[list]==1){ val= 0; } else if(local_ref_count[list]==2){ val= get_bits1(&h->gb)^1; }else{ val= get_ue_golomb_31(&h->gb); if (val >= local_ref_count[list]){ av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", val); return -1; } } fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1); } } for(list=0; list<h->list_count; list++){ if(IS_DIR(mb_type, 0, list)){ pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my); mx += get_se_golomb(&h->gb); my += get_se_golomb(&h->gb); tprintf(h->avctx, "final mv:%d %d\n", mx, my); fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4); } } } else if(IS_16X8(mb_type)){ for(list=0; list<h->list_count; list++){ for(i=0; i<2; i++){ unsigned int val; if(IS_DIR(mb_type, i, list)){ if(local_ref_count[list] == 1) { val= 0; } else if(local_ref_count[list] == 2) { val= get_bits1(&h->gb)^1; }else{ val= get_ue_golomb_31(&h->gb); if (val >= local_ref_count[list]){ av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", val); return -1; } } }else val= LIST_NOT_USED&0xFF; fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1); } } for(list=0; list<h->list_count; list++){ for(i=0; i<2; i++){ unsigned int val; if(IS_DIR(mb_type, i, list)){ pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my); mx += get_se_golomb(&h->gb); my += get_se_golomb(&h->gb); tprintf(h->avctx, "final mv:%d %d\n", mx, my); val= pack16to32(mx,my); }else val=0; fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4); } } }else{ av_assert2(IS_8X16(mb_type)); for(list=0; list<h->list_count; list++){ for(i=0; i<2; i++){ unsigned int val; if(IS_DIR(mb_type, i, list)){ //FIXME optimize if(local_ref_count[list]==1){ val= 0; } else if(local_ref_count[list]==2){ val= get_bits1(&h->gb)^1; }else{ val= get_ue_golomb_31(&h->gb); if (val >= local_ref_count[list]){ av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", val); return -1; } } }else val= LIST_NOT_USED&0xFF; fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1); } } for(list=0; list<h->list_count; list++){ for(i=0; i<2; i++){ unsigned int val; if(IS_DIR(mb_type, i, list)){ pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my); mx += get_se_golomb(&h->gb); my += get_se_golomb(&h->gb); tprintf(h->avctx, "final mv:%d %d\n", mx, my); val= pack16to32(mx,my); }else val=0; fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4); } } } } if(IS_INTER(mb_type)) write_back_motion(h, mb_type); if(!IS_INTRA16x16(mb_type)){ cbp= get_ue_golomb(&h->gb); if(decode_chroma){ if(cbp > 47){ av_log(h->avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, h->mb_x, h->mb_y); return -1; } if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp[cbp]; else cbp= golomb_to_inter_cbp [cbp]; }else{ if(cbp > 15){ av_log(h->avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, h->mb_x, h->mb_y); return -1; } if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp_gray[cbp]; else cbp= golomb_to_inter_cbp_gray[cbp]; } } else { if (!decode_chroma && cbp>15) { av_log(h->avctx, AV_LOG_ERROR, "gray chroma\n"); return AVERROR_INVALIDDATA; } } if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){ mb_type |= MB_TYPE_8x8DCT*get_bits1(&h->gb); } h->cbp= h->cbp_table[mb_xy]= cbp; h->cur_pic.mb_type[mb_xy] = mb_type; if(cbp || IS_INTRA16x16(mb_type)){ int i4x4, i8x8, chroma_idx; int dquant; int ret; GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr; const uint8_t *scan, *scan8x8; const int max_qp = 51 + 6*(h->sps.bit_depth_luma-8); if(IS_INTERLACED(mb_type)){ scan8x8= h->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0; scan= h->qscale ? h->field_scan : h->field_scan_q0; }else{ scan8x8= h->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0; scan= h->qscale ? h->zigzag_scan : h->zigzag_scan_q0; } dquant= get_se_golomb(&h->gb); h->qscale += dquant; if(((unsigned)h->qscale) > max_qp){ if(h->qscale<0) h->qscale+= max_qp+1; else h->qscale-= max_qp+1; if(((unsigned)h->qscale) > max_qp){ av_log(h->avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, h->mb_x, h->mb_y); return -1; } } h->chroma_qp[0]= get_chroma_qp(h, 0, h->qscale); h->chroma_qp[1]= get_chroma_qp(h, 1, h->qscale); if( (ret = decode_luma_residual(h, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 0)) < 0 ){ return -1; } h->cbp_table[mb_xy] |= ret << 12; if (CHROMA444(h)) { if( decode_luma_residual(h, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 1) < 0 ){ return -1; } if( decode_luma_residual(h, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 2) < 0 ){ return -1; } } else { const int num_c8x8 = h->sps.chroma_format_idc; if(cbp&0x30){ for(chroma_idx=0; chroma_idx<2; chroma_idx++) if (decode_residual(h, gb, h->mb + ((256 + 16*16*chroma_idx) << pixel_shift), CHROMA_DC_BLOCK_INDEX+chroma_idx, CHROMA422(h) ? chroma422_dc_scan : chroma_dc_scan, NULL, 4*num_c8x8) < 0) { return -1; } } if(cbp&0x20){ for(chroma_idx=0; chroma_idx<2; chroma_idx++){ const uint32_t *qmul = h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[chroma_idx]]; int16_t *mb = h->mb + (16*(16 + 16*chroma_idx) << pixel_shift); for (i8x8 = 0; i8x8<num_c8x8; i8x8++) { for (i4x4 = 0; i4x4 < 4; i4x4++) { const int index = 16 + 16*chroma_idx + 8*i8x8 + i4x4; if (decode_residual(h, gb, mb, index, scan + 1, qmul, 15) < 0) return -1; mb += 16 << pixel_shift; } } } }else{ fill_rectangle(&h->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1); fill_rectangle(&h->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1); } } }else{ fill_rectangle(&h->non_zero_count_cache[scan8[ 0]], 4, 4, 8, 0, 1); fill_rectangle(&h->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1); fill_rectangle(&h->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1); } h->cur_pic.qscale_table[mb_xy] = h->qscale; write_back_non_zero_count(h); return 0; }