/* * H.26L/H.264/AVC/JVT/14496-10/... decoder * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * H.264 / AVC / MPEG4 part10 codec. * @author Michael Niedermayer <michaelni@gmx.at> */ #include "libavutil/imgutils.h" #include "internal.h" #include "dsputil.h" #include "avcodec.h" #include "mpegvideo.h" #include "h264.h" #include "h264data.h" #include "h264_mvpred.h" #include "golomb.h" #include "mathops.h" #include "rectangle.h" #include "thread.h" #include "vdpau_internal.h" #include "libavutil/avassert.h" #include "cabac.h" //#undef NDEBUG #include <assert.h> static const uint8_t rem6[QP_MAX_MAX+1]={ 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, }; static const uint8_t div6[QP_MAX_MAX+1]={ 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10,10,10,10, }; static const enum PixelFormat hwaccel_pixfmt_list_h264_jpeg_420[] = { PIX_FMT_DXVA2_VLD, PIX_FMT_VAAPI_VLD, PIX_FMT_YUVJ420P, PIX_FMT_NONE }; void ff_h264_write_back_intra_pred_mode(H264Context *h){ int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[h->mb_xy]; AV_COPY32(mode, h->intra4x4_pred_mode_cache + 4 + 8*4); mode[4]= h->intra4x4_pred_mode_cache[7+8*3]; mode[5]= h->intra4x4_pred_mode_cache[7+8*2]; mode[6]= h->intra4x4_pred_mode_cache[7+8*1]; } /** * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks. */ int ff_h264_check_intra4x4_pred_mode(H264Context *h){ MpegEncContext * const s = &h->s; static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0}; static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED}; int i; if(!(h->top_samples_available&0x8000)){ for(i=0; i<4; i++){ int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ]; if(status<0){ av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y); return -1; } else if(status){ h->intra4x4_pred_mode_cache[scan8[0] + i]= status; } } } if((h->left_samples_available&0x8888)!=0x8888){ static const int mask[4]={0x8000,0x2000,0x80,0x20}; for(i=0; i<4; i++){ if(!(h->left_samples_available&mask[i])){ int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ]; if(status<0){ av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y); return -1; } else if(status){ h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status; } } } } return 0; } //FIXME cleanup like ff_h264_check_intra_pred_mode /** * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks. */ int ff_h264_check_intra_pred_mode(H264Context *h, int mode){ MpegEncContext * const s = &h->s; static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1}; static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8}; if(mode > 6U) { av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y); return -1; } if(!(h->top_samples_available&0x8000)){ mode= top[ mode ]; if(mode<0){ av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y); return -1; } } if((h->left_samples_available&0x8080) != 0x8080){ mode= left[ mode ]; if(h->left_samples_available&0x8080){ //mad cow disease mode, aka MBAFF + constrained_intra_pred mode= ALZHEIMER_DC_L0T_PRED8x8 + (!(h->left_samples_available&0x8000)) + 2*(mode == DC_128_PRED8x8); } if(mode<0){ av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y); return -1; } } return mode; } const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){ int i, si, di; uint8_t *dst; int bufidx; // src[0]&0x80; //forbidden bit h->nal_ref_idc= src[0]>>5; h->nal_unit_type= src[0]&0x1F; src++; length--; #if 0 for(i=0; i<length; i++) printf("%2X ", src[i]); #endif #if HAVE_FAST_UNALIGNED # if HAVE_FAST_64BIT # define RS 7 for(i=0; i+1<length; i+=9){ if(!((~AV_RN64A(src+i) & (AV_RN64A(src+i) - 0x0100010001000101ULL)) & 0x8000800080008080ULL)) # else # define RS 3 for(i=0; i+1<length; i+=5){ if(!((~AV_RN32A(src+i) & (AV_RN32A(src+i) - 0x01000101U)) & 0x80008080U)) # endif continue; if(i>0 && !src[i]) i--; while(src[i]) i++; #else # define RS 0 for(i=0; i+1<length; i+=2){ if(src[i]) continue; if(i>0 && src[i-1]==0) i--; #endif if(i+2<length && src[i+1]==0 && src[i+2]<=3){ if(src[i+2]!=3){ /* startcode, so we must be past the end */ length=i; } break; } i-= RS; } if(i>=length-1){ //no escaped 0 *dst_length= length; *consumed= length+1; //+1 for the header return src; } bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data av_fast_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+FF_INPUT_BUFFER_PADDING_SIZE); dst= h->rbsp_buffer[bufidx]; if (dst == NULL){ return NULL; } //printf("decoding esc\n"); memcpy(dst, src, i); si=di=i; while(si+2<length){ //remove escapes (very rare 1:2^22) if(src[si+2]>3){ dst[di++]= src[si++]; dst[di++]= src[si++]; }else if(src[si]==0 && src[si+1]==0){ if(src[si+2]==3){ //escape dst[di++]= 0; dst[di++]= 0; si+=3; continue; }else //next start code goto nsc; } dst[di++]= src[si++]; } while(si<length) dst[di++]= src[si++]; nsc: memset(dst+di, 0, FF_INPUT_BUFFER_PADDING_SIZE); *dst_length= di; *consumed= si + 1;//+1 for the header //FIXME store exact number of bits in the getbitcontext (it is needed for decoding) return dst; } /** * Identify the exact end of the bitstream * @return the length of the trailing, or 0 if damaged */ static int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src){ int v= *src; int r; tprintf(h->s.avctx, "rbsp trailing %X\n", v); for(r=1; r<9; r++){ if(v&1) return r; v>>=1; } return 0; } #if 0 /** * DCT transforms the 16 dc values. * @param qp quantization parameter ??? FIXME */ static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){ // const int qmul= dequant_coeff[qp][0]; int i; int temp[16]; //FIXME check if this is a good idea static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride}; static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride}; for(i=0; i<4; i++){ const int offset= y_offset[i]; const int z0= block[offset+stride*0] + block[offset+stride*4]; const int z1= block[offset+stride*0] - block[offset+stride*4]; const int z2= block[offset+stride*1] - block[offset+stride*5]; const int z3= block[offset+stride*1] + block[offset+stride*5]; temp[4*i+0]= z0+z3; temp[4*i+1]= z1+z2; temp[4*i+2]= z1-z2; temp[4*i+3]= z0-z3; } for(i=0; i<4; i++){ const int offset= x_offset[i]; const int z0= temp[4*0+i] + temp[4*2+i]; const int z1= temp[4*0+i] - temp[4*2+i]; const int z2= temp[4*1+i] - temp[4*3+i]; const int z3= temp[4*1+i] + temp[4*3+i]; block[stride*0 +offset]= (z0 + z3)>>1; block[stride*2 +offset]= (z1 + z2)>>1; block[stride*8 +offset]= (z1 - z2)>>1; block[stride*10+offset]= (z0 - z3)>>1; } } #endif #undef xStride #undef stride #if 0 static void chroma_dc_dct_c(DCTELEM *block){ const int stride= 16*2; const int xStride= 16; int a,b,c,d,e; a= block[stride*0 + xStride*0]; b= block[stride*0 + xStride*1]; c= block[stride*1 + xStride*0]; d= block[stride*1 + xStride*1]; e= a-b; a= a+b; b= c-d; c= c+d; block[stride*0 + xStride*0]= (a+c); block[stride*0 + xStride*1]= (e+b); block[stride*1 + xStride*0]= (a-c); block[stride*1 + xStride*1]= (e-b); } #endif static void free_tables(H264Context *h, int free_rbsp){ int i; H264Context *hx; av_freep(&h->intra4x4_pred_mode); av_freep(&h->chroma_pred_mode_table); av_freep(&h->cbp_table); av_freep(&h->mvd_table[0]); av_freep(&h->mvd_table[1]); av_freep(&h->direct_table); av_freep(&h->non_zero_count); av_freep(&h->slice_table_base); h->slice_table= NULL; av_freep(&h->list_counts); av_freep(&h->mb2b_xy); av_freep(&h->mb2br_xy); for(i = 0; i < MAX_THREADS; i++) { hx = h->thread_context[i]; if(!hx) continue; av_freep(&hx->top_borders[1]); av_freep(&hx->top_borders[0]); av_freep(&hx->s.obmc_scratchpad); if (free_rbsp){ av_freep(&hx->rbsp_buffer[1]); av_freep(&hx->rbsp_buffer[0]); hx->rbsp_buffer_size[0] = 0; hx->rbsp_buffer_size[1] = 0; } if (i) av_freep(&h->thread_context[i]); } } static void init_dequant8_coeff_table(H264Context *h){ int i,q,x; const int max_qp = 51 + 6*(h->sps.bit_depth_luma-8); h->dequant8_coeff[0] = h->dequant8_buffer[0]; h->dequant8_coeff[1] = h->dequant8_buffer[1]; for(i=0; i<2; i++ ){ if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){ h->dequant8_coeff[1] = h->dequant8_buffer[0]; break; } for(q=0; q<max_qp+1; q++){ int shift = div6[q]; int idx = rem6[q]; for(x=0; x<64; x++) h->dequant8_coeff[i][q][(x>>3)|((x&7)<<3)] = ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] * h->pps.scaling_matrix8[i][x]) << shift; } } } static void init_dequant4_coeff_table(H264Context *h){ int i,j,q,x; const int max_qp = 51 + 6*(h->sps.bit_depth_luma-8); for(i=0; i<6; i++ ){ h->dequant4_coeff[i] = h->dequant4_buffer[i]; for(j=0; j<i; j++){ if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){ h->dequant4_coeff[i] = h->dequant4_buffer[j]; break; } } if(j<i) continue; for(q=0; q<max_qp+1; q++){ int shift = div6[q] + 2; int idx = rem6[q]; for(x=0; x<16; x++) h->dequant4_coeff[i][q][(x>>2)|((x<<2)&0xF)] = ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] * h->pps.scaling_matrix4[i][x]) << shift; } } } static void init_dequant_tables(H264Context *h){ int i,x; init_dequant4_coeff_table(h); if(h->pps.transform_8x8_mode) init_dequant8_coeff_table(h); if(h->sps.transform_bypass){ for(i=0; i<6; i++) for(x=0; x<16; x++) h->dequant4_coeff[i][0][x] = 1<<6; if(h->pps.transform_8x8_mode) for(i=0; i<2; i++) for(x=0; x<64; x++) h->dequant8_coeff[i][0][x] = 1<<6; } } int ff_h264_alloc_tables(H264Context *h){ MpegEncContext * const s = &h->s; const int big_mb_num= s->mb_stride * (s->mb_height+1); const int row_mb_num= 2*s->mb_stride*s->avctx->thread_count; int x,y; FF_ALLOCZ_OR_GOTO(h->s.avctx, h->intra4x4_pred_mode, row_mb_num * 8 * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(h->s.avctx, h->non_zero_count , big_mb_num * 32 * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(h->s.avctx, h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base), fail) FF_ALLOCZ_OR_GOTO(h->s.avctx, h->cbp_table, big_mb_num * sizeof(uint16_t), fail) FF_ALLOCZ_OR_GOTO(h->s.avctx, h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[0], 16*row_mb_num * sizeof(uint8_t), fail); FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[1], 16*row_mb_num * sizeof(uint8_t), fail); FF_ALLOCZ_OR_GOTO(h->s.avctx, h->direct_table, 4*big_mb_num * sizeof(uint8_t) , fail); FF_ALLOCZ_OR_GOTO(h->s.avctx, h->list_counts, big_mb_num * sizeof(uint8_t), fail) memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base)); h->slice_table= h->slice_table_base + s->mb_stride*2 + 1; FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2b_xy , big_mb_num * sizeof(uint32_t), fail); FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2br_xy , big_mb_num * sizeof(uint32_t), fail); for(y=0; y<s->mb_height; y++){ for(x=0; x<s->mb_width; x++){ const int mb_xy= x + y*s->mb_stride; const int b_xy = 4*x + 4*y*h->b_stride; h->mb2b_xy [mb_xy]= b_xy; h->mb2br_xy[mb_xy]= 8*(FMO ? mb_xy : (mb_xy % (2*s->mb_stride))); } } s->obmc_scratchpad = NULL; if(!h->dequant4_coeff[0]) init_dequant_tables(h); return 0; fail: free_tables(h, 1); return -1; } /** * Mimic alloc_tables(), but for every context thread. */ static void clone_tables(H264Context *dst, H264Context *src, int i){ MpegEncContext * const s = &src->s; dst->intra4x4_pred_mode = src->intra4x4_pred_mode + i*8*2*s->mb_stride; dst->non_zero_count = src->non_zero_count; dst->slice_table = src->slice_table; dst->cbp_table = src->cbp_table; dst->mb2b_xy = src->mb2b_xy; dst->mb2br_xy = src->mb2br_xy; dst->chroma_pred_mode_table = src->chroma_pred_mode_table; dst->mvd_table[0] = src->mvd_table[0] + i*8*2*s->mb_stride; dst->mvd_table[1] = src->mvd_table[1] + i*8*2*s->mb_stride; dst->direct_table = src->direct_table; dst->list_counts = src->list_counts; dst->s.obmc_scratchpad = NULL; ff_h264_pred_init(&dst->hpc, src->s.codec_id, src->sps.bit_depth_luma); } /** * Init context * Allocate buffers which are not shared amongst multiple threads. */ static int context_init(H264Context *h){ FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t)*2, fail) FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t)*2, fail) h->ref_cache[0][scan8[5 ]+1] = h->ref_cache[0][scan8[7 ]+1] = h->ref_cache[0][scan8[13]+1] = h->ref_cache[1][scan8[5 ]+1] = h->ref_cache[1][scan8[7 ]+1] = h->ref_cache[1][scan8[13]+1] = PART_NOT_AVAILABLE; return 0; fail: return -1; // free_tables will clean up for us } static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size); static av_cold void common_init(H264Context *h){ MpegEncContext * const s = &h->s; s->width = s->avctx->width; s->height = s->avctx->height; s->codec_id= s->avctx->codec->id; ff_h264dsp_init(&h->h264dsp, 8); ff_h264_pred_init(&h->hpc, s->codec_id, 8); h->dequant_coeff_pps= -1; s->unrestricted_mv=1; s->decode=1; //FIXME dsputil_init(&s->dsp, s->avctx); // needed so that idct permutation is known early memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t)); memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t)); } int ff_h264_decode_extradata(H264Context *h) { AVCodecContext *avctx = h->s.avctx; if(*(char *)avctx->extradata == 1){ int i, cnt, nalsize; unsigned char *p = avctx->extradata; h->is_avc = 1; if(avctx->extradata_size < 7) { av_log(avctx, AV_LOG_ERROR, "avcC too short\n"); return -1; } /* sps and pps in the avcC always have length coded with 2 bytes, so put a fake nal_length_size = 2 while parsing them */ h->nal_length_size = 2; // Decode sps from avcC cnt = *(p+5) & 0x1f; // Number of sps p += 6; for (i = 0; i < cnt; i++) { nalsize = AV_RB16(p) + 2; if(decode_nal_units(h, p, nalsize) < 0) { av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i); return -1; } p += nalsize; } // Decode pps from avcC cnt = *(p++); // Number of pps for (i = 0; i < cnt; i++) { nalsize = AV_RB16(p) + 2; if(decode_nal_units(h, p, nalsize) < 0) { av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i); return -1; } p += nalsize; } // Now store right nal length size, that will be use to parse all other nals h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1; } else { h->is_avc = 0; if(decode_nal_units(h, avctx->extradata, avctx->extradata_size) < 0) return -1; } return 0; } av_cold int ff_h264_decode_init(AVCodecContext *avctx){ H264Context *h= avctx->priv_data; MpegEncContext * const s = &h->s; MPV_decode_defaults(s); s->avctx = avctx; common_init(h); s->out_format = FMT_H264; s->workaround_bugs= avctx->workaround_bugs; // set defaults // s->decode_mb= ff_h263_decode_mb; s->quarter_sample = 1; if(!avctx->has_b_frames) s->low_delay= 1; avctx->chroma_sample_location = AVCHROMA_LOC_LEFT; ff_h264_decode_init_vlc(); h->sps.bit_depth_luma = avctx->bits_per_raw_sample = 8; h->pixel_shift = 0; h->thread_context[0] = h; h->outputed_poc = h->next_outputed_poc = INT_MIN; h->prev_poc_msb= 1<<16; h->x264_build = -1; ff_h264_reset_sei(h); if(avctx->codec_id == CODEC_ID_H264){ if(avctx->ticks_per_frame == 1){ s->avctx->time_base.den *=2; } avctx->ticks_per_frame = 2; } if(avctx->extradata_size > 0 && avctx->extradata && ff_h264_decode_extradata(h)) return -1; if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames < h->sps.num_reorder_frames){ s->avctx->has_b_frames = h->sps.num_reorder_frames; s->low_delay = 0; } return 0; } static void copy_picture_range(Picture **to, Picture **from, int count, MpegEncContext *new_base, MpegEncContext *old_base) { int i; for (i=0; i<count; i++){ to[i] = REBASE_PICTURE(from[i], new_base, old_base); } } static void copy_parameter_set(void **to, void **from, int count, int size) { int i; for (i=0; i<count; i++){ if (to[i] && !from[i]) av_freep(&to[i]); else if (from[i] && !to[i]) to[i] = av_malloc(size); if (from[i]) memcpy(to[i], from[i], size); } } static int decode_init_thread_copy(AVCodecContext *avctx){ H264Context *h= avctx->priv_data; if (!avctx->is_copy) return 0; memset(h->sps_buffers, 0, sizeof(h->sps_buffers)); memset(h->pps_buffers, 0, sizeof(h->pps_buffers)); return 0; } #define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field, &from->start_field, (char*)&to->end_field - (char*)&to->start_field) static int decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src){ H264Context *h= dst->priv_data, *h1= src->priv_data; MpegEncContext * const s = &h->s, * const s1 = &h1->s; int inited = s->context_initialized, err; int i; if(dst == src || !s1->context_initialized) return 0; err = ff_mpeg_update_thread_context(dst, src); if(err) return err; //FIXME handle width/height changing if(!inited){ for(i = 0; i < MAX_SPS_COUNT; i++) av_freep(h->sps_buffers + i); for(i = 0; i < MAX_PPS_COUNT; i++) av_freep(h->pps_buffers + i); memcpy(&h->s + 1, &h1->s + 1, sizeof(H264Context) - sizeof(MpegEncContext)); //copy all fields after MpegEnc memset(h->sps_buffers, 0, sizeof(h->sps_buffers)); memset(h->pps_buffers, 0, sizeof(h->pps_buffers)); ff_h264_alloc_tables(h); context_init(h); for(i=0; i<2; i++){ h->rbsp_buffer[i] = NULL; h->rbsp_buffer_size[i] = 0; } h->thread_context[0] = h; // frame_start may not be called for the next thread (if it's decoding a bottom field) // so this has to be allocated here h->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize); s->dsp.clear_blocks(h->mb); } //extradata/NAL handling h->is_avc = h1->is_avc; //SPS/PPS copy_parameter_set((void**)h->sps_buffers, (void**)h1->sps_buffers, MAX_SPS_COUNT, sizeof(SPS)); h->sps = h1->sps; copy_parameter_set((void**)h->pps_buffers, (void**)h1->pps_buffers, MAX_PPS_COUNT, sizeof(PPS)); h->pps = h1->pps; //Dequantization matrices //FIXME these are big - can they be only copied when PPS changes? copy_fields(h, h1, dequant4_buffer, dequant4_coeff); for(i=0; i<6; i++) h->dequant4_coeff[i] = h->dequant4_buffer[0] + (h1->dequant4_coeff[i] - h1->dequant4_buffer[0]); for(i=0; i<2; i++) h->dequant8_coeff[i] = h->dequant8_buffer[0] + (h1->dequant8_coeff[i] - h1->dequant8_buffer[0]); h->dequant_coeff_pps = h1->dequant_coeff_pps; //POC timing copy_fields(h, h1, poc_lsb, redundant_pic_count); //reference lists copy_fields(h, h1, ref_count, intra_gb); copy_fields(h, h1, short_ref, cabac_init_idc); copy_picture_range(h->short_ref, h1->short_ref, 32, s, s1); copy_picture_range(h->long_ref, h1->long_ref, 32, s, s1); copy_picture_range(h->delayed_pic, h1->delayed_pic, MAX_DELAYED_PIC_COUNT+2, s, s1); h->last_slice_type = h1->last_slice_type; if(!s->current_picture_ptr) return 0; if(!s->dropable) { ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index); h->prev_poc_msb = h->poc_msb; h->prev_poc_lsb = h->poc_lsb; } h->prev_frame_num_offset= h->frame_num_offset; h->prev_frame_num = h->frame_num; h->outputed_poc = h->next_outputed_poc; return 0; } int ff_h264_frame_start(H264Context *h){ MpegEncContext * const s = &h->s; int i; if(MPV_frame_start(s, s->avctx) < 0) return -1; ff_er_frame_start(s); /* * MPV_frame_start uses pict_type to derive key_frame. * This is incorrect for H.264; IDR markings must be used. * Zero here; IDR markings per slice in frame or fields are ORed in later. * See decode_nal_units(). */ s->current_picture_ptr->key_frame= 0; s->current_picture_ptr->mmco_reset= 0; assert(s->linesize && s->uvlinesize); for(i=0; i<16; i++){ h->block_offset[i]= (4*((scan8[i] - scan8[0])&7)<<h->pixel_shift) + 4*s->linesize*((scan8[i] - scan8[0])>>3); h->block_offset[24+i]= (4*((scan8[i] - scan8[0])&7)<<h->pixel_shift) + 8*s->linesize*((scan8[i] - scan8[0])>>3); } for(i=0; i<4; i++){ h->block_offset[16+i]= h->block_offset[20+i]= (4*((scan8[i] - scan8[0])&7)<<h->pixel_shift) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3); h->block_offset[24+16+i]= h->block_offset[24+20+i]= (4*((scan8[i] - scan8[0])&7)<<h->pixel_shift) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3); } /* can't be in alloc_tables because linesize isn't known there. * FIXME: redo bipred weight to not require extra buffer? */ for(i = 0; i < s->avctx->thread_count; i++) if(h->thread_context[i] && !h->thread_context[i]->s.obmc_scratchpad) h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize); /* some macroblocks can be accessed before they're available in case of lost slices, mbaff or threading*/ memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(*h->slice_table)); // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1; // We mark the current picture as non-reference after allocating it, so // that if we break out due to an error it can be released automatically // in the next MPV_frame_start(). // SVQ3 as well as most other codecs have only last/next/current and thus // get released even with set reference, besides SVQ3 and others do not // mark frames as reference later "naturally". if(s->codec_id != CODEC_ID_SVQ3) s->current_picture_ptr->reference= 0; s->current_picture_ptr->field_poc[0]= s->current_picture_ptr->field_poc[1]= INT_MAX; h->next_output_pic = NULL; assert(s->current_picture_ptr->long_ref==0); return 0; } /** * Run setup operations that must be run after slice header decoding. * This includes finding the next displayed frame. * * @param h h264 master context */ static void decode_postinit(H264Context *h){ MpegEncContext * const s = &h->s; Picture *out = s->current_picture_ptr; Picture *cur = s->current_picture_ptr; int i, pics, out_of_order, out_idx; s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264; s->current_picture_ptr->pict_type= s->pict_type; if (h->next_output_pic) return; if (cur->field_poc[0]==INT_MAX || cur->field_poc[1]==INT_MAX) { //FIXME this allows the next thread to start once we encounter the first field of a PAFF packet //This works if the next packet contains the second field. It does not work if both fields are //in the same packet. //ff_thread_finish_setup(s->avctx); return; } cur->interlaced_frame = 0; cur->repeat_pict = 0; /* Signal interlacing information externally. */ /* Prioritize picture timing SEI information over used decoding process if it exists. */ if(h->sps.pic_struct_present_flag){ switch (h->sei_pic_struct) { case SEI_PIC_STRUCT_FRAME: break; case SEI_PIC_STRUCT_TOP_FIELD: case SEI_PIC_STRUCT_BOTTOM_FIELD: cur->interlaced_frame = 1; break; case SEI_PIC_STRUCT_TOP_BOTTOM: case SEI_PIC_STRUCT_BOTTOM_TOP: if (FIELD_OR_MBAFF_PICTURE) cur->interlaced_frame = 1; else // try to flag soft telecine progressive cur->interlaced_frame = h->prev_interlaced_frame; break; case SEI_PIC_STRUCT_TOP_BOTTOM_TOP: case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM: // Signal the possibility of telecined film externally (pic_struct 5,6) // From these hints, let the applications decide if they apply deinterlacing. cur->repeat_pict = 1; break; case SEI_PIC_STRUCT_FRAME_DOUBLING: // Force progressive here, as doubling interlaced frame is a bad idea. cur->repeat_pict = 2; break; case SEI_PIC_STRUCT_FRAME_TRIPLING: cur->repeat_pict = 4; break; } if ((h->sei_ct_type & 3) && h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP) cur->interlaced_frame = (h->sei_ct_type & (1<<1)) != 0; }else{ /* Derive interlacing flag from used decoding process. */ cur->interlaced_frame = FIELD_OR_MBAFF_PICTURE; } h->prev_interlaced_frame = cur->interlaced_frame; if (cur->field_poc[0] != cur->field_poc[1]){ /* Derive top_field_first from field pocs. */ cur->top_field_first = cur->field_poc[0] < cur->field_poc[1]; }else{ if(cur->interlaced_frame || h->sps.pic_struct_present_flag){ /* Use picture timing SEI information. Even if it is a information of a past frame, better than nothing. */ if(h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM || h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP) cur->top_field_first = 1; else cur->top_field_first = 0; }else{ /* Most likely progressive */ cur->top_field_first = 0; } } //FIXME do something with unavailable reference frames /* Sort B-frames into display order */ if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames < h->sps.num_reorder_frames){ s->avctx->has_b_frames = h->sps.num_reorder_frames; s->low_delay = 0; } if( s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT && !h->sps.bitstream_restriction_flag){ s->avctx->has_b_frames= MAX_DELAYED_PIC_COUNT; s->low_delay= 0; } pics = 0; while(h->delayed_pic[pics]) pics++; assert(pics <= MAX_DELAYED_PIC_COUNT); h->delayed_pic[pics++] = cur; if(cur->reference == 0) cur->reference = DELAYED_PIC_REF; out = h->delayed_pic[0]; out_idx = 0; for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && !h->delayed_pic[i]->mmco_reset; i++) if(h->delayed_pic[i]->poc < out->poc){ out = h->delayed_pic[i]; out_idx = i; } if(s->avctx->has_b_frames == 0 && (h->delayed_pic[0]->key_frame || h->delayed_pic[0]->mmco_reset)) h->next_outputed_poc= INT_MIN; out_of_order = out->poc < h->next_outputed_poc; if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames) { } else if((out_of_order && pics-1 == s->avctx->has_b_frames && s->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT) || (s->low_delay && ((h->next_outputed_poc != INT_MIN && out->poc > h->next_outputed_poc + 2) || cur->pict_type == FF_B_TYPE))) { s->low_delay = 0; s->avctx->has_b_frames++; } if(out_of_order || pics > s->avctx->has_b_frames){ out->reference &= ~DELAYED_PIC_REF; out->owner2 = s; // for frame threading, the owner must be the second field's thread // or else the first thread can release the picture and reuse it unsafely for(i=out_idx; h->delayed_pic[i]; i++) h->delayed_pic[i] = h->delayed_pic[i+1]; } if(!out_of_order && pics > s->avctx->has_b_frames){ h->next_output_pic = out; if(out_idx==0 && h->delayed_pic[0] && (h->delayed_pic[0]->key_frame || h->delayed_pic[0]->mmco_reset)) { h->next_outputed_poc = INT_MIN; } else h->next_outputed_poc = out->poc; }else{ av_log(s->avctx, AV_LOG_DEBUG, "no picture\n"); } ff_thread_finish_setup(s->avctx); } static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){ MpegEncContext * const s = &h->s; uint8_t *top_border; int top_idx = 1; src_y -= linesize; src_cb -= uvlinesize; src_cr -= uvlinesize; if(!simple && FRAME_MBAFF){ if(s->mb_y&1){ if(!MB_MBAFF){ top_border = h->top_borders[0][s->mb_x]; AV_COPY128(top_border, src_y + 15*linesize); if (h->pixel_shift) AV_COPY128(top_border+16, src_y+15*linesize+16); if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){ if (h->pixel_shift) { AV_COPY128(top_border+32, src_cb+7*uvlinesize); AV_COPY128(top_border+48, src_cr+7*uvlinesize); } else { AV_COPY64(top_border+16, src_cb+7*uvlinesize); AV_COPY64(top_border+24, src_cr+7*uvlinesize); } } } }else if(MB_MBAFF){ top_idx = 0; }else return; } top_border = h->top_borders[top_idx][s->mb_x]; // There are two lines saved, the line above the the top macroblock of a pair, // and the line above the bottom macroblock AV_COPY128(top_border, src_y + 16*linesize); if (h->pixel_shift) AV_COPY128(top_border+16, src_y+16*linesize+16); if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){ if (h->pixel_shift) { AV_COPY128(top_border+32, src_cb+8*uvlinesize); AV_COPY128(top_border+48, src_cr+8*uvlinesize); } else { AV_COPY64(top_border+16, src_cb+8*uvlinesize); AV_COPY64(top_border+24, src_cr+8*uvlinesize); } } } static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple, int pixel_shift){ MpegEncContext * const s = &h->s; int deblock_left; int deblock_top; int top_idx = 1; uint8_t *top_border_m1; uint8_t *top_border; if(!simple && FRAME_MBAFF){ if(s->mb_y&1){ if(!MB_MBAFF) return; }else{ top_idx = MB_MBAFF ? 0 : 1; } } if(h->deblocking_filter == 2) { deblock_left = h->left_type[0]; deblock_top = h->top_type; } else { deblock_left = (s->mb_x > 0); deblock_top = (s->mb_y > !!MB_FIELD); } src_y -= linesize + 1 + pixel_shift; src_cb -= uvlinesize + 1 + pixel_shift; src_cr -= uvlinesize + 1 + pixel_shift; top_border_m1 = h->top_borders[top_idx][s->mb_x-1]; top_border = h->top_borders[top_idx][s->mb_x]; #define XCHG(a,b,xchg)\ if (pixel_shift) {\ if (xchg) {\ AV_SWAP64(b+0,a+0);\ AV_SWAP64(b+8,a+8);\ } else {\ AV_COPY128(b,a); \ }\ } else \ if (xchg) AV_SWAP64(b,a);\ else AV_COPY64(b,a); if(deblock_top){ if(deblock_left){ XCHG(top_border_m1+(8<<pixel_shift), src_y -(7<<h->pixel_shift), 1); } XCHG(top_border+(0<<pixel_shift), src_y +(1<<pixel_shift), xchg); XCHG(top_border+(8<<pixel_shift), src_y +(9<<pixel_shift), 1); if(s->mb_x+1 < s->mb_width){ XCHG(h->top_borders[top_idx][s->mb_x+1], src_y +(17<<pixel_shift), 1); } } if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){ if(deblock_top){ if(deblock_left){ XCHG(top_border_m1+(16<<pixel_shift), src_cb -(7<<pixel_shift), 1); XCHG(top_border_m1+(24<<pixel_shift), src_cr -(7<<pixel_shift), 1); } XCHG(top_border+(16<<pixel_shift), src_cb+1+pixel_shift, 1); XCHG(top_border+(24<<pixel_shift), src_cr+1+pixel_shift, 1); } } } static av_always_inline int dctcoef_get(H264Context *h, DCTELEM *mb, int index, int pixel_shift) { if (!pixel_shift) return mb[index]; else return ((int32_t*)mb)[index]; } static av_always_inline void dctcoef_set(H264Context *h, DCTELEM *mb, int index, int value, int pixel_shift) { if (!pixel_shift) mb[index] = value; else ((int32_t*)mb)[index] = value; } static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple, int pixel_shift){ MpegEncContext * const s = &h->s; const int mb_x= s->mb_x; const int mb_y= s->mb_y; const int mb_xy= h->mb_xy; const int mb_type= s->current_picture.mb_type[mb_xy]; uint8_t *dest_y, *dest_cb, *dest_cr; int linesize, uvlinesize /*dct_offset*/; int i; int *block_offset = &h->block_offset[0]; const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass); /* is_h264 should always be true if SVQ3 is disabled. */ const int is_h264 = !CONFIG_SVQ3_DECODER || simple || s->codec_id == CODEC_ID_H264; void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride); void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride); dest_y = s->current_picture.data[0] + ((mb_x<<pixel_shift) + mb_y * s->linesize ) * 16; dest_cb = s->current_picture.data[1] + ((mb_x<<pixel_shift) + mb_y * s->uvlinesize) * 8; dest_cr = s->current_picture.data[2] + ((mb_x<<pixel_shift) + mb_y * s->uvlinesize) * 8; s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + (64<<pixel_shift), s->linesize, 4); s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + (64<<pixel_shift), dest_cr - dest_cb, 2); h->list_counts[mb_xy]= h->list_count; if (!simple && MB_FIELD) { linesize = h->mb_linesize = s->linesize * 2; uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2; block_offset = &h->block_offset[24]; if(mb_y&1){ //FIXME move out of this function? dest_y -= s->linesize*15; dest_cb-= s->uvlinesize*7; dest_cr-= s->uvlinesize*7; } if(FRAME_MBAFF) { int list; for(list=0; list<h->list_count; list++){ if(!USES_LIST(mb_type, list)) continue; if(IS_16X16(mb_type)){ int8_t *ref = &h->ref_cache[list][scan8[0]]; fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1); }else{ for(i=0; i<16; i+=4){ int ref = h->ref_cache[list][scan8[i]]; if(ref >= 0) fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1); } } } } } else { linesize = h->mb_linesize = s->linesize; uvlinesize = h->mb_uvlinesize = s->uvlinesize; // dct_offset = s->linesize * 16; } if (!simple && IS_INTRA_PCM(mb_type)) { if (pixel_shift) { const int bit_depth = h->sps.bit_depth_luma; int j; GetBitContext gb; init_get_bits(&gb, (uint8_t*)h->mb, 384*bit_depth); for (i = 0; i < 16; i++) { uint16_t *tmp_y = (uint16_t*)(dest_y + i*linesize); for (j = 0; j < 16; j++) tmp_y[j] = get_bits(&gb, bit_depth); } for (i = 0; i < 8; i++) { uint16_t *tmp_cb = (uint16_t*)(dest_cb + i*uvlinesize); for (j = 0; j < 8; j++) tmp_cb[j] = get_bits(&gb, bit_depth); } for (i = 0; i < 8; i++) { uint16_t *tmp_cr = (uint16_t*)(dest_cr + i*uvlinesize); for (j = 0; j < 8; j++) tmp_cr[j] = get_bits(&gb, bit_depth); } } else { for (i=0; i<16; i++) { memcpy(dest_y + i* linesize, h->mb + i*8, 16); } for (i=0; i<8; i++) { memcpy(dest_cb+ i*uvlinesize, h->mb + 128 + i*4, 8); memcpy(dest_cr+ i*uvlinesize, h->mb + 160 + i*4, 8); } } } else { if(IS_INTRA(mb_type)){ if(h->deblocking_filter) xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple, pixel_shift); if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){ h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize); h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize); } if(IS_INTRA4x4(mb_type)){ if(simple || !s->encoding){ if(IS_8x8DCT(mb_type)){ if(transform_bypass){ idct_dc_add = idct_add = s->dsp.add_pixels8; }else{ idct_dc_add = h->h264dsp.h264_idct8_dc_add; idct_add = h->h264dsp.h264_idct8_add; } for(i=0; i<16; i+=4){ uint8_t * const ptr= dest_y + block_offset[i]; const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ]; if(transform_bypass && h->sps.profile_idc==244 && dir<=1){ h->hpc.pred8x8l_add[dir](ptr, h->mb + (i*16<<pixel_shift), linesize); }else{ const int nnz = h->non_zero_count_cache[ scan8[i] ]; h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000, (h->topright_samples_available<<i)&0x4000, linesize); if(nnz){ if(nnz == 1 && dctcoef_get(h, h->mb, i*16, pixel_shift)) idct_dc_add(ptr, h->mb + (i*16<<pixel_shift), linesize); else idct_add (ptr, h->mb + (i*16<<pixel_shift), linesize); } } } }else{ if(transform_bypass){ idct_dc_add = idct_add = s->dsp.add_pixels4; }else{ idct_dc_add = h->h264dsp.h264_idct_dc_add; idct_add = h->h264dsp.h264_idct_add; } for(i=0; i<16; i++){ uint8_t * const ptr= dest_y + block_offset[i]; const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ]; if(transform_bypass && h->sps.profile_idc==244 && dir<=1){ h->hpc.pred4x4_add[dir](ptr, h->mb + (i*16<<pixel_shift), linesize); }else{ uint8_t *topright; int nnz, tr; uint64_t tr_high; if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){ const int topright_avail= (h->topright_samples_available<<i)&0x8000; assert(mb_y || linesize <= block_offset[i]); if(!topright_avail){ if (pixel_shift) { tr_high= ((uint16_t*)ptr)[3 - linesize/2]*0x0001000100010001ULL; topright= (uint8_t*) &tr_high; } else { tr= ptr[3 - linesize]*0x01010101; topright= (uint8_t*) &tr; } }else topright= ptr + (4<<pixel_shift) - linesize; }else topright= NULL; h->hpc.pred4x4[ dir ](ptr, topright, linesize); nnz = h->non_zero_count_cache[ scan8[i] ]; if(nnz){ if(is_h264){ if(nnz == 1 && dctcoef_get(h, h->mb, i*16, pixel_shift)) idct_dc_add(ptr, h->mb + (i*16<<pixel_shift), linesize); else idct_add (ptr, h->mb + (i*16<<pixel_shift), linesize); } #if CONFIG_SVQ3_DECODER else ff_svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0); #endif } } } } } }else{ h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize); if(is_h264){ if(h->non_zero_count_cache[ scan8[LUMA_DC_BLOCK_INDEX] ]){ if(!transform_bypass) h->h264dsp.h264_luma_dc_dequant_idct(h->mb, h->mb_luma_dc, h->dequant4_coeff[0][s->qscale][0]); else{ static const uint8_t dc_mapping[16] = { 0*16, 1*16, 4*16, 5*16, 2*16, 3*16, 6*16, 7*16, 8*16, 9*16,12*16,13*16,10*16,11*16,14*16,15*16}; for(i = 0; i < 16; i++) dctcoef_set(h, h->mb, dc_mapping[i], dctcoef_get(h, h->mb_luma_dc, i,pixel_shift),pixel_shift); } } } #if CONFIG_SVQ3_DECODER else ff_svq3_luma_dc_dequant_idct_c(h->mb, h->mb_luma_dc, s->qscale); #endif } if(h->deblocking_filter) xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple, pixel_shift); }else if(is_h264){ ff_hl_motion(h, dest_y, dest_cb, dest_cr, s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab, s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab, h->h264dsp.weight_h264_pixels_tab, h->h264dsp.biweight_h264_pixels_tab); } if(!IS_INTRA4x4(mb_type)){ if(is_h264){ if(IS_INTRA16x16(mb_type)){ if(transform_bypass){ if(h->sps.profile_idc==244 && (h->intra16x16_pred_mode==VERT_PRED8x8 || h->intra16x16_pred_mode==HOR_PRED8x8)){ h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset, h->mb, linesize); }else{ for(i=0; i<16; i++){ if(h->non_zero_count_cache[ scan8[i] ] || dctcoef_get(h, h->mb, i*16,pixel_shift)) s->dsp.add_pixels4(dest_y + block_offset[i], h->mb + (i*16<<pixel_shift), linesize); } } }else{ h->h264dsp.h264_idct_add16intra(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache); } }else if(h->cbp&15){ if(transform_bypass){ const int di = IS_8x8DCT(mb_type) ? 4 : 1; idct_add= IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4; for(i=0; i<16; i+=di){ if(h->non_zero_count_cache[ scan8[i] ]){ idct_add(dest_y + block_offset[i], h->mb + (i*16<<pixel_shift), linesize); } } }else{ if(IS_8x8DCT(mb_type)){ h->h264dsp.h264_idct8_add4(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache); }else{ h->h264dsp.h264_idct_add16(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache); } } } } #if CONFIG_SVQ3_DECODER else{ for(i=0; i<16; i++){ if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below uint8_t * const ptr= dest_y + block_offset[i]; ff_svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0); } } } #endif } if((simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)) && (h->cbp&0x30)){ uint8_t *dest[2] = {dest_cb, dest_cr}; if(transform_bypass){ if(IS_INTRA(mb_type) && h->sps.profile_idc==244 && (h->chroma_pred_mode==VERT_PRED8x8 || h->chroma_pred_mode==HOR_PRED8x8)){ h->hpc.pred8x8_add[h->chroma_pred_mode](dest[0], block_offset + 16, h->mb + (16*16<<pixel_shift), uvlinesize); h->hpc.pred8x8_add[h->chroma_pred_mode](dest[1], block_offset + 20, h->mb + (20*16<<pixel_shift), uvlinesize); }else{ idct_add = s->dsp.add_pixels4; for(i=16; i<16+8; i++){ if(h->non_zero_count_cache[ scan8[i] ] || dctcoef_get(h, h->mb, i*16,pixel_shift)) idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + (i*16<<pixel_shift), uvlinesize); } } }else{ if(is_h264){ if(h->non_zero_count_cache[ scan8[CHROMA_DC_BLOCK_INDEX+0] ]) h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + (16*16<<pixel_shift) , h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]); if(h->non_zero_count_cache[ scan8[CHROMA_DC_BLOCK_INDEX+1] ]) h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + ((16*16+4*16)<<pixel_shift), h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]); h->h264dsp.h264_idct_add8(dest, block_offset, h->mb, uvlinesize, h->non_zero_count_cache); } #if CONFIG_SVQ3_DECODER else{ h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + 16*16 , h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]); h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + 16*16+4*16, h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]); for(i=16; i<16+8; i++){ if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i]; ff_svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, ff_h264_chroma_qp[0][s->qscale + 12] - 12, 2); } } } #endif } } } if(h->cbp || IS_INTRA(mb_type)) s->dsp.clear_blocks(h->mb); } /** * Process a macroblock; this case avoids checks for expensive uncommon cases. */ static void hl_decode_mb_simple8(H264Context *h){ hl_decode_mb_internal(h, 1, 0); } /** * Process a macroblock; this handles edge cases, such as interlacing. */ static void av_noinline hl_decode_mb_complex(H264Context *h){ hl_decode_mb_internal(h, 0, h->pixel_shift); } void ff_h264_hl_decode_mb(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= h->mb_xy; const int mb_type= s->current_picture.mb_type[mb_xy]; int is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0; if (is_complex || h->pixel_shift) hl_decode_mb_complex(h); else{ hl_decode_mb_simple8(h); } } static int pred_weight_table(H264Context *h){ MpegEncContext * const s = &h->s; int list, i; int luma_def, chroma_def; h->use_weight= 0; h->use_weight_chroma= 0; h->luma_log2_weight_denom= get_ue_golomb(&s->gb); if(CHROMA) h->chroma_log2_weight_denom= get_ue_golomb(&s->gb); luma_def = 1<<h->luma_log2_weight_denom; chroma_def = 1<<h->chroma_log2_weight_denom; for(list=0; list<2; list++){ h->luma_weight_flag[list] = 0; h->chroma_weight_flag[list] = 0; for(i=0; i<h->ref_count[list]; i++){ int luma_weight_flag, chroma_weight_flag; luma_weight_flag= get_bits1(&s->gb); if(luma_weight_flag){ h->luma_weight[i][list][0]= get_se_golomb(&s->gb); h->luma_weight[i][list][1]= get_se_golomb(&s->gb); if( h->luma_weight[i][list][0] != luma_def || h->luma_weight[i][list][1] != 0) { h->use_weight= 1; h->luma_weight_flag[list]= 1; } }else{ h->luma_weight[i][list][0]= luma_def; h->luma_weight[i][list][1]= 0; } if(CHROMA){ chroma_weight_flag= get_bits1(&s->gb); if(chroma_weight_flag){ int j; for(j=0; j<2; j++){ h->chroma_weight[i][list][j][0]= get_se_golomb(&s->gb); h->chroma_weight[i][list][j][1]= get_se_golomb(&s->gb); if( h->chroma_weight[i][list][j][0] != chroma_def || h->chroma_weight[i][list][j][1] != 0) { h->use_weight_chroma= 1; h->chroma_weight_flag[list]= 1; } } }else{ int j; for(j=0; j<2; j++){ h->chroma_weight[i][list][j][0]= chroma_def; h->chroma_weight[i][list][j][1]= 0; } } } } if(h->slice_type_nos != FF_B_TYPE) break; } h->use_weight= h->use_weight || h->use_weight_chroma; return 0; } /** * Initialize implicit_weight table. * @param field 0/1 initialize the weight for interlaced MBAFF * -1 initializes the rest */ static void implicit_weight_table(H264Context *h, int field){ MpegEncContext * const s = &h->s; int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1; for (i = 0; i < 2; i++) { h->luma_weight_flag[i] = 0; h->chroma_weight_flag[i] = 0; } if(field < 0){ cur_poc = s->current_picture_ptr->poc; if( h->ref_count[0] == 1 && h->ref_count[1] == 1 && !FRAME_MBAFF && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){ h->use_weight= 0; h->use_weight_chroma= 0; return; } ref_start= 0; ref_count0= h->ref_count[0]; ref_count1= h->ref_count[1]; }else{ cur_poc = s->current_picture_ptr->field_poc[field]; ref_start= 16; ref_count0= 16+2*h->ref_count[0]; ref_count1= 16+2*h->ref_count[1]; } h->use_weight= 2; h->use_weight_chroma= 2; h->luma_log2_weight_denom= 5; h->chroma_log2_weight_denom= 5; for(ref0=ref_start; ref0 < ref_count0; ref0++){ int poc0 = h->ref_list[0][ref0].poc; for(ref1=ref_start; ref1 < ref_count1; ref1++){ int poc1 = h->ref_list[1][ref1].poc; int td = av_clip(poc1 - poc0, -128, 127); int w= 32; if(td){ int tb = av_clip(cur_poc - poc0, -128, 127); int tx = (16384 + (FFABS(td) >> 1)) / td; int dist_scale_factor = (tb*tx + 32) >> 8; if(dist_scale_factor >= -64 && dist_scale_factor <= 128) w = 64 - dist_scale_factor; } if(field<0){ h->implicit_weight[ref0][ref1][0]= h->implicit_weight[ref0][ref1][1]= w; }else{ h->implicit_weight[ref0][ref1][field]=w; } } } } /** * instantaneous decoder refresh. */ static void idr(H264Context *h){ ff_h264_remove_all_refs(h); h->prev_frame_num= 0; h->prev_frame_num_offset= 0; h->prev_poc_msb= h->prev_poc_lsb= 0; } /* forget old pics after a seek */ static void flush_dpb(AVCodecContext *avctx){ H264Context *h= avctx->priv_data; int i; for(i=0; i<MAX_DELAYED_PIC_COUNT; i++) { if(h->delayed_pic[i]) h->delayed_pic[i]->reference= 0; h->delayed_pic[i]= NULL; } h->outputed_poc=h->next_outputed_poc= INT_MIN; h->prev_interlaced_frame = 1; idr(h); if(h->s.current_picture_ptr) h->s.current_picture_ptr->reference= 0; h->s.first_field= 0; ff_h264_reset_sei(h); ff_mpeg_flush(avctx); } static int init_poc(H264Context *h){ MpegEncContext * const s = &h->s; const int max_frame_num= 1<<h->sps.log2_max_frame_num; int field_poc[2]; Picture *cur = s->current_picture_ptr; h->frame_num_offset= h->prev_frame_num_offset; if(h->frame_num < h->prev_frame_num) h->frame_num_offset += max_frame_num; if(h->sps.poc_type==0){ const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb; if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2) h->poc_msb = h->prev_poc_msb + max_poc_lsb; else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2) h->poc_msb = h->prev_poc_msb - max_poc_lsb; else h->poc_msb = h->prev_poc_msb; //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb); field_poc[0] = field_poc[1] = h->poc_msb + h->poc_lsb; if(s->picture_structure == PICT_FRAME) field_poc[1] += h->delta_poc_bottom; }else if(h->sps.poc_type==1){ int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc; int i; if(h->sps.poc_cycle_length != 0) abs_frame_num = h->frame_num_offset + h->frame_num; else abs_frame_num = 0; if(h->nal_ref_idc==0 && abs_frame_num > 0) abs_frame_num--; expected_delta_per_poc_cycle = 0; for(i=0; i < h->sps.poc_cycle_length; i++) expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse if(abs_frame_num > 0){ int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length; int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length; expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle; for(i = 0; i <= frame_num_in_poc_cycle; i++) expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ]; } else expectedpoc = 0; if(h->nal_ref_idc == 0) expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic; field_poc[0] = expectedpoc + h->delta_poc[0]; field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field; if(s->picture_structure == PICT_FRAME) field_poc[1] += h->delta_poc[1]; }else{ int poc= 2*(h->frame_num_offset + h->frame_num); if(!h->nal_ref_idc) poc--; field_poc[0]= poc; field_poc[1]= poc; } if(s->picture_structure != PICT_BOTTOM_FIELD) s->current_picture_ptr->field_poc[0]= field_poc[0]; if(s->picture_structure != PICT_TOP_FIELD) s->current_picture_ptr->field_poc[1]= field_poc[1]; cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]); return 0; } /** * initialize scan tables */ static void init_scan_tables(H264Context *h){ int i; for(i=0; i<16; i++){ #define T(x) (x>>2) | ((x<<2) & 0xF) h->zigzag_scan[i] = T(zigzag_scan[i]); h-> field_scan[i] = T( field_scan[i]); #undef T } for(i=0; i<64; i++){ #define T(x) (x>>3) | ((x&7)<<3) h->zigzag_scan8x8[i] = T(ff_zigzag_direct[i]); h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]); h->field_scan8x8[i] = T(field_scan8x8[i]); h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]); #undef T } if(h->sps.transform_bypass){ //FIXME same ugly h->zigzag_scan_q0 = zigzag_scan; h->zigzag_scan8x8_q0 = ff_zigzag_direct; h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc; h->field_scan_q0 = field_scan; h->field_scan8x8_q0 = field_scan8x8; h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc; }else{ h->zigzag_scan_q0 = h->zigzag_scan; h->zigzag_scan8x8_q0 = h->zigzag_scan8x8; h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc; h->field_scan_q0 = h->field_scan; h->field_scan8x8_q0 = h->field_scan8x8; h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc; } } static void field_end(H264Context *h, int in_setup){ MpegEncContext * const s = &h->s; AVCodecContext * const avctx= s->avctx; s->mb_y= 0; if (!in_setup && !s->dropable) ff_thread_report_progress((AVFrame*)s->current_picture_ptr, (16*s->mb_height >> FIELD_PICTURE) - 1, s->picture_structure==PICT_BOTTOM_FIELD); if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU) ff_vdpau_h264_set_reference_frames(s); if(in_setup || !(avctx->active_thread_type&FF_THREAD_FRAME)){ if(!s->dropable) { ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index); h->prev_poc_msb= h->poc_msb; h->prev_poc_lsb= h->poc_lsb; } h->prev_frame_num_offset= h->frame_num_offset; h->prev_frame_num= h->frame_num; h->outputed_poc = h->next_outputed_poc; } if (avctx->hwaccel) { if (avctx->hwaccel->end_frame(avctx) < 0) av_log(avctx, AV_LOG_ERROR, "hardware accelerator failed to decode picture\n"); } if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU) ff_vdpau_h264_picture_complete(s); /* * FIXME: Error handling code does not seem to support interlaced * when slices span multiple rows * The ff_er_add_slice calls don't work right for bottom * fields; they cause massive erroneous error concealing * Error marking covers both fields (top and bottom). * This causes a mismatched s->error_count * and a bad error table. Further, the error count goes to * INT_MAX when called for bottom field, because mb_y is * past end by one (callers fault) and resync_mb_y != 0 * causes problems for the first MB line, too. */ if (!FIELD_PICTURE) ff_er_frame_end(s); MPV_frame_end(s); h->current_slice=0; } /** * Replicate H264 "master" context to thread contexts. */ static void clone_slice(H264Context *dst, H264Context *src) { memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset)); dst->s.current_picture_ptr = src->s.current_picture_ptr; dst->s.current_picture = src->s.current_picture; dst->s.linesize = src->s.linesize; dst->s.uvlinesize = src->s.uvlinesize; dst->s.first_field = src->s.first_field; dst->prev_poc_msb = src->prev_poc_msb; dst->prev_poc_lsb = src->prev_poc_lsb; dst->prev_frame_num_offset = src->prev_frame_num_offset; dst->prev_frame_num = src->prev_frame_num; dst->short_ref_count = src->short_ref_count; memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref)); memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref)); memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list)); memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list)); memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff)); memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff)); } /** * computes profile from profile_idc and constraint_set?_flags * * @param sps SPS * * @return profile as defined by FF_PROFILE_H264_* */ int ff_h264_get_profile(SPS *sps) { int profile = sps->profile_idc; switch(sps->profile_idc) { case FF_PROFILE_H264_BASELINE: // constraint_set1_flag set to 1 profile |= (sps->constraint_set_flags & 1<<1) ? FF_PROFILE_H264_CONSTRAINED : 0; break; case FF_PROFILE_H264_HIGH_10: case FF_PROFILE_H264_HIGH_422: case FF_PROFILE_H264_HIGH_444_PREDICTIVE: // constraint_set3_flag set to 1 profile |= (sps->constraint_set_flags & 1<<3) ? FF_PROFILE_H264_INTRA : 0; break; } return profile; } /** * decodes a slice header. * This will also call MPV_common_init() and frame_start() as needed. * * @param h h264context * @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding) * * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded */ static int decode_slice_header(H264Context *h, H264Context *h0){ MpegEncContext * const s = &h->s; MpegEncContext * const s0 = &h0->s; unsigned int first_mb_in_slice; unsigned int pps_id; int num_ref_idx_active_override_flag; unsigned int slice_type, tmp, i, j; int default_ref_list_done = 0; int last_pic_structure; s->dropable= h->nal_ref_idc == 0; if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc){ s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab; s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab; }else{ s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab; s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab; } first_mb_in_slice= get_ue_golomb(&s->gb); if(first_mb_in_slice == 0){ //FIXME better field boundary detection if(h0->current_slice && FIELD_PICTURE){ field_end(h, 1); } h0->current_slice = 0; if (!s0->first_field) s->current_picture_ptr= NULL; } slice_type= get_ue_golomb_31(&s->gb); if(slice_type > 9){ av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y); return -1; } if(slice_type > 4){ slice_type -= 5; h->slice_type_fixed=1; }else h->slice_type_fixed=0; slice_type= golomb_to_pict_type[ slice_type ]; if (slice_type == FF_I_TYPE || (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) { default_ref_list_done = 1; } h->slice_type= slice_type; h->slice_type_nos= slice_type & 3; s->pict_type= h->slice_type; // to make a few old functions happy, it's wrong though pps_id= get_ue_golomb(&s->gb); if(pps_id>=MAX_PPS_COUNT){ av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n"); return -1; } if(!h0->pps_buffers[pps_id]) { av_log(h->s.avctx, AV_LOG_ERROR, "non-existing PPS %u referenced\n", pps_id); return -1; } h->pps= *h0->pps_buffers[pps_id]; if(!h0->sps_buffers[h->pps.sps_id]) { av_log(h->s.avctx, AV_LOG_ERROR, "non-existing SPS %u referenced\n", h->pps.sps_id); return -1; } h->sps = *h0->sps_buffers[h->pps.sps_id]; s->avctx->profile = ff_h264_get_profile(&h->sps); s->avctx->level = h->sps.level_idc; s->avctx->refs = h->sps.ref_frame_count; if(h == h0 && h->dequant_coeff_pps != pps_id){ h->dequant_coeff_pps = pps_id; init_dequant_tables(h); } s->mb_width= h->sps.mb_width; s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag); h->b_stride= s->mb_width*4; s->width = 16*s->mb_width - 2*FFMIN(h->sps.crop_right, 7); if(h->sps.frame_mbs_only_flag) s->height= 16*s->mb_height - 2*FFMIN(h->sps.crop_bottom, 7); else s->height= 16*s->mb_height - 4*FFMIN(h->sps.crop_bottom, 7); if (s->context_initialized && ( s->width != s->avctx->width || s->height != s->avctx->height || av_cmp_q(h->sps.sar, s->avctx->sample_aspect_ratio))) { if(h != h0) { av_log_missing_feature(s->avctx, "Width/height changing with threads is", 0); return -1; // width / height changed during parallelized decoding } free_tables(h, 0); flush_dpb(s->avctx); MPV_common_end(s); } if (!s->context_initialized) { if(h != h0){ av_log(h->s.avctx, AV_LOG_ERROR, "we cant (re-)initialize context during parallel decoding\n"); return -1; } avcodec_set_dimensions(s->avctx, s->width, s->height); s->avctx->sample_aspect_ratio= h->sps.sar; av_assert0(s->avctx->sample_aspect_ratio.den); if(h->sps.video_signal_type_present_flag){ s->avctx->color_range = h->sps.full_range ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG; if(h->sps.colour_description_present_flag){ s->avctx->color_primaries = h->sps.color_primaries; s->avctx->color_trc = h->sps.color_trc; s->avctx->colorspace = h->sps.colorspace; } } if(h->sps.timing_info_present_flag){ int64_t den= h->sps.time_scale; if(h->x264_build < 44U) den *= 2; av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den, h->sps.num_units_in_tick, den, 1<<30); } switch (h->sps.bit_depth_luma) { case 9 : s->avctx->pix_fmt = PIX_FMT_YUV420P9; break; case 10 : s->avctx->pix_fmt = PIX_FMT_YUV420P10; break; default: s->avctx->pix_fmt = s->avctx->get_format(s->avctx, s->avctx->codec->pix_fmts ? s->avctx->codec->pix_fmts : s->avctx->color_range == AVCOL_RANGE_JPEG ? hwaccel_pixfmt_list_h264_jpeg_420 : ff_hwaccel_pixfmt_list_420); } s->avctx->hwaccel = ff_find_hwaccel(s->avctx->codec->id, s->avctx->pix_fmt); if (MPV_common_init(s) < 0){ av_log(h->s.avctx, AV_LOG_ERROR, "MPV_common_init() failed\n"); return -1; } s->first_field = 0; h->prev_interlaced_frame = 1; init_scan_tables(h); ff_h264_alloc_tables(h); if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_SLICE)) { if (context_init(h) < 0){ av_log(h->s.avctx, AV_LOG_ERROR, "context_init() failed\n"); return -1; } } else { for(i = 1; i < s->avctx->thread_count; i++) { H264Context *c; c = h->thread_context[i] = av_malloc(sizeof(H264Context)); memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext)); memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext)); c->h264dsp = h->h264dsp; c->sps = h->sps; c->pps = h->pps; init_scan_tables(c); clone_tables(c, h, i); } for(i = 0; i < s->avctx->thread_count; i++) if(context_init(h->thread_context[i]) < 0){ av_log(h->s.avctx, AV_LOG_ERROR, "context_init() failed\n"); return -1; } } } h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num); h->mb_mbaff = 0; h->mb_aff_frame = 0; last_pic_structure = s0->picture_structure; if(h->sps.frame_mbs_only_flag){ s->picture_structure= PICT_FRAME; }else{ if(get_bits1(&s->gb)) { //field_pic_flag s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag } else { s->picture_structure= PICT_FRAME; h->mb_aff_frame = h->sps.mb_aff; } } h->mb_field_decoding_flag= s->picture_structure != PICT_FRAME; if(h0->current_slice == 0){ if(h->frame_num != h->prev_frame_num && (h->prev_frame_num+1)%(1<<h->sps.log2_max_frame_num) < (h->frame_num - h->sps.ref_frame_count)) h->prev_frame_num = h->frame_num - h->sps.ref_frame_count - 1; while(h->frame_num != h->prev_frame_num && h->frame_num != (h->prev_frame_num+1)%(1<<h->sps.log2_max_frame_num)){ Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL; av_log(h->s.avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num); if (ff_h264_frame_start(h) < 0) return -1; h->prev_frame_num++; h->prev_frame_num %= 1<<h->sps.log2_max_frame_num; s->current_picture_ptr->frame_num= h->prev_frame_num; ff_thread_report_progress((AVFrame*)s->current_picture_ptr, INT_MAX, 0); ff_thread_report_progress((AVFrame*)s->current_picture_ptr, INT_MAX, 1); ff_generate_sliding_window_mmcos(h); ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index); /* Error concealment: if a ref is missing, copy the previous ref in its place. * FIXME: avoiding a memcpy would be nice, but ref handling makes many assumptions * about there being no actual duplicates. * FIXME: this doesn't copy padding for out-of-frame motion vectors. Given we're * concealing a lost frame, this probably isn't noticable by comparison, but it should * be fixed. */ if (h->short_ref_count) { if (prev) { av_image_copy(h->short_ref[0]->data, h->short_ref[0]->linesize, (const uint8_t**)prev->data, prev->linesize, s->avctx->pix_fmt, s->mb_width*16, s->mb_height*16); h->short_ref[0]->poc = prev->poc+2; } h->short_ref[0]->frame_num = h->prev_frame_num; } } /* See if we have a decoded first field looking for a pair... */ if (s0->first_field) { assert(s0->current_picture_ptr); assert(s0->current_picture_ptr->data[0]); assert(s0->current_picture_ptr->reference != DELAYED_PIC_REF); /* figure out if we have a complementary field pair */ if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) { /* * Previous field is unmatched. Don't display it, but let it * remain for reference if marked as such. */ s0->current_picture_ptr = NULL; s0->first_field = FIELD_PICTURE; } else { if (h->nal_ref_idc && s0->current_picture_ptr->reference && s0->current_picture_ptr->frame_num != h->frame_num) { /* * This and previous field were reference, but had * different frame_nums. Consider this field first in * pair. Throw away previous field except for reference * purposes. */ s0->first_field = 1; s0->current_picture_ptr = NULL; } else { /* Second field in complementary pair */ s0->first_field = 0; } } } else { /* Frame or first field in a potentially complementary pair */ assert(!s0->current_picture_ptr); s0->first_field = FIELD_PICTURE; } if(!FIELD_PICTURE || s0->first_field) { if (ff_h264_frame_start(h) < 0) { s0->first_field = 0; return -1; } } else { ff_release_unused_pictures(s, 0); } } if(h != h0) clone_slice(h, h0); s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup assert(s->mb_num == s->mb_width * s->mb_height); if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num || first_mb_in_slice >= s->mb_num){ av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n"); return -1; } s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width; s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE; if (s->picture_structure == PICT_BOTTOM_FIELD) s->resync_mb_y = s->mb_y = s->mb_y + 1; assert(s->mb_y < s->mb_height); if(s->picture_structure==PICT_FRAME){ h->curr_pic_num= h->frame_num; h->max_pic_num= 1<< h->sps.log2_max_frame_num; }else{ h->curr_pic_num= 2*h->frame_num + 1; h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1); } if(h->nal_unit_type == NAL_IDR_SLICE){ get_ue_golomb(&s->gb); /* idr_pic_id */ } if(h->sps.poc_type==0){ h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb); if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){ h->delta_poc_bottom= get_se_golomb(&s->gb); } } if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){ h->delta_poc[0]= get_se_golomb(&s->gb); if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME) h->delta_poc[1]= get_se_golomb(&s->gb); } init_poc(h); if(h->pps.redundant_pic_cnt_present){ h->redundant_pic_count= get_ue_golomb(&s->gb); } //set defaults, might be overridden a few lines later h->ref_count[0]= h->pps.ref_count[0]; h->ref_count[1]= h->pps.ref_count[1]; if(h->slice_type_nos != FF_I_TYPE){ if(h->slice_type_nos == FF_B_TYPE){ h->direct_spatial_mv_pred= get_bits1(&s->gb); } num_ref_idx_active_override_flag= get_bits1(&s->gb); if(num_ref_idx_active_override_flag){ h->ref_count[0]= get_ue_golomb(&s->gb) + 1; if(h->slice_type_nos==FF_B_TYPE) h->ref_count[1]= get_ue_golomb(&s->gb) + 1; if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){ av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n"); h->ref_count[0]= h->ref_count[1]= 1; return -1; } } if(h->slice_type_nos == FF_B_TYPE) h->list_count= 2; else h->list_count= 1; }else h->list_count= 0; if(!default_ref_list_done){ ff_h264_fill_default_ref_list(h); } if(h->slice_type_nos!=FF_I_TYPE && ff_h264_decode_ref_pic_list_reordering(h) < 0) return -1; if(h->slice_type_nos!=FF_I_TYPE){ s->last_picture_ptr= &h->ref_list[0][0]; ff_copy_picture(&s->last_picture, s->last_picture_ptr); } if(h->slice_type_nos==FF_B_TYPE){ s->next_picture_ptr= &h->ref_list[1][0]; ff_copy_picture(&s->next_picture, s->next_picture_ptr); } if( (h->pps.weighted_pred && h->slice_type_nos == FF_P_TYPE ) || (h->pps.weighted_bipred_idc==1 && h->slice_type_nos== FF_B_TYPE ) ) pred_weight_table(h); else if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== FF_B_TYPE){ implicit_weight_table(h, -1); }else { h->use_weight = 0; for (i = 0; i < 2; i++) { h->luma_weight_flag[i] = 0; h->chroma_weight_flag[i] = 0; } } if(h->nal_ref_idc) ff_h264_decode_ref_pic_marking(h0, &s->gb); if(FRAME_MBAFF){ ff_h264_fill_mbaff_ref_list(h); if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== FF_B_TYPE){ implicit_weight_table(h, 0); implicit_weight_table(h, 1); } } if(h->slice_type_nos==FF_B_TYPE && !h->direct_spatial_mv_pred) ff_h264_direct_dist_scale_factor(h); ff_h264_direct_ref_list_init(h); if( h->slice_type_nos != FF_I_TYPE && h->pps.cabac ){ tmp = get_ue_golomb_31(&s->gb); if(tmp > 2){ av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n"); return -1; } h->cabac_init_idc= tmp; } h->last_qscale_diff = 0; tmp = h->pps.init_qp + get_se_golomb(&s->gb); if(tmp>51+6*(h->sps.bit_depth_luma-8)){ av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp); return -1; } s->qscale= tmp; h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale); h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale); //FIXME qscale / qp ... stuff if(h->slice_type == FF_SP_TYPE){ get_bits1(&s->gb); /* sp_for_switch_flag */ } if(h->slice_type==FF_SP_TYPE || h->slice_type == FF_SI_TYPE){ get_se_golomb(&s->gb); /* slice_qs_delta */ } h->deblocking_filter = 1; h->slice_alpha_c0_offset = 52; h->slice_beta_offset = 52; if( h->pps.deblocking_filter_parameters_present ) { tmp= get_ue_golomb_31(&s->gb); if(tmp > 2){ av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp); return -1; } h->deblocking_filter= tmp; if(h->deblocking_filter < 2) h->deblocking_filter^= 1; // 1<->0 if( h->deblocking_filter ) { h->slice_alpha_c0_offset += get_se_golomb(&s->gb) << 1; h->slice_beta_offset += get_se_golomb(&s->gb) << 1; if( h->slice_alpha_c0_offset > 104U || h->slice_beta_offset > 104U){ av_log(s->avctx, AV_LOG_ERROR, "deblocking filter parameters %d %d out of range\n", h->slice_alpha_c0_offset, h->slice_beta_offset); return -1; } } } if( s->avctx->skip_loop_filter >= AVDISCARD_ALL ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type_nos != FF_I_TYPE) ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == FF_B_TYPE) ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0)) h->deblocking_filter= 0; if(h->deblocking_filter == 1 && h0->max_contexts > 1) { if(s->avctx->flags2 & CODEC_FLAG2_FAST) { /* Cheat slightly for speed: Do not bother to deblock across slices. */ h->deblocking_filter = 2; } else { h0->max_contexts = 1; if(!h0->single_decode_warning) { av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n"); h0->single_decode_warning = 1; } if(h != h0){ av_log(h->s.avctx, AV_LOG_ERROR, "deblocking switched inside frame\n"); return 1; } } } h->qp_thresh= 15 + 52 - FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset) - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]); #if 0 //FMO if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5) slice_group_change_cycle= get_bits(&s->gb, ?); #endif h0->last_slice_type = slice_type; h->slice_num = ++h0->current_slice; if(h->slice_num >= MAX_SLICES){ av_log(s->avctx, AV_LOG_ERROR, "Too many slices, increase MAX_SLICES and recompile\n"); } for(j=0; j<2; j++){ int id_list[16]; int *ref2frm= h->ref2frm[h->slice_num&(MAX_SLICES-1)][j]; for(i=0; i<16; i++){ id_list[i]= 60; if(h->ref_list[j][i].data[0]){ int k; uint8_t *base= h->ref_list[j][i].base[0]; for(k=0; k<h->short_ref_count; k++) if(h->short_ref[k]->base[0] == base){ id_list[i]= k; break; } for(k=0; k<h->long_ref_count; k++) if(h->long_ref[k] && h->long_ref[k]->base[0] == base){ id_list[i]= h->short_ref_count + k; break; } } } ref2frm[0]= ref2frm[1]= -1; for(i=0; i<16; i++) ref2frm[i+2]= 4*id_list[i] +(h->ref_list[j][i].reference&3); ref2frm[18+0]= ref2frm[18+1]= -1; for(i=16; i<48; i++) ref2frm[i+4]= 4*id_list[(i-16)>>1] +(h->ref_list[j][i].reference&3); } //FIXME: fix draw_edges+PAFF+frame threads h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE || (!h->sps.frame_mbs_only_flag && s->avctx->active_thread_type&FF_THREAD_FRAME)) ? 0 : 16; h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width; if(s->avctx->debug&FF_DEBUG_PICT_INFO){ av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n", h->slice_num, (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"), first_mb_in_slice, av_get_pict_type_char(h->slice_type), h->slice_type_fixed ? " fix" : "", h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "", pps_id, h->frame_num, s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1], h->ref_count[0], h->ref_count[1], s->qscale, h->deblocking_filter, h->slice_alpha_c0_offset/2-26, h->slice_beta_offset/2-26, h->use_weight, h->use_weight==1 && h->use_weight_chroma ? "c" : "", h->slice_type == FF_B_TYPE ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "" ); } return 0; } int ff_h264_get_slice_type(const H264Context *h) { switch (h->slice_type) { case FF_P_TYPE: return 0; case FF_B_TYPE: return 1; case FF_I_TYPE: return 2; case FF_SP_TYPE: return 3; case FF_SI_TYPE: return 4; default: return -1; } } /** * * @return non zero if the loop filter can be skiped */ static int fill_filter_caches(H264Context *h, int mb_type){ MpegEncContext * const s = &h->s; const int mb_xy= h->mb_xy; int top_xy, left_xy[2]; int top_type, left_type[2]; top_xy = mb_xy - (s->mb_stride << MB_FIELD); //FIXME deblocking could skip the intra and nnz parts. /* Wow, what a mess, why didn't they simplify the interlacing & intra * stuff, I can't imagine that these complex rules are worth it. */ left_xy[1] = left_xy[0] = mb_xy-1; if(FRAME_MBAFF){ const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]); const int curr_mb_field_flag = IS_INTERLACED(mb_type); if(s->mb_y&1){ if (left_mb_field_flag != curr_mb_field_flag) { left_xy[0] -= s->mb_stride; } }else{ if(curr_mb_field_flag){ top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1); } if (left_mb_field_flag != curr_mb_field_flag) { left_xy[1] += s->mb_stride; } } } h->top_mb_xy = top_xy; h->left_mb_xy[0] = left_xy[0]; h->left_mb_xy[1] = left_xy[1]; { //for sufficiently low qp, filtering wouldn't do anything //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice int qp = s->current_picture.qscale_table[mb_xy]; if(qp <= qp_thresh && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh) && (top_xy < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){ if(!FRAME_MBAFF) return 1; if( (left_xy[0]< 0 || ((qp + s->current_picture.qscale_table[left_xy[1] ] + 1)>>1) <= qp_thresh) && (top_xy < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy -s->mb_stride] + 1)>>1) <= qp_thresh)) return 1; } } top_type = s->current_picture.mb_type[top_xy] ; left_type[0] = s->current_picture.mb_type[left_xy[0]]; left_type[1] = s->current_picture.mb_type[left_xy[1]]; if(h->deblocking_filter == 2){ if(h->slice_table[top_xy ] != h->slice_num) top_type= 0; if(h->slice_table[left_xy[0] ] != h->slice_num) left_type[0]= left_type[1]= 0; }else{ if(h->slice_table[top_xy ] == 0xFFFF) top_type= 0; if(h->slice_table[left_xy[0] ] == 0xFFFF) left_type[0]= left_type[1] =0; } h->top_type = top_type ; h->left_type[0]= left_type[0]; h->left_type[1]= left_type[1]; if(IS_INTRA(mb_type)) return 0; AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]); AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]); AV_COPY32(&h->non_zero_count_cache[0+8*5], &h->non_zero_count[mb_xy][16]); AV_COPY32(&h->non_zero_count_cache[4+8*3], &h->non_zero_count[mb_xy][20]); AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]); h->cbp= h->cbp_table[mb_xy]; { int list; for(list=0; list<h->list_count; list++){ int8_t *ref; int y, b_stride; int16_t (*mv_dst)[2]; int16_t (*mv_src)[2]; if(!USES_LIST(mb_type, list)){ fill_rectangle( h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4); AV_WN32A(&h->ref_cache[list][scan8[ 0]], ((LIST_NOT_USED)&0xFF)*0x01010101u); AV_WN32A(&h->ref_cache[list][scan8[ 2]], ((LIST_NOT_USED)&0xFF)*0x01010101u); AV_WN32A(&h->ref_cache[list][scan8[ 8]], ((LIST_NOT_USED)&0xFF)*0x01010101u); AV_WN32A(&h->ref_cache[list][scan8[10]], ((LIST_NOT_USED)&0xFF)*0x01010101u); continue; } ref = &s->current_picture.ref_index[list][4*mb_xy]; { int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2); AV_WN32A(&h->ref_cache[list][scan8[ 0]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101); AV_WN32A(&h->ref_cache[list][scan8[ 2]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101); ref += 2; AV_WN32A(&h->ref_cache[list][scan8[ 8]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101); AV_WN32A(&h->ref_cache[list][scan8[10]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101); } b_stride = h->b_stride; mv_dst = &h->mv_cache[list][scan8[0]]; mv_src = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride]; for(y=0; y<4; y++){ AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride); } } } /* 0 . T T. T T T T 1 L . .L . . . . 2 L . .L . . . . 3 . T TL . . . . 4 L . .L . . . . 5 L . .. . . . . */ //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec) if(top_type){ AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]); } if(left_type[0]){ h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][7+0*8]; h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][7+1*8]; h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[0]][7+2*8]; h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[0]][7+3*8]; } // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs if(!CABAC && h->pps.transform_8x8_mode){ if(IS_8x8DCT(top_type)){ h->non_zero_count_cache[4+8*0]= h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4; h->non_zero_count_cache[6+8*0]= h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8; } if(IS_8x8DCT(left_type[0])){ h->non_zero_count_cache[3+8*1]= h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF } if(IS_8x8DCT(left_type[1])){ h->non_zero_count_cache[3+8*3]= h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF } if(IS_8x8DCT(mb_type)){ h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]= h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp & 1; h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]= h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2; h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]= h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4; h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]= h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8; } } if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){ int list; for(list=0; list<h->list_count; list++){ if(USES_LIST(top_type, list)){ const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride; const int b8_xy= 4*top_xy + 2; int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2); AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]); h->ref_cache[list][scan8[0] + 0 - 1*8]= h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]]; h->ref_cache[list][scan8[0] + 2 - 1*8]= h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]]; }else{ AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]); AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u); } if(!IS_INTERLACED(mb_type^left_type[0])){ if(USES_LIST(left_type[0], list)){ const int b_xy= h->mb2b_xy[left_xy[0]] + 3; const int b8_xy= 4*left_xy[0] + 1; int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[0]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2); AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 0 ], s->current_picture.motion_val[list][b_xy + h->b_stride*0]); AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 8 ], s->current_picture.motion_val[list][b_xy + h->b_stride*1]); AV_COPY32(h->mv_cache[list][scan8[0] - 1 +16 ], s->current_picture.motion_val[list][b_xy + h->b_stride*2]); AV_COPY32(h->mv_cache[list][scan8[0] - 1 +24 ], s->current_picture.motion_val[list][b_xy + h->b_stride*3]); h->ref_cache[list][scan8[0] - 1 + 0 ]= h->ref_cache[list][scan8[0] - 1 + 8 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 2*0]]; h->ref_cache[list][scan8[0] - 1 +16 ]= h->ref_cache[list][scan8[0] - 1 +24 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 2*1]]; }else{ AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 0 ]); AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 8 ]); AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +16 ]); AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +24 ]); h->ref_cache[list][scan8[0] - 1 + 0 ]= h->ref_cache[list][scan8[0] - 1 + 8 ]= h->ref_cache[list][scan8[0] - 1 + 16 ]= h->ref_cache[list][scan8[0] - 1 + 24 ]= LIST_NOT_USED; } } } } return 0; } static void loop_filter(H264Context *h){ MpegEncContext * const s = &h->s; uint8_t *dest_y, *dest_cb, *dest_cr; int linesize, uvlinesize, mb_x, mb_y; const int end_mb_y= s->mb_y + FRAME_MBAFF; const int old_slice_type= h->slice_type; const int end_mb_x = s->mb_x; if(h->deblocking_filter) { int start_x= s->resync_mb_y == s->mb_y ? s->resync_mb_x : 0; for(mb_x= start_x; mb_x<end_mb_x; mb_x++){ for(mb_y=end_mb_y - FRAME_MBAFF; mb_y<= end_mb_y; mb_y++){ int mb_xy, mb_type; mb_xy = h->mb_xy = mb_x + mb_y*s->mb_stride; h->slice_num= h->slice_table[mb_xy]; mb_type= s->current_picture.mb_type[mb_xy]; h->list_count= h->list_counts[mb_xy]; if(FRAME_MBAFF) h->mb_mbaff = h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type); s->mb_x= mb_x; s->mb_y= mb_y; dest_y = s->current_picture.data[0] + ((mb_x<<h->pixel_shift) + mb_y * s->linesize ) * 16; dest_cb = s->current_picture.data[1] + ((mb_x<<h->pixel_shift) + mb_y * s->uvlinesize) * 8; dest_cr = s->current_picture.data[2] + ((mb_x<<h->pixel_shift) + mb_y * s->uvlinesize) * 8; //FIXME simplify above if (MB_FIELD) { linesize = h->mb_linesize = s->linesize * 2; uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2; if(mb_y&1){ //FIXME move out of this function? dest_y -= s->linesize*15; dest_cb-= s->uvlinesize*7; dest_cr-= s->uvlinesize*7; } } else { linesize = h->mb_linesize = s->linesize; uvlinesize = h->mb_uvlinesize = s->uvlinesize; } backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0); if(fill_filter_caches(h, mb_type)) continue; h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]); h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]); if (FRAME_MBAFF) { ff_h264_filter_mb (h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize); } else { ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize); } } } } h->slice_type= old_slice_type; s->mb_x= end_mb_x; s->mb_y= end_mb_y - FRAME_MBAFF; h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale); h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale); } static void predict_field_decoding_flag(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; int mb_type = (h->slice_table[mb_xy-1] == h->slice_num) ? s->current_picture.mb_type[mb_xy-1] : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num) ? s->current_picture.mb_type[mb_xy-s->mb_stride] : 0; h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0; } /** * Draw edges and report progress for the last MB row. */ static void decode_finish_row(H264Context *h){ MpegEncContext * const s = &h->s; int top = 16*(s->mb_y >> FIELD_PICTURE); int height = 16 << FRAME_MBAFF; int deblock_border = (16 + 4) << FRAME_MBAFF; int pic_height = 16*s->mb_height >> FIELD_PICTURE; if (h->deblocking_filter) { if((top + height) >= pic_height) height += deblock_border; top -= deblock_border; } if (top >= pic_height || (top + height) < h->emu_edge_height) return; height = FFMIN(height, pic_height - top); if (top < h->emu_edge_height) { height = top+height; top = 0; } ff_draw_horiz_band(s, top, height); if (s->dropable) return; ff_thread_report_progress((AVFrame*)s->current_picture_ptr, top + height - 1, s->picture_structure==PICT_BOTTOM_FIELD); } static int decode_slice(struct AVCodecContext *avctx, void *arg){ H264Context *h = *(void**)arg; MpegEncContext * const s = &h->s; const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F; s->mb_skip_run= -1; h->is_complex = FRAME_MBAFF || s->picture_structure != PICT_FRAME || s->codec_id != CODEC_ID_H264 || (CONFIG_GRAY && (s->flags&CODEC_FLAG_GRAY)); if( h->pps.cabac ) { /* realign */ align_get_bits( &s->gb ); /* init cabac */ ff_init_cabac_states( &h->cabac); ff_init_cabac_decoder( &h->cabac, s->gb.buffer + get_bits_count(&s->gb)/8, (get_bits_left(&s->gb) + 7)/8); ff_h264_init_cabac_states(h); for(;;){ //START_TIMER int ret = ff_h264_decode_mb_cabac(h); int eos; //STOP_TIMER("decode_mb_cabac") if(ret>=0) ff_h264_hl_decode_mb(h); if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ? s->mb_y++; ret = ff_h264_decode_mb_cabac(h); if(ret>=0) ff_h264_hl_decode_mb(h); s->mb_y--; } eos = get_cabac_terminate( &h->cabac ); if((s->workaround_bugs & FF_BUG_TRUNCATED) && h->cabac.bytestream > h->cabac.bytestream_end + 2){ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; } if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) { av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream); ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } if( ++s->mb_x >= s->mb_width ) { loop_filter(h); s->mb_x = 0; decode_finish_row(h); ++s->mb_y; if(FIELD_OR_MBAFF_PICTURE) { ++s->mb_y; if(FRAME_MBAFF && s->mb_y < s->mb_height) predict_field_decoding_flag(h); } } if( eos || s->mb_y >= s->mb_height ) { if(s->mb_x) loop_filter(h); tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits); ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; } } } else { for(;;){ int ret = ff_h264_decode_mb_cavlc(h); if(ret>=0) ff_h264_hl_decode_mb(h); if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ? s->mb_y++; ret = ff_h264_decode_mb_cavlc(h); if(ret>=0) ff_h264_hl_decode_mb(h); s->mb_y--; } if(ret<0){ av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y); ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } if(++s->mb_x >= s->mb_width){ loop_filter(h); s->mb_x=0; decode_finish_row(h); ++s->mb_y; if(FIELD_OR_MBAFF_PICTURE) { ++s->mb_y; if(FRAME_MBAFF && s->mb_y < s->mb_height) predict_field_decoding_flag(h); } if(s->mb_y >= s->mb_height){ tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits); if( get_bits_count(&s->gb) == s->gb.size_in_bits || get_bits_count(&s->gb) < s->gb.size_in_bits && s->avctx->error_recognition < FF_ER_AGGRESSIVE) { ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; }else{ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return -1; } } } if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){ tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits); if(get_bits_count(&s->gb) == s->gb.size_in_bits ){ if(s->mb_x) loop_filter(h); ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; }else{ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } } } } #if 0 for(;s->mb_y < s->mb_height; s->mb_y++){ for(;s->mb_x < s->mb_width; s->mb_x++){ int ret= decode_mb(h); ff_h264_hl_decode_mb(h); if(ret<0){ av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y); ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } if(++s->mb_x >= s->mb_width){ s->mb_x=0; if(++s->mb_y >= s->mb_height){ if(get_bits_count(s->gb) == s->gb.size_in_bits){ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; }else{ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return -1; } } } if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){ if(get_bits_count(s->gb) == s->gb.size_in_bits){ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; }else{ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } } } s->mb_x=0; ff_draw_horiz_band(s, 16*s->mb_y, 16); } #endif return -1; //not reached } /** * Call decode_slice() for each context. * * @param h h264 master context * @param context_count number of contexts to execute */ static void execute_decode_slices(H264Context *h, int context_count){ MpegEncContext * const s = &h->s; AVCodecContext * const avctx= s->avctx; H264Context *hx; int i; if (s->avctx->hwaccel) return; if(s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU) return; if(context_count == 1) { decode_slice(avctx, &h); } else { for(i = 1; i < context_count; i++) { hx = h->thread_context[i]; hx->s.error_recognition = avctx->error_recognition; hx->s.error_count = 0; hx->x264_build= h->x264_build; } avctx->execute(avctx, (void *)decode_slice, h->thread_context, NULL, context_count, sizeof(void*)); /* pull back stuff from slices to master context */ hx = h->thread_context[context_count - 1]; s->mb_x = hx->s.mb_x; s->mb_y = hx->s.mb_y; s->dropable = hx->s.dropable; s->picture_structure = hx->s.picture_structure; for(i = 1; i < context_count; i++) h->s.error_count += h->thread_context[i]->s.error_count; } } static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){ MpegEncContext * const s = &h->s; AVCodecContext * const avctx= s->avctx; int buf_index=0; H264Context *hx; ///< thread context int context_count = 0; int next_avc= h->is_avc ? 0 : buf_size; h->max_contexts = (HAVE_THREADS && (s->avctx->active_thread_type&FF_THREAD_SLICE)) ? avctx->thread_count : 1; #if 0 int i; for(i=0; i<50; i++){ av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]); } #endif if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){ h->current_slice = 0; if (!s->first_field) s->current_picture_ptr= NULL; ff_h264_reset_sei(h); } for(;;){ int consumed; int dst_length; int bit_length; const uint8_t *ptr; int i, nalsize = 0; int err; if(buf_index >= next_avc) { if(buf_index >= buf_size) break; nalsize = 0; for(i = 0; i < h->nal_length_size; i++) nalsize = (nalsize << 8) | buf[buf_index++]; if(nalsize <= 0 || nalsize > buf_size - buf_index){ av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize); break; } next_avc= buf_index + nalsize; } else { // start code prefix search for(; buf_index + 3 < next_avc; buf_index++){ // This should always succeed in the first iteration. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1) break; } if(buf_index+3 >= buf_size) break; buf_index+=3; if(buf_index >= next_avc) continue; } hx = h->thread_context[context_count]; ptr= ff_h264_decode_nal(hx, buf + buf_index, &dst_length, &consumed, next_avc - buf_index); if (ptr==NULL || dst_length < 0){ return -1; } i= buf_index + consumed; if((s->workaround_bugs & FF_BUG_AUTODETECT) && i+3<next_avc && buf[i]==0x00 && buf[i+1]==0x00 && buf[i+2]==0x01 && buf[i+3]==0xE0) s->workaround_bugs |= FF_BUG_TRUNCATED; if(!(s->workaround_bugs & FF_BUG_TRUNCATED)){ while(ptr[dst_length - 1] == 0 && dst_length > 0) dst_length--; } bit_length= !dst_length ? 0 : (8*dst_length - ff_h264_decode_rbsp_trailing(h, ptr + dst_length - 1)); if(s->avctx->debug&FF_DEBUG_STARTCODE){ av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length); } if (h->is_avc && (nalsize != consumed) && nalsize){ av_log(h->s.avctx, AV_LOG_DEBUG, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize); } buf_index += consumed; //FIXME do not discard SEI id if( #if FF_API_HURRY_UP (s->hurry_up == 1 && h->nal_ref_idc == 0) || #endif (avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0)) continue; again: err = 0; switch(hx->nal_unit_type){ case NAL_IDR_SLICE: if (h->nal_unit_type != NAL_IDR_SLICE) { av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices"); return -1; } idr(h); //FIXME ensure we don't loose some frames if there is reordering case NAL_SLICE: init_get_bits(&hx->s.gb, ptr, bit_length); hx->intra_gb_ptr= hx->inter_gb_ptr= &hx->s.gb; hx->s.data_partitioning = 0; if((err = decode_slice_header(hx, h))) break; s->current_picture_ptr->key_frame |= (hx->nal_unit_type == NAL_IDR_SLICE) || (h->sei_recovery_frame_cnt >= 0); if (h->current_slice == 1) { if(!(s->flags2 & CODEC_FLAG2_CHUNKS)) { decode_postinit(h); } if (s->avctx->hwaccel && s->avctx->hwaccel->start_frame(s->avctx, NULL, 0) < 0) return -1; if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU) ff_vdpau_h264_picture_start(s); } if(hx->redundant_pic_count==0 #if FF_API_HURRY_UP && hx->s.hurry_up < 5 #endif && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc) && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE) && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE) && avctx->skip_frame < AVDISCARD_ALL){ if(avctx->hwaccel) { if (avctx->hwaccel->decode_slice(avctx, &buf[buf_index - consumed], consumed) < 0) return -1; }else if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){ static const uint8_t start_code[] = {0x00, 0x00, 0x01}; ff_vdpau_add_data_chunk(s, start_code, sizeof(start_code)); ff_vdpau_add_data_chunk(s, &buf[buf_index - consumed], consumed ); }else context_count++; } break; case NAL_DPA: init_get_bits(&hx->s.gb, ptr, bit_length); hx->intra_gb_ptr= hx->inter_gb_ptr= NULL; if ((err = decode_slice_header(hx, h)) < 0) break; hx->s.data_partitioning = 1; break; case NAL_DPB: init_get_bits(&hx->intra_gb, ptr, bit_length); hx->intra_gb_ptr= &hx->intra_gb; break; case NAL_DPC: init_get_bits(&hx->inter_gb, ptr, bit_length); hx->inter_gb_ptr= &hx->inter_gb; if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning && s->context_initialized #if FF_API_HURRY_UP && s->hurry_up < 5 #endif && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc) && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE) && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE) && avctx->skip_frame < AVDISCARD_ALL) context_count++; break; case NAL_SEI: init_get_bits(&s->gb, ptr, bit_length); ff_h264_decode_sei(h); break; case NAL_SPS: init_get_bits(&s->gb, ptr, bit_length); ff_h264_decode_seq_parameter_set(h); if(s->flags& CODEC_FLAG_LOW_DELAY) s->low_delay=1; if(avctx->has_b_frames < 2) avctx->has_b_frames= !s->low_delay; if (avctx->bits_per_raw_sample != h->sps.bit_depth_luma) { if (h->sps.bit_depth_luma >= 8 && h->sps.bit_depth_luma <= 10) { avctx->bits_per_raw_sample = h->sps.bit_depth_luma; h->pixel_shift = h->sps.bit_depth_luma/9; ff_h264dsp_init(&h->h264dsp, h->sps.bit_depth_luma); ff_h264_pred_init(&h->hpc, s->codec_id, h->sps.bit_depth_luma); dsputil_init(&s->dsp, s->avctx); } else { av_log(avctx, AV_LOG_DEBUG, "Unsupported bit depth: %d\n", h->sps.bit_depth_luma); return -1; } } break; case NAL_PPS: init_get_bits(&s->gb, ptr, bit_length); ff_h264_decode_picture_parameter_set(h, bit_length); break; case NAL_AUD: case NAL_END_SEQUENCE: case NAL_END_STREAM: case NAL_FILLER_DATA: case NAL_SPS_EXT: case NAL_AUXILIARY_SLICE: break; default: av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", hx->nal_unit_type, bit_length); } if(context_count == h->max_contexts) { execute_decode_slices(h, context_count); context_count = 0; } if (err < 0) av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n"); else if(err == 1) { /* Slice could not be decoded in parallel mode, copy down * NAL unit stuff to context 0 and restart. Note that * rbsp_buffer is not transferred, but since we no longer * run in parallel mode this should not be an issue. */ h->nal_unit_type = hx->nal_unit_type; h->nal_ref_idc = hx->nal_ref_idc; hx = h; goto again; } } if(context_count) execute_decode_slices(h, context_count); return buf_index; } /** * returns the number of bytes consumed for building the current frame */ static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){ if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...) if(pos+10>buf_size) pos=buf_size; // oops ;) return pos; } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; H264Context *h = avctx->priv_data; MpegEncContext *s = &h->s; AVFrame *pict = data; int buf_index; s->flags= avctx->flags; s->flags2= avctx->flags2; /* end of stream, output what is still in the buffers */ out: if (buf_size == 0) { Picture *out; int i, out_idx; s->current_picture_ptr = NULL; //FIXME factorize this with the output code below out = h->delayed_pic[0]; out_idx = 0; for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && !h->delayed_pic[i]->mmco_reset; i++) if(h->delayed_pic[i]->poc < out->poc){ out = h->delayed_pic[i]; out_idx = i; } for(i=out_idx; h->delayed_pic[i]; i++) h->delayed_pic[i] = h->delayed_pic[i+1]; if(out){ *data_size = sizeof(AVFrame); *pict= *(AVFrame*)out; } return 0; } buf_index=decode_nal_units(h, buf, buf_size); if(buf_index < 0) return -1; if (!s->current_picture_ptr && h->nal_unit_type == NAL_END_SEQUENCE) { buf_size = 0; goto out; } if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){ if (avctx->skip_frame >= AVDISCARD_NONREF #if FF_API_HURRY_UP || s->hurry_up #endif ) return 0; av_log(avctx, AV_LOG_ERROR, "no frame!\n"); return -1; } if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){ if(s->flags2 & CODEC_FLAG2_CHUNKS) decode_postinit(h); field_end(h, 0); if (!h->next_output_pic) { /* Wait for second field. */ *data_size = 0; } else { *data_size = sizeof(AVFrame); *pict = *(AVFrame*)h->next_output_pic; } } assert(pict->data[0] || !*data_size); ff_print_debug_info(s, pict); //printf("out %d\n", (int)pict->data[0]); return get_consumed_bytes(s, buf_index, buf_size); } #if 0 static inline void fill_mb_avail(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; if(s->mb_y){ h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num; h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num; h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num; }else{ h->mb_avail[0]= h->mb_avail[1]= h->mb_avail[2]= 0; } h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num; h->mb_avail[4]= 1; //FIXME move out h->mb_avail[5]= 0; //FIXME move out } #endif #ifdef TEST #undef printf #undef random #define COUNT 8000 #define SIZE (COUNT*40) int main(void){ int i; uint8_t temp[SIZE]; PutBitContext pb; GetBitContext gb; // int int_temp[10000]; DSPContext dsp; AVCodecContext avctx; dsputil_init(&dsp, &avctx); init_put_bits(&pb, temp, SIZE); printf("testing unsigned exp golomb\n"); for(i=0; i<COUNT; i++){ START_TIMER set_ue_golomb(&pb, i); STOP_TIMER("set_ue_golomb"); } flush_put_bits(&pb); init_get_bits(&gb, temp, 8*SIZE); for(i=0; i<COUNT; i++){ int j, s; s= show_bits(&gb, 24); START_TIMER j= get_ue_golomb(&gb); if(j != i){ printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s); // return -1; } STOP_TIMER("get_ue_golomb"); } init_put_bits(&pb, temp, SIZE); printf("testing signed exp golomb\n"); for(i=0; i<COUNT; i++){ START_TIMER set_se_golomb(&pb, i - COUNT/2); STOP_TIMER("set_se_golomb"); } flush_put_bits(&pb); init_get_bits(&gb, temp, 8*SIZE); for(i=0; i<COUNT; i++){ int j, s; s= show_bits(&gb, 24); START_TIMER j= get_se_golomb(&gb); if(j != i - COUNT/2){ printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s); // return -1; } STOP_TIMER("get_se_golomb"); } #if 0 printf("testing 4x4 (I)DCT\n"); DCTELEM block[16]; uint8_t src[16], ref[16]; uint64_t error= 0, max_error=0; for(i=0; i<COUNT; i++){ int j; // printf("%d %d %d\n", r1, r2, (r2-r1)*16); for(j=0; j<16; j++){ ref[j]= random()%255; src[j]= random()%255; } h264_diff_dct_c(block, src, ref, 4); //normalize for(j=0; j<16; j++){ // printf("%d ", block[j]); block[j]= block[j]*4; if(j&1) block[j]= (block[j]*4 + 2)/5; if(j&4) block[j]= (block[j]*4 + 2)/5; } // printf("\n"); h->h264dsp.h264_idct_add(ref, block, 4); /* for(j=0; j<16; j++){ printf("%d ", ref[j]); } printf("\n");*/ for(j=0; j<16; j++){ int diff= FFABS(src[j] - ref[j]); error+= diff*diff; max_error= FFMAX(max_error, diff); } } printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error ); printf("testing quantizer\n"); for(qp=0; qp<52; qp++){ for(i=0; i<16; i++) src1_block[i]= src2_block[i]= random()%255; } printf("Testing NAL layer\n"); uint8_t bitstream[COUNT]; uint8_t nal[COUNT*2]; H264Context h; memset(&h, 0, sizeof(H264Context)); for(i=0; i<COUNT; i++){ int zeros= i; int nal_length; int consumed; int out_length; uint8_t *out; int j; for(j=0; j<COUNT; j++){ bitstream[j]= (random() % 255) + 1; } for(j=0; j<zeros; j++){ int pos= random() % COUNT; while(bitstream[pos] == 0){ pos++; pos %= COUNT; } bitstream[pos]=0; } START_TIMER nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2); if(nal_length<0){ printf("encoding failed\n"); return -1; } out= ff_h264_decode_nal(&h, nal, &out_length, &consumed, nal_length); STOP_TIMER("NAL") if(out_length != COUNT){ printf("incorrect length %d %d\n", out_length, COUNT); return -1; } if(consumed != nal_length){ printf("incorrect consumed length %d %d\n", nal_length, consumed); return -1; } if(memcmp(bitstream, out, COUNT)){ printf("mismatch\n"); return -1; } } #endif printf("Testing RBSP\n"); return 0; } #endif /* TEST */ av_cold void ff_h264_free_context(H264Context *h) { int i; free_tables(h, 1); //FIXME cleanup init stuff perhaps for(i = 0; i < MAX_SPS_COUNT; i++) av_freep(h->sps_buffers + i); for(i = 0; i < MAX_PPS_COUNT; i++) av_freep(h->pps_buffers + i); } av_cold int ff_h264_decode_end(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; MpegEncContext *s = &h->s; ff_h264_free_context(h); MPV_common_end(s); // memset(h, 0, sizeof(H264Context)); return 0; } static const AVProfile profiles[] = { { FF_PROFILE_H264_BASELINE, "Baseline" }, { FF_PROFILE_H264_CONSTRAINED_BASELINE, "Constrained Baseline" }, { FF_PROFILE_H264_MAIN, "Main" }, { FF_PROFILE_H264_EXTENDED, "Extended" }, { FF_PROFILE_H264_HIGH, "High" }, { FF_PROFILE_H264_HIGH_10, "High 10" }, { FF_PROFILE_H264_HIGH_10_INTRA, "High 10 Intra" }, { FF_PROFILE_H264_HIGH_422, "High 4:2:2" }, { FF_PROFILE_H264_HIGH_422_INTRA, "High 4:2:2 Intra" }, { FF_PROFILE_H264_HIGH_444, "High 4:4:4" }, { FF_PROFILE_H264_HIGH_444_PREDICTIVE, "High 4:4:4 Predictive" }, { FF_PROFILE_H264_HIGH_444_INTRA, "High 4:4:4 Intra" }, { FF_PROFILE_H264_CAVLC_444, "CAVLC 4:4:4" }, { FF_PROFILE_UNKNOWN }, }; AVCodec ff_h264_decoder = { "h264", AVMEDIA_TYPE_VIDEO, CODEC_ID_H264, sizeof(H264Context), ff_h264_decode_init, NULL, ff_h264_decode_end, decode_frame, /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_FRAME_THREADS, .flush= flush_dpb, .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"), .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), .update_thread_context = ONLY_IF_THREADS_ENABLED(decode_update_thread_context), .profiles = NULL_IF_CONFIG_SMALL(profiles), }; #if CONFIG_H264_VDPAU_DECODER AVCodec ff_h264_vdpau_decoder = { "h264_vdpau", AVMEDIA_TYPE_VIDEO, CODEC_ID_H264, sizeof(H264Context), ff_h264_decode_init, NULL, ff_h264_decode_end, decode_frame, CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU, .flush= flush_dpb, .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"), .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_H264, PIX_FMT_NONE}, .profiles = NULL_IF_CONFIG_SMALL(profiles), }; #endif