/* * FFV1 encoder for libavcodec * * Copyright (c) 2003-2012 Michael Niedermayer <michaelni@gmx.at> * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * FF Video Codec 1 (a lossless codec) encoder */ #include "libavutil/avassert.h" #include "libavutil/pixdesc.h" #include "libavutil/crc.h" #include "libavutil/opt.h" #include "libavutil/imgutils.h" #include "avcodec.h" #include "internal.h" #include "get_bits.h" #include "put_bits.h" #include "rangecoder.h" #include "golomb.h" #include "mathops.h" #include "ffv1.h" static void find_best_state(uint8_t best_state[256][256], const uint8_t one_state[256]) { int i, j, k, m; double l2tab[256]; for (i = 1; i < 256; i++) l2tab[i] = log2(i / 256.0); for (i = 0; i < 256; i++) { double best_len[256]; double p = i / 256.0; for (j = 0; j < 256; j++) best_len[j] = 1 << 30; for (j = FFMAX(i - 10, 1); j < FFMIN(i + 11, 256); j++) { double occ[256] = { 0 }; double len = 0; occ[j] = 1.0; for (k = 0; k < 256; k++) { double newocc[256] = { 0 }; for (m = 1; m < 256; m++) if (occ[m]) { len -= occ[m] * (p * l2tab[m] + (1 - p) * l2tab[256 - m]); } if (len < best_len[k]) { best_len[k] = len; best_state[i][k] = j; } for (m = 0; m < 256; m++) if (occ[m]) { newocc[one_state[m]] += occ[m] * p; newocc[256 - one_state[256 - m]] += occ[m] * (1 - p); } memcpy(occ, newocc, sizeof(occ)); } } } } static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]) { int i; #define put_rac(C, S, B) \ do { \ if (rc_stat) { \ rc_stat[*(S)][B]++; \ rc_stat2[(S) - state][B]++; \ } \ put_rac(C, S, B); \ } while (0) if (v) { const int a = FFABS(v); const int e = av_log2(a); put_rac(c, state + 0, 0); if (e <= 9) { for (i = 0; i < e; i++) put_rac(c, state + 1 + i, 1); // 1..10 put_rac(c, state + 1 + i, 0); for (i = e - 1; i >= 0; i--) put_rac(c, state + 22 + i, (a >> i) & 1); // 22..31 if (is_signed) put_rac(c, state + 11 + e, v < 0); // 11..21 } else { for (i = 0; i < e; i++) put_rac(c, state + 1 + FFMIN(i, 9), 1); // 1..10 put_rac(c, state + 1 + 9, 0); for (i = e - 1; i >= 0; i--) put_rac(c, state + 22 + FFMIN(i, 9), (a >> i) & 1); // 22..31 if (is_signed) put_rac(c, state + 11 + 10, v < 0); // 11..21 } } else { put_rac(c, state + 0, 1); } #undef put_rac } static av_noinline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed) { put_symbol_inline(c, state, v, is_signed, NULL, NULL); } static inline void put_vlc_symbol(PutBitContext *pb, VlcState *const state, int v, int bits) { int i, k, code; v = fold(v - state->bias, bits); i = state->count; k = 0; while (i < state->error_sum) { // FIXME: optimize k++; i += i; } assert(k <= 13); #if 0 // JPEG LS if (k == 0 && 2 * state->drift <= -state->count) code = v ^ (-1); else code = v; #else code = v ^ ((2 * state->drift + state->count) >> 31); #endif av_dlog(NULL, "v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code, state->bias, state->error_sum, state->drift, state->count, k); set_sr_golomb(pb, code, k, 12, bits); update_vlc_state(state, v); } static av_always_inline int encode_line(FFV1Context *s, int w, int16_t *sample[3], int plane_index, int bits) { PlaneContext *const p = &s->plane[plane_index]; RangeCoder *const c = &s->c; int x; int run_index = s->run_index; int run_count = 0; int run_mode = 0; if (s->ac) { if (c->bytestream_end - c->bytestream < w * 20) { av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return AVERROR_INVALIDDATA; } } else { if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < w * 4) { av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return AVERROR_INVALIDDATA; } } for (x = 0; x < w; x++) { int diff, context; context = get_context(p, sample[0] + x, sample[1] + x, sample[2] + x); diff = sample[0][x] - predict(sample[0] + x, sample[1] + x); if (context < 0) { context = -context; diff = -diff; } diff = fold(diff, bits); if (s->ac) { if (s->flags & CODEC_FLAG_PASS1) { put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat, s->rc_stat2[p->quant_table_index][context]); } else { put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL); } } else { if (context == 0) run_mode = 1; if (run_mode) { if (diff) { while (run_count >= 1 << ff_log2_run[run_index]) { run_count -= 1 << ff_log2_run[run_index]; run_index++; put_bits(&s->pb, 1, 1); } put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count); if (run_index) run_index--; run_count = 0; run_mode = 0; if (diff > 0) diff--; } else { run_count++; } } av_dlog(s->avctx, "count:%d index:%d, mode:%d, x:%d pos:%d\n", run_count, run_index, run_mode, x, (int)put_bits_count(&s->pb)); if (run_mode == 0) put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits); } } if (run_mode) { while (run_count >= 1 << ff_log2_run[run_index]) { run_count -= 1 << ff_log2_run[run_index]; run_index++; put_bits(&s->pb, 1, 1); } if (run_count) put_bits(&s->pb, 1, 1); } s->run_index = run_index; return 0; } static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index) { int x, y, i; const int ring_size = s->avctx->context_model ? 3 : 2; int16_t *sample[3]; s->run_index = 0; memset(s->sample_buffer, 0, ring_size * (w + 6) * sizeof(*s->sample_buffer)); for (y = 0; y < h; y++) { for (i = 0; i < ring_size; i++) sample[i] = s->sample_buffer + (w + 6) * ((h + i - y) % ring_size) + 3; sample[0][-1] = sample[1][0]; sample[1][w] = sample[1][w - 1]; // { START_TIMER if (s->bits_per_raw_sample <= 8) { for (x = 0; x < w; x++) sample[0][x] = src[x + stride * y]; encode_line(s, w, sample, plane_index, 8); } else { if (s->packed_at_lsb) { for (x = 0; x < w; x++) sample[0][x] = ((uint16_t *)(src + stride * y))[x]; } else { for (x = 0; x < w; x++) sample[0][x] = ((uint16_t *)(src + stride * y))[x] >> (16 - s->bits_per_raw_sample); } encode_line(s, w, sample, plane_index, s->bits_per_raw_sample); } // STOP_TIMER("encode line") } } } static void encode_rgb_frame(FFV1Context *s, uint8_t *src[3], int w, int h, int stride[3]) { int x, y, p, i; const int ring_size = s->avctx->context_model ? 3 : 2; int16_t *sample[MAX_PLANES][3]; int lbd = s->avctx->bits_per_raw_sample <= 8; int bits = s->avctx->bits_per_raw_sample > 0 ? s->avctx->bits_per_raw_sample : 8; int offset = 1 << bits; s->run_index = 0; memset(s->sample_buffer, 0, ring_size * MAX_PLANES * (w + 6) * sizeof(*s->sample_buffer)); for (y = 0; y < h; y++) { for (i = 0; i < ring_size; i++) for (p = 0; p < MAX_PLANES; p++) sample[p][i] = s->sample_buffer + p * ring_size * (w + 6) + ((h + i - y) % ring_size) * (w + 6) + 3; for (x = 0; x < w; x++) { int b, g, r, av_uninit(a); if (lbd) { unsigned v = *((uint32_t *)(src[0] + x * 4 + stride[0] * y)); b = v & 0xFF; g = (v >> 8) & 0xFF; r = (v >> 16) & 0xFF; a = v >> 24; } else { b = *((uint16_t *)(src[0] + x * 2 + stride[0] * y)); g = *((uint16_t *)(src[1] + x * 2 + stride[1] * y)); r = *((uint16_t *)(src[2] + x * 2 + stride[2] * y)); } b -= g; r -= g; g += (b + r) >> 2; b += offset; r += offset; sample[0][0][x] = g; sample[1][0][x] = b; sample[2][0][x] = r; sample[3][0][x] = a; } for (p = 0; p < 3 + s->transparency; p++) { sample[p][0][-1] = sample[p][1][0]; sample[p][1][w] = sample[p][1][w - 1]; if (lbd) encode_line(s, w, sample[p], (p + 1) / 2, 9); else encode_line(s, w, sample[p], (p + 1) / 2, bits + 1); } } } static void write_quant_table(RangeCoder *c, int16_t *quant_table) { int last = 0; int i; uint8_t state[CONTEXT_SIZE]; memset(state, 128, sizeof(state)); for (i = 1; i < 128; i++) if (quant_table[i] != quant_table[i - 1]) { put_symbol(c, state, i - last - 1, 0); last = i; } put_symbol(c, state, i - last - 1, 0); } static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]) { int i; for (i = 0; i < 5; i++) write_quant_table(c, quant_table[i]); } static void write_header(FFV1Context *f) { uint8_t state[CONTEXT_SIZE]; int i, j; RangeCoder *const c = &f->slice_context[0]->c; memset(state, 128, sizeof(state)); if (f->version < 2) { put_symbol(c, state, f->version, 0); put_symbol(c, state, f->ac, 0); if (f->ac > 1) { for (i = 1; i < 256; i++) put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1); } put_symbol(c, state, f->colorspace, 0); // YUV cs type if (f->version > 0) put_symbol(c, state, f->bits_per_raw_sample, 0); put_rac(c, state, f->chroma_planes); put_symbol(c, state, f->chroma_h_shift, 0); put_symbol(c, state, f->chroma_v_shift, 0); put_rac(c, state, f->transparency); write_quant_tables(c, f->quant_table); } else if (f->version < 3) { put_symbol(c, state, f->slice_count, 0); for (i = 0; i < f->slice_count; i++) { FFV1Context *fs = f->slice_context[i]; put_symbol(c, state, (fs->slice_x + 1) * f->num_h_slices / f->width, 0); put_symbol(c, state, (fs->slice_y + 1) * f->num_v_slices / f->height, 0); put_symbol(c, state, (fs->slice_width + 1) * f->num_h_slices / f->width - 1, 0); put_symbol(c, state, (fs->slice_height + 1) * f->num_v_slices / f->height - 1, 0); for (j = 0; j < f->plane_count; j++) { put_symbol(c, state, f->plane[j].quant_table_index, 0); av_assert0(f->plane[j].quant_table_index == f->avctx->context_model); } } } } static int write_extradata(FFV1Context *f) { RangeCoder *const c = &f->c; uint8_t state[CONTEXT_SIZE]; int i, j, k; uint8_t state2[32][CONTEXT_SIZE]; unsigned v; memset(state2, 128, sizeof(state2)); memset(state, 128, sizeof(state)); f->avctx->extradata_size = 10000 + 4 + (11 * 11 * 5 * 5 * 5 + 11 * 11 * 11) * 32; f->avctx->extradata = av_malloc(f->avctx->extradata_size); ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size); ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8); put_symbol(c, state, f->version, 0); if (f->version > 2) { if (f->version == 3) f->minor_version = 2; put_symbol(c, state, f->minor_version, 0); } put_symbol(c, state, f->ac, 0); if (f->ac > 1) for (i = 1; i < 256; i++) put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1); put_symbol(c, state, f->colorspace, 0); // YUV cs type put_symbol(c, state, f->bits_per_raw_sample, 0); put_rac(c, state, f->chroma_planes); put_symbol(c, state, f->chroma_h_shift, 0); put_symbol(c, state, f->chroma_v_shift, 0); put_rac(c, state, f->transparency); put_symbol(c, state, f->num_h_slices - 1, 0); put_symbol(c, state, f->num_v_slices - 1, 0); put_symbol(c, state, f->quant_table_count, 0); for (i = 0; i < f->quant_table_count; i++) write_quant_tables(c, f->quant_tables[i]); for (i = 0; i < f->quant_table_count; i++) { for (j = 0; j < f->context_count[i] * CONTEXT_SIZE; j++) if (f->initial_states[i] && f->initial_states[i][0][j] != 128) break; if (j < f->context_count[i] * CONTEXT_SIZE) { put_rac(c, state, 1); for (j = 0; j < f->context_count[i]; j++) for (k = 0; k < CONTEXT_SIZE; k++) { int pred = j ? f->initial_states[i][j - 1][k] : 128; put_symbol(c, state2[k], (int8_t)(f->initial_states[i][j][k] - pred), 1); } } else { put_rac(c, state, 0); } } if (f->version > 2) { put_symbol(c, state, f->ec, 0); } f->avctx->extradata_size = ff_rac_terminate(c); v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, f->avctx->extradata, f->avctx->extradata_size); AV_WL32(f->avctx->extradata + f->avctx->extradata_size, v); f->avctx->extradata_size += 4; return 0; } static int sort_stt(FFV1Context *s, uint8_t stt[256]) { int i, i2, changed, print = 0; do { changed = 0; for (i = 12; i < 244; i++) { for (i2 = i + 1; i2 < 245 && i2 < i + 4; i2++) { #define COST(old, new) \ s->rc_stat[old][0] * -log2((256 - (new)) / 256.0) + \ s->rc_stat[old][1] * -log2((new) / 256.0) #define COST2(old, new) \ COST(old, new) + COST(256 - (old), 256 - (new)) double size0 = COST2(i, i) + COST2(i2, i2); double sizeX = COST2(i, i2) + COST2(i2, i); if (sizeX < size0 && i != 128 && i2 != 128) { int j; FFSWAP(int, stt[i], stt[i2]); FFSWAP(int, s->rc_stat[i][0], s->rc_stat[i2][0]); FFSWAP(int, s->rc_stat[i][1], s->rc_stat[i2][1]); if (i != 256 - i2) { FFSWAP(int, stt[256 - i], stt[256 - i2]); FFSWAP(int, s->rc_stat[256 - i][0], s->rc_stat[256 - i2][0]); FFSWAP(int, s->rc_stat[256 - i][1], s->rc_stat[256 - i2][1]); } for (j = 1; j < 256; j++) { if (stt[j] == i) stt[j] = i2; else if (stt[j] == i2) stt[j] = i; if (i != 256 - i2) { if (stt[256 - j] == 256 - i) stt[256 - j] = 256 - i2; else if (stt[256 - j] == 256 - i2) stt[256 - j] = 256 - i; } } print = changed = 1; } } } } while (changed); return print; } static int init_slices_state(FFV1Context *f) { int i, ret; for (i = 0; i < f->slice_count; i++) { FFV1Context *fs = f->slice_context[i]; if ((ret = ffv1_init_slice_state(f, fs)) < 0) return AVERROR(ENOMEM); } return 0; } static av_cold int ffv1_encode_init(AVCodecContext *avctx) { FFV1Context *s = avctx->priv_data; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt); int i, j, k, m, ret; ffv1_common_init(avctx); s->version = 0; if ((avctx->flags & (CODEC_FLAG_PASS1 | CODEC_FLAG_PASS2)) || avctx->slices > 1) s->version = FFMAX(s->version, 2); if (avctx->level == 3) { s->version = 3; } if (s->ec < 0) { s->ec = (s->version >= 3); } if (s->version >= 2 && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) { av_log(avctx, AV_LOG_ERROR, "Version %d requested, please set -strict experimental in " "order to enable it\n", s->version); return AVERROR(ENOSYS); } s->ac = avctx->coder_type > 0 ? 2 : 0; s->plane_count = 3; switch (avctx->pix_fmt) { case AV_PIX_FMT_YUV444P9: case AV_PIX_FMT_YUV422P9: case AV_PIX_FMT_YUV420P9: if (!avctx->bits_per_raw_sample) s->bits_per_raw_sample = 9; case AV_PIX_FMT_YUV444P10: case AV_PIX_FMT_YUV420P10: case AV_PIX_FMT_YUV422P10: s->packed_at_lsb = 1; if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) s->bits_per_raw_sample = 10; case AV_PIX_FMT_GRAY16: case AV_PIX_FMT_YUV444P16: case AV_PIX_FMT_YUV422P16: case AV_PIX_FMT_YUV420P16: if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) { s->bits_per_raw_sample = 16; } else if (!s->bits_per_raw_sample) { s->bits_per_raw_sample = avctx->bits_per_raw_sample; } if (s->bits_per_raw_sample <= 8) { av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n"); return AVERROR_INVALIDDATA; } if (!s->ac && avctx->coder_type == -1) { av_log(avctx, AV_LOG_INFO, "bits_per_raw_sample > 8, forcing coder 1\n"); s->ac = 2; } if (!s->ac) { av_log( avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n"); return AVERROR_INVALIDDATA; } s->version = FFMAX(s->version, 1); case AV_PIX_FMT_GRAY8: case AV_PIX_FMT_YUV444P: case AV_PIX_FMT_YUV440P: case AV_PIX_FMT_YUV422P: case AV_PIX_FMT_YUV420P: case AV_PIX_FMT_YUV411P: case AV_PIX_FMT_YUV410P: s->chroma_planes = desc->nb_components < 3 ? 0 : 1; s->colorspace = 0; break; case AV_PIX_FMT_YUVA444P: case AV_PIX_FMT_YUVA422P: case AV_PIX_FMT_YUVA420P: s->chroma_planes = 1; s->colorspace = 0; s->transparency = 1; break; case AV_PIX_FMT_RGB32: s->colorspace = 1; s->transparency = 1; break; case AV_PIX_FMT_GBRP9: if (!avctx->bits_per_raw_sample) s->bits_per_raw_sample = 9; case AV_PIX_FMT_GBRP10: if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) s->bits_per_raw_sample = 10; case AV_PIX_FMT_GBRP16: if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) s->bits_per_raw_sample = 16; else if (!s->bits_per_raw_sample) s->bits_per_raw_sample = avctx->bits_per_raw_sample; s->colorspace = 1; s->chroma_planes = 1; s->version = FFMAX(s->version, 1); break; default: av_log(avctx, AV_LOG_ERROR, "format not supported\n"); return AVERROR_INVALIDDATA; } if (s->transparency) { av_log( avctx, AV_LOG_WARNING, "Storing alpha plane, this will require a recent FFV1 decoder to playback!\n"); } if (avctx->context_model > 1U) { av_log(avctx, AV_LOG_ERROR, "Invalid context model %d, valid values are 0 and 1\n", avctx->context_model); return AVERROR(EINVAL); } if (s->ac > 1) for (i = 1; i < 256; i++) s->state_transition[i] = ffv1_ver2_state[i]; for (i = 0; i < 256; i++) { s->quant_table_count = 2; if (s->bits_per_raw_sample <= 8) { s->quant_tables[0][0][i] = ffv1_quant11[i]; s->quant_tables[0][1][i] = ffv1_quant11[i] * 11; s->quant_tables[0][2][i] = ffv1_quant11[i] * 11 * 11; s->quant_tables[1][0][i] = ffv1_quant11[i]; s->quant_tables[1][1][i] = ffv1_quant11[i] * 11; s->quant_tables[1][2][i] = ffv1_quant5[i] * 11 * 11; s->quant_tables[1][3][i] = ffv1_quant5[i] * 5 * 11 * 11; s->quant_tables[1][4][i] = ffv1_quant5[i] * 5 * 5 * 11 * 11; } else { s->quant_tables[0][0][i] = ffv1_quant9_10bit[i]; s->quant_tables[0][1][i] = ffv1_quant9_10bit[i] * 11; s->quant_tables[0][2][i] = ffv1_quant9_10bit[i] * 11 * 11; s->quant_tables[1][0][i] = ffv1_quant9_10bit[i]; s->quant_tables[1][1][i] = ffv1_quant9_10bit[i] * 11; s->quant_tables[1][2][i] = ffv1_quant5_10bit[i] * 11 * 11; s->quant_tables[1][3][i] = ffv1_quant5_10bit[i] * 5 * 11 * 11; s->quant_tables[1][4][i] = ffv1_quant5_10bit[i] * 5 * 5 * 11 * 11; } } s->context_count[0] = (11 * 11 * 11 + 1) / 2; s->context_count[1] = (11 * 11 * 5 * 5 * 5 + 1) / 2; memcpy(s->quant_table, s->quant_tables[avctx->context_model], sizeof(s->quant_table)); for (i = 0; i < s->plane_count; i++) { PlaneContext *const p = &s->plane[i]; memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table)); p->quant_table_index = avctx->context_model; p->context_count = s->context_count[p->quant_table_index]; } if ((ret = ffv1_allocate_initial_states(s)) < 0) return ret; avctx->coded_frame = &s->picture; if (!s->transparency) s->plane_count = 2; av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift); s->picture_number = 0; if (avctx->flags & (CODEC_FLAG_PASS1 | CODEC_FLAG_PASS2)) { for (i = 0; i < s->quant_table_count; i++) { s->rc_stat2[i] = av_mallocz(s->context_count[i] * sizeof(*s->rc_stat2[i])); if (!s->rc_stat2[i]) return AVERROR(ENOMEM); } } if (avctx->stats_in) { char *p = avctx->stats_in; uint8_t best_state[256][256]; int gob_count = 0; char *next; av_assert0(s->version >= 2); for (;; ) { for (j = 0; j < 256; j++) for (i = 0; i < 2; i++) { s->rc_stat[j][i] = strtol(p, &next, 0); if (next == p) { av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d [%s]\n", j, i, p); return AVERROR_INVALIDDATA; } p = next; } for (i = 0; i < s->quant_table_count; i++) for (j = 0; j < s->context_count[i]; j++) { for (k = 0; k < 32; k++) for (m = 0; m < 2; m++) { s->rc_stat2[i][j][k][m] = strtol(p, &next, 0); if (next == p) { av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d %d %d [%s]\n", i, j, k, m, p); return AVERROR_INVALIDDATA; } p = next; } } gob_count = strtol(p, &next, 0); if (next == p || gob_count <= 0) { av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n"); return AVERROR_INVALIDDATA; } p = next; while (*p == '\n' || *p == ' ') p++; if (p[0] == 0) break; } sort_stt(s, s->state_transition); find_best_state(best_state, s->state_transition); for (i = 0; i < s->quant_table_count; i++) { for (j = 0; j < s->context_count[i]; j++) for (k = 0; k < 32; k++) { double p = 128; if (s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1]) { p = 256.0 * s->rc_stat2[i][j][k][1] / (s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1]); } s->initial_states[i][j][k] = best_state[av_clip(round(p), 1, 255)][av_clip((s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1]) / gob_count, 0, 255)]; } } } if (s->version > 1) { for (s->num_v_slices = 2; s->num_v_slices < 9; s->num_v_slices++) for (s->num_h_slices = s->num_v_slices; s->num_h_slices < 2 * s->num_v_slices; s->num_h_slices++) if (avctx->slices == s->num_h_slices * s->num_v_slices && avctx->slices <= 64 || !avctx->slices) goto slices_ok; av_log(avctx, AV_LOG_ERROR, "Unsupported number %d of slices requested, please specify a " "supported number with -slices (ex:4,6,9,12,16, ...)\n", avctx->slices); return AVERROR(ENOSYS); slices_ok: write_extradata(s); } if ((ret = ffv1_init_slice_contexts(s)) < 0) return ret; if ((ret = init_slices_state(s)) < 0) return ret; #define STATS_OUT_SIZE 1024 * 1024 * 6 if (avctx->flags & CODEC_FLAG_PASS1) { avctx->stats_out = av_mallocz(STATS_OUT_SIZE); for (i = 0; i < s->quant_table_count; i++) for (j = 0; j < s->slice_count; j++) { FFV1Context *sf = s->slice_context[j]; av_assert0(!sf->rc_stat2[i]); sf->rc_stat2[i] = av_mallocz(s->context_count[i] * sizeof(*sf->rc_stat2[i])); if (!sf->rc_stat2[i]) return AVERROR(ENOMEM); } } return 0; } static void encode_slice_header(FFV1Context *f, FFV1Context *fs) { RangeCoder *c = &fs->c; uint8_t state[CONTEXT_SIZE]; int j; memset(state, 128, sizeof(state)); put_symbol(c, state, (fs->slice_x + 1) * f->num_h_slices / f->width, 0); put_symbol(c, state, (fs->slice_y + 1) * f->num_v_slices / f->height, 0); put_symbol(c, state, (fs->slice_width + 1) * f->num_h_slices / f->width - 1, 0); put_symbol(c, state, (fs->slice_height + 1) * f->num_v_slices / f->height - 1, 0); for (j = 0; j < f->plane_count; j++) { put_symbol(c, state, f->plane[j].quant_table_index, 0); av_assert0(f->plane[j].quant_table_index == f->avctx->context_model); } if (!f->picture.interlaced_frame) put_symbol(c, state, 3, 0); else put_symbol(c, state, 1 + !f->picture.top_field_first, 0); put_symbol(c, state, f->picture.sample_aspect_ratio.num, 0); put_symbol(c, state, f->picture.sample_aspect_ratio.den, 0); } static int encode_slice(AVCodecContext *c, void *arg) { FFV1Context *fs = *(void **)arg; FFV1Context *f = fs->avctx->priv_data; int width = fs->slice_width; int height = fs->slice_height; int x = fs->slice_x; int y = fs->slice_y; AVFrame *const p = &f->picture; const int ps = (av_pix_fmt_desc_get(c->pix_fmt)->flags & PIX_FMT_PLANAR) ? (f->bits_per_raw_sample > 8) + 1 : 4; if (p->key_frame) ffv1_clear_slice_state(f, fs); if (f->version > 2) { encode_slice_header(f, fs); } if (!fs->ac) { if (f->version > 2) put_rac(&fs->c, (uint8_t[]) { 129 }, 0); fs->ac_byte_count = f->version > 2 || (!x && !y) ? ff_rac_terminate( &fs->c) : 0; init_put_bits(&fs->pb, fs->c.bytestream_start + fs->ac_byte_count, fs->c.bytestream_end - fs->c.bytestream_start - fs->ac_byte_count); } if (f->colorspace == 0) { const int chroma_width = -((-width) >> f->chroma_h_shift); const int chroma_height = -((-height) >> f->chroma_v_shift); const int cx = x >> f->chroma_h_shift; const int cy = y >> f->chroma_v_shift; encode_plane(fs, p->data[0] + ps * x + y * p->linesize[0], width, height, p->linesize[0], 0); if (f->chroma_planes) { encode_plane(fs, p->data[1] + ps * cx + cy * p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1); encode_plane(fs, p->data[2] + ps * cx + cy * p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1); } if (fs->transparency) encode_plane(fs, p->data[3] + ps * x + y * p->linesize[3], width, height, p->linesize[3], 2); } else { uint8_t *planes[3] = { p->data[0] + ps * x + y * p->linesize[0], p->data[1] + ps * x + y * p->linesize[1], p->data[2] + ps * x + y * p->linesize[2] }; encode_rgb_frame(fs, planes, width, height, p->linesize); } emms_c(); return 0; } static int ffv1_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet) { FFV1Context *f = avctx->priv_data; RangeCoder *const c = &f->slice_context[0]->c; AVFrame *const p = &f->picture; int used_count = 0; uint8_t keystate = 128; uint8_t *buf_p; int i, ret; if ((ret = ff_alloc_packet(pkt, avctx->width * avctx->height * ((8 * 2 + 1 + 1) * 4) / 8 + FF_MIN_BUFFER_SIZE)) < 0) { av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n"); return ret; } ff_init_range_encoder(c, pkt->data, pkt->size); ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8); *p = *pict; p->pict_type = AV_PICTURE_TYPE_I; if (avctx->gop_size == 0 || f->picture_number % avctx->gop_size == 0) { put_rac(c, &keystate, 1); p->key_frame = 1; f->gob_count++; write_header(f); } else { put_rac(c, &keystate, 0); p->key_frame = 0; } if (f->ac > 1) { int i; for (i = 1; i < 256; i++) { c->one_state[i] = f->state_transition[i]; c->zero_state[256 - i] = 256 - c->one_state[i]; } } for (i = 1; i < f->slice_count; i++) { FFV1Context *fs = f->slice_context[i]; uint8_t *start = pkt->data + (pkt->size - used_count) * (int64_t)i / f->slice_count; int len = pkt->size / f->slice_count; ff_init_range_encoder(&fs->c, start, len); } avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void *)); buf_p = pkt->data; for (i = 0; i < f->slice_count; i++) { FFV1Context *fs = f->slice_context[i]; int bytes; if (fs->ac) { uint8_t state = 129; put_rac(&fs->c, &state, 0); bytes = ff_rac_terminate(&fs->c); } else { flush_put_bits(&fs->pb); // FIXME: nicer padding bytes = fs->ac_byte_count + (put_bits_count(&fs->pb) + 7) / 8; } if (i > 0 || f->version > 2) { av_assert0(bytes < pkt->size / f->slice_count); memmove(buf_p, fs->c.bytestream_start, bytes); av_assert0(bytes < (1 << 24)); AV_WB24(buf_p + bytes, bytes); bytes += 3; } if (f->ec) { unsigned v; buf_p[bytes++] = 0; v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, buf_p, bytes); AV_WL32(buf_p + bytes, v); bytes += 4; } buf_p += bytes; } if ((avctx->flags & CODEC_FLAG_PASS1) && (f->picture_number & 31) == 0) { int j, k, m; char *p = avctx->stats_out; char *end = p + STATS_OUT_SIZE; memset(f->rc_stat, 0, sizeof(f->rc_stat)); for (i = 0; i < f->quant_table_count; i++) memset(f->rc_stat2[i], 0, f->context_count[i] * sizeof(*f->rc_stat2[i])); for (j = 0; j < f->slice_count; j++) { FFV1Context *fs = f->slice_context[j]; for (i = 0; i < 256; i++) { f->rc_stat[i][0] += fs->rc_stat[i][0]; f->rc_stat[i][1] += fs->rc_stat[i][1]; } for (i = 0; i < f->quant_table_count; i++) { for (k = 0; k < f->context_count[i]; k++) for (m = 0; m < 32; m++) { f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0]; f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1]; } } } for (j = 0; j < 256; j++) { snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ", f->rc_stat[j][0], f->rc_stat[j][1]); p += strlen(p); } snprintf(p, end - p, "\n"); for (i = 0; i < f->quant_table_count; i++) { for (j = 0; j < f->context_count[i]; j++) for (m = 0; m < 32; m++) { snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ", f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]); p += strlen(p); } } snprintf(p, end - p, "%d\n", f->gob_count); } else if (avctx->flags & CODEC_FLAG_PASS1) avctx->stats_out[0] = '\0'; f->picture_number++; pkt->size = buf_p - pkt->data; pkt->flags |= AV_PKT_FLAG_KEY * p->key_frame; *got_packet = 1; return 0; } #define OFFSET(x) offsetof(FFV1Context, x) #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM static const AVOption options[] = { { "slicecrc", "Protect slices with CRCs", OFFSET(ec), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 1, VE }, { NULL } }; static const AVClass class = { .class_name = "ffv1 encoder", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; static const AVCodecDefault ffv1_defaults[] = { { "coder", "-1" }, { NULL }, }; AVCodec ff_ffv1_encoder = { .name = "ffv1", .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_FFV1, .priv_data_size = sizeof(FFV1Context), .init = ffv1_encode_init, .encode2 = ffv1_encode_frame, .close = ffv1_close, .capabilities = CODEC_CAP_SLICE_THREADS, .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_RGB32, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_GRAY16, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE }, .long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"), .defaults = ffv1_defaults, .priv_class = &class, };