/* * OpenEXR (.exr) image decoder * Copyright (c) 2009 Jimmy Christensen * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * OpenEXR decoder * @author Jimmy Christensen * * For more information on the OpenEXR format, visit: * http://openexr.com/ * * exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger */ #include <zlib.h> #include "avcodec.h" #include "bytestream.h" #include "mathops.h" #include "thread.h" #include "libavutil/imgutils.h" #include "libavutil/avassert.h" enum ExrCompr { EXR_RAW = 0, EXR_RLE = 1, EXR_ZIP1 = 2, EXR_ZIP16 = 3, EXR_PIZ = 4, EXR_PXR24 = 5, EXR_B44 = 6, EXR_B44A = 7, }; enum ExrPixelType { EXR_UINT, EXR_HALF, EXR_FLOAT }; typedef struct EXRChannel { int xsub, ysub; enum ExrPixelType pixel_type; } EXRChannel; typedef struct EXRThreadData { uint8_t *uncompressed_data; int uncompressed_size; uint8_t *tmp; int tmp_size; } EXRThreadData; typedef struct EXRContext { AVFrame *picture; int compr; enum ExrPixelType pixel_type; int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha const AVPixFmtDescriptor *desc; uint32_t xmax, xmin; uint32_t ymax, ymin; uint32_t xdelta, ydelta; int ysize; uint64_t scan_line_size; int scan_lines_per_block; const uint8_t *buf, *table; int buf_size; EXRChannel *channels; int nb_channels; EXRThreadData *thread_data; int thread_data_size; } EXRContext; /** * Converts from 32-bit float as uint32_t to uint16_t * * @param v 32-bit float * @return normalized 16-bit unsigned int */ static inline uint16_t exr_flt2uint(uint32_t v) { unsigned int exp = v >> 23; // "HACK": negative values result in exp< 0, so clipping them to 0 // is also handled by this condition, avoids explicit check for sign bit. if (exp<= 127 + 7 - 24) // we would shift out all bits anyway return 0; if (exp >= 127) return 0xffff; v &= 0x007fffff; return (v + (1 << 23)) >> (127 + 7 - exp); } /** * Converts from 16-bit float as uint16_t to uint16_t * * @param v 16-bit float * @return normalized 16-bit unsigned int */ static inline uint16_t exr_halflt2uint(uint16_t v) { unsigned exp = 14 - (v >> 10); if (exp >= 14) { if (exp == 14) return (v >> 9) & 1; else return (v & 0x8000) ? 0 : 0xffff; } v <<= 6; return (v + (1 << 16)) >> (exp + 1); } /** * Gets the size of the header variable * * @param **buf the current pointer location in the header where * the variable data starts * @param *buf_end pointer location of the end of the buffer * @return size of variable data */ static unsigned int get_header_variable_length(const uint8_t **buf, const uint8_t *buf_end) { unsigned int variable_buffer_data_size = bytestream_get_le32(buf); if (variable_buffer_data_size >= buf_end - *buf) return 0; return variable_buffer_data_size; } /** * Checks if the variable name corresponds with it's data type * * @param *avctx the AVCodecContext * @param **buf the current pointer location in the header where * the variable name starts * @param *buf_end pointer location of the end of the buffer * @param *value_name name of the varible to check * @param *value_type type of the varible to check * @param minimum_length minimum length of the variable data * @param variable_buffer_data_size variable length read from the header * after it's checked * @return negative if variable is invalid */ static int check_header_variable(AVCodecContext *avctx, const uint8_t **buf, const uint8_t *buf_end, const char *value_name, const char *value_type, unsigned int minimum_length, unsigned int *variable_buffer_data_size) { if (buf_end - *buf >= minimum_length && !strcmp(*buf, value_name)) { *buf += strlen(value_name)+1; if (!strcmp(*buf, value_type)) { *buf += strlen(value_type)+1; *variable_buffer_data_size = get_header_variable_length(buf, buf_end); if (!*variable_buffer_data_size) av_log(avctx, AV_LOG_ERROR, "Incomplete header\n"); return 1; } *buf -= strlen(value_name)+1; av_log(avctx, AV_LOG_WARNING, "Unknown data type for header variable %s\n", value_name); } return -1; } static void predictor(uint8_t *src, int size) { uint8_t *t = src + 1; uint8_t *stop = src + size; while (t < stop) { int d = (int)t[-1] + (int)t[0] - 128; t[0] = d; ++t; } } static void reorder_pixels(uint8_t *src, uint8_t *dst, int size) { const int8_t *t1 = src; const int8_t *t2 = src + (size + 1) / 2; int8_t *s = dst; int8_t *stop = s + size; while (1) { if (s < stop) *(s++) = *(t1++); else break; if (s < stop) *(s++) = *(t2++); else break; } } static int zip_uncompress(const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td) { unsigned long dest_len = uncompressed_size; if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK || dest_len != uncompressed_size) return AVERROR(EINVAL); predictor(td->tmp, uncompressed_size); reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size); return 0; } static int rle_uncompress(const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td) { int8_t *d = (int8_t *)td->tmp; const int8_t *s = (const int8_t *)src; int ssize = compressed_size; int dsize = uncompressed_size; int8_t *dend = d + dsize; int count; while (ssize > 0) { count = *s++; if (count < 0) { count = -count; if ((dsize -= count ) < 0 || (ssize -= count + 1) < 0) return -1; while (count--) *d++ = *s++; } else { count++; if ((dsize -= count) < 0 || (ssize -= 2 ) < 0) return -1; while (count--) *d++ = *s; s++; } } if (dend != d) return AVERROR_INVALIDDATA; predictor(td->tmp, uncompressed_size); reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size); return 0; } static int pxr24_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td) { unsigned long dest_len = uncompressed_size; const uint8_t *in = td->tmp; uint8_t *out; int c, i, j; if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK || dest_len != uncompressed_size) return AVERROR(EINVAL); out = td->uncompressed_data; for (i = 0; i < s->ysize; i++) { for (c = 0; c < s->nb_channels; c++) { EXRChannel *channel = &s->channels[c]; const uint8_t *ptr[4]; uint32_t pixel = 0; switch (channel->pixel_type) { case EXR_FLOAT: ptr[0] = in; ptr[1] = ptr[0] + s->xdelta; ptr[2] = ptr[1] + s->xdelta; in = ptr[2] + s->xdelta; for (j = 0; j < s->xdelta; ++j) { uint32_t diff = (*(ptr[0]++) << 24) | (*(ptr[1]++) << 16) | (*(ptr[2]++) << 8); pixel += diff; bytestream_put_le32(&out, pixel); } break; case EXR_HALF: ptr[0] = in; ptr[1] = ptr[0] + s->xdelta; in = ptr[1] + s->xdelta; for (j = 0; j < s->xdelta; j++) { uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++); pixel += diff; bytestream_put_le16(&out, pixel); } break; default: av_assert1(0); } } } return 0; } static int decode_block(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr) { EXRContext *s = avctx->priv_data; AVFrame *const p = s->picture; EXRThreadData *td = &s->thread_data[threadnr]; const uint8_t *channel_buffer[4] = { 0 }; const uint8_t *buf = s->buf; uint64_t line_offset, uncompressed_size; uint32_t xdelta = s->xdelta; uint16_t *ptr_x; uint8_t *ptr; int32_t data_size, line; const uint8_t *src; int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components; int bxmin = s->xmin * 2 * s->desc->nb_components; int i, x, buf_size = s->buf_size; int av_unused ret; line_offset = AV_RL64(s->table + jobnr * 8); // Check if the buffer has the required bytes needed from the offset if (line_offset > buf_size - 8) return AVERROR_INVALIDDATA; src = buf + line_offset + 8; line = AV_RL32(src - 8); if (line < s->ymin || line > s->ymax) return AVERROR_INVALIDDATA; data_size = AV_RL32(src - 4); if (data_size <= 0 || data_size > buf_size) return AVERROR_INVALIDDATA; s->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); uncompressed_size = s->scan_line_size * s->ysize; if ((s->compr == EXR_RAW && (data_size != uncompressed_size || line_offset > buf_size - uncompressed_size)) || (s->compr != EXR_RAW && (data_size > uncompressed_size || line_offset > buf_size - data_size))) { return AVERROR_INVALIDDATA; } if (data_size < uncompressed_size) { av_fast_padded_malloc(&td->uncompressed_data, &td->uncompressed_size, uncompressed_size); av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size); if (!td->uncompressed_data || !td->tmp) return AVERROR(ENOMEM); switch (s->compr) { case EXR_ZIP1: case EXR_ZIP16: ret = zip_uncompress(src, data_size, uncompressed_size, td); break; case EXR_PXR24: ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td); break; case EXR_RLE: ret = rle_uncompress(src, data_size, uncompressed_size, td); } src = td->uncompressed_data; } channel_buffer[0] = src + xdelta * s->channel_offsets[0]; channel_buffer[1] = src + xdelta * s->channel_offsets[1]; channel_buffer[2] = src + xdelta * s->channel_offsets[2]; if (s->channel_offsets[3] >= 0) channel_buffer[3] = src + xdelta * s->channel_offsets[3]; ptr = p->data[0] + line * p->linesize[0]; for (i = 0; i < s->scan_lines_per_block && line + i <= s->ymax; i++, ptr += p->linesize[0]) { const uint8_t *r, *g, *b, *a; r = channel_buffer[0]; g = channel_buffer[1]; b = channel_buffer[2]; if (channel_buffer[3]) a = channel_buffer[3]; ptr_x = (uint16_t *)ptr; // Zero out the start if xmin is not 0 memset(ptr_x, 0, bxmin); ptr_x += s->xmin * s->desc->nb_components; if (s->pixel_type == EXR_FLOAT) { // 32-bit for (x = 0; x < xdelta; x++) { *ptr_x++ = exr_flt2uint(bytestream_get_le32(&r)); *ptr_x++ = exr_flt2uint(bytestream_get_le32(&g)); *ptr_x++ = exr_flt2uint(bytestream_get_le32(&b)); if (channel_buffer[3]) *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a)); } } else { // 16-bit for (x = 0; x < xdelta; x++) { *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&r)); *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&g)); *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&b)); if (channel_buffer[3]) *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a)); } } // Zero out the end if xmax+1 is not w memset(ptr_x, 0, axmax); channel_buffer[0] += s->scan_line_size; channel_buffer[1] += s->scan_line_size; channel_buffer[2] += s->scan_line_size; if (channel_buffer[3]) channel_buffer[3] += s->scan_line_size; } return 0; } static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; unsigned int buf_size = avpkt->size; const uint8_t *buf_end = buf + buf_size; EXRContext *const s = avctx->priv_data; ThreadFrame frame = { .f = data }; AVFrame *picture = data; uint8_t *ptr; int i, y, magic_number, version, flags, ret; int w = 0; int h = 0; int out_line_size; int scan_line_blocks; unsigned int current_channel_offset = 0; s->xmin = ~0; s->xmax = ~0; s->ymin = ~0; s->ymax = ~0; s->xdelta = ~0; s->ydelta = ~0; s->channel_offsets[0] = -1; s->channel_offsets[1] = -1; s->channel_offsets[2] = -1; s->channel_offsets[3] = -1; s->pixel_type = -1; s->nb_channels = 0; s->compr = -1; s->buf = buf; s->buf_size = buf_size; if (buf_size < 10) { av_log(avctx, AV_LOG_ERROR, "Too short header to parse\n"); return AVERROR_INVALIDDATA; } magic_number = bytestream_get_le32(&buf); if (magic_number != 20000630) { // As per documentation of OpenEXR it's supposed to be int 20000630 little-endian av_log(avctx, AV_LOG_ERROR, "Wrong magic number %d\n", magic_number); return AVERROR_INVALIDDATA; } version = bytestream_get_byte(&buf); if (version != 2) { av_log(avctx, AV_LOG_ERROR, "Unsupported version %d\n", version); return AVERROR_PATCHWELCOME; } flags = bytestream_get_le24(&buf); if (flags & 0x2) { av_log(avctx, AV_LOG_ERROR, "Tile based images are not supported\n"); return AVERROR_PATCHWELCOME; } // Parse the header while (buf < buf_end && buf[0]) { unsigned int variable_buffer_data_size; // Process the channel list if (check_header_variable(avctx, &buf, buf_end, "channels", "chlist", 38, &variable_buffer_data_size) >= 0) { const uint8_t *channel_list_end; if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; channel_list_end = buf + variable_buffer_data_size; while (channel_list_end - buf >= 19) { EXRChannel *channel; int current_pixel_type = -1; int channel_index = -1; int xsub, ysub; if (!strcmp(buf, "R")) channel_index = 0; else if (!strcmp(buf, "G")) channel_index = 1; else if (!strcmp(buf, "B")) channel_index = 2; else if (!strcmp(buf, "A")) channel_index = 3; else av_log(avctx, AV_LOG_WARNING, "Unsupported channel %.256s\n", buf); while (bytestream_get_byte(&buf) && buf < channel_list_end) continue; /* skip */ if (channel_list_end - * &buf < 4) { av_log(avctx, AV_LOG_ERROR, "Incomplete header\n"); return AVERROR_INVALIDDATA; } current_pixel_type = bytestream_get_le32(&buf); if (current_pixel_type > 2) { av_log(avctx, AV_LOG_ERROR, "Unknown pixel type\n"); return AVERROR_INVALIDDATA; } buf += 4; xsub = bytestream_get_le32(&buf); ysub = bytestream_get_le32(&buf); if (xsub != 1 || ysub != 1) { av_log(avctx, AV_LOG_ERROR, "Unsupported subsampling %dx%d\n", xsub, ysub); return AVERROR_PATCHWELCOME; } if (channel_index >= 0) { if (s->pixel_type != -1 && s->pixel_type != current_pixel_type) { av_log(avctx, AV_LOG_ERROR, "RGB channels not of the same depth\n"); return AVERROR_INVALIDDATA; } s->pixel_type = current_pixel_type; s->channel_offsets[channel_index] = current_channel_offset; } s->channels = av_realloc_f(s->channels, ++s->nb_channels, sizeof(EXRChannel)); if (!s->channels) return AVERROR(ENOMEM); channel = &s->channels[s->nb_channels - 1]; channel->pixel_type = current_pixel_type; channel->xsub = xsub; channel->ysub = ysub; current_channel_offset += 1 << current_pixel_type; } /* Check if all channels are set with an offset or if the channels * are causing an overflow */ if (FFMIN3(s->channel_offsets[0], s->channel_offsets[1], s->channel_offsets[2]) < 0) { if (s->channel_offsets[0] < 0) av_log(avctx, AV_LOG_ERROR, "Missing red channel\n"); if (s->channel_offsets[1] < 0) av_log(avctx, AV_LOG_ERROR, "Missing green channel\n"); if (s->channel_offsets[2] < 0) av_log(avctx, AV_LOG_ERROR, "Missing blue channel\n"); return AVERROR_INVALIDDATA; } buf = channel_list_end; continue; } else if (check_header_variable(avctx, &buf, buf_end, "dataWindow", "box2i", 31, &variable_buffer_data_size) >= 0) { if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; s->xmin = AV_RL32(buf); s->ymin = AV_RL32(buf + 4); s->xmax = AV_RL32(buf + 8); s->ymax = AV_RL32(buf + 12); s->xdelta = (s->xmax - s->xmin) + 1; s->ydelta = (s->ymax - s->ymin) + 1; buf += variable_buffer_data_size; continue; } else if (check_header_variable(avctx, &buf, buf_end, "displayWindow", "box2i", 34, &variable_buffer_data_size) >= 0) { if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; w = AV_RL32(buf + 8) + 1; h = AV_RL32(buf + 12) + 1; buf += variable_buffer_data_size; continue; } else if (check_header_variable(avctx, &buf, buf_end, "lineOrder", "lineOrder", 25, &variable_buffer_data_size) >= 0) { if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; av_log(avctx, AV_LOG_DEBUG, "line order : %d\n", *buf); if (*buf > 2) { av_log(avctx, AV_LOG_ERROR, "Unknown line order\n"); return AVERROR_INVALIDDATA; } buf += variable_buffer_data_size; continue; } else if (check_header_variable(avctx, &buf, buf_end, "pixelAspectRatio", "float", 31, &variable_buffer_data_size) >= 0) { if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; avctx->sample_aspect_ratio = av_d2q(av_int2float(AV_RL32(buf)), 255); buf += variable_buffer_data_size; continue; } else if (check_header_variable(avctx, &buf, buf_end, "compression", "compression", 29, &variable_buffer_data_size) >= 0) { if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; if (s->compr == -1) s->compr = *buf; else av_log(avctx, AV_LOG_WARNING, "Found more than one compression attribute\n"); buf += variable_buffer_data_size; continue; } // Check if there is enough bytes for a header if (buf_end - buf <= 9) { av_log(avctx, AV_LOG_ERROR, "Incomplete header\n"); return AVERROR_INVALIDDATA; } // Process unknown variables for (i = 0; i < 2; i++) { // Skip variable name/type while (++buf < buf_end) if (buf[0] == 0x0) break; } buf++; // Skip variable length if (buf_end - buf >= 5) { variable_buffer_data_size = get_header_variable_length(&buf, buf_end); if (!variable_buffer_data_size) { av_log(avctx, AV_LOG_ERROR, "Incomplete header\n"); return AVERROR_INVALIDDATA; } buf += variable_buffer_data_size; } } if (s->compr == -1) { av_log(avctx, AV_LOG_ERROR, "Missing compression attribute\n"); return AVERROR_INVALIDDATA; } if (buf >= buf_end) { av_log(avctx, AV_LOG_ERROR, "Incomplete frame\n"); return AVERROR_INVALIDDATA; } buf++; switch (s->pixel_type) { case EXR_FLOAT: case EXR_HALF: if (s->channel_offsets[3] >= 0) avctx->pix_fmt = AV_PIX_FMT_RGBA64; else avctx->pix_fmt = AV_PIX_FMT_RGB48; break; case EXR_UINT: avpriv_request_sample(avctx, "32-bit unsigned int"); return AVERROR_PATCHWELCOME; default: av_log(avctx, AV_LOG_ERROR, "Missing channel list\n"); return AVERROR_INVALIDDATA; } switch (s->compr) { case EXR_RAW: case EXR_RLE: case EXR_ZIP1: s->scan_lines_per_block = 1; break; case EXR_PXR24: case EXR_ZIP16: s->scan_lines_per_block = 16; break; default: av_log(avctx, AV_LOG_ERROR, "Compression type %d is not supported\n", s->compr); return AVERROR_PATCHWELCOME; } if (av_image_check_size(w, h, 0, avctx)) return AVERROR_INVALIDDATA; // Verify the xmin, xmax, ymin, ymax and xdelta before setting the actual image size if (s->xmin > s->xmax || s->ymin > s->ymax || s->xdelta != s->xmax - s->xmin + 1 || s->xmax >= w || s->ymax >= h) { av_log(avctx, AV_LOG_ERROR, "Wrong sizing or missing size information\n"); return AVERROR_INVALIDDATA; } if (w != avctx->width || h != avctx->height) { avcodec_set_dimensions(avctx, w, h); } s->desc = av_pix_fmt_desc_get(avctx->pix_fmt); out_line_size = avctx->width * 2 * s->desc->nb_components; s->scan_line_size = s->xdelta * current_channel_offset; scan_line_blocks = (s->ydelta + s->scan_lines_per_block - 1) / s->scan_lines_per_block; if (s->compr != EXR_RAW) { size_t thread_data_size, prev_size; EXRThreadData *m; prev_size = s->thread_data_size; if (av_size_mult(avctx->thread_count, sizeof(EXRThreadData), &thread_data_size)) return AVERROR(EINVAL); m = av_fast_realloc(s->thread_data, &s->thread_data_size, thread_data_size); if (!m) return AVERROR(ENOMEM); s->thread_data = m; memset(s->thread_data + prev_size, 0, s->thread_data_size - prev_size); } if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) return ret; if (buf_end - buf < scan_line_blocks * 8) return AVERROR_INVALIDDATA; s->table = buf; ptr = picture->data[0]; // Zero out the start if ymin is not 0 for (y = 0; y < s->ymin; y++) { memset(ptr, 0, out_line_size); ptr += picture->linesize[0]; } s->picture = picture; avctx->execute2(avctx, decode_block, s->thread_data, NULL, scan_line_blocks); // Zero out the end if ymax+1 is not h for (y = s->ymax + 1; y < avctx->height; y++) { memset(ptr, 0, out_line_size); ptr += picture->linesize[0]; } picture->pict_type = AV_PICTURE_TYPE_I; *got_frame = 1; return buf_size; } static av_cold int decode_end(AVCodecContext *avctx) { EXRContext *s = avctx->priv_data; int i; for (i = 0; i < s->thread_data_size / sizeof(EXRThreadData); i++) { EXRThreadData *td = &s->thread_data[i]; av_free(td->uncompressed_data); av_free(td->tmp); } av_freep(&s->thread_data); s->thread_data_size = 0; av_freep(&s->channels); return 0; } AVCodec ff_exr_decoder = { .name = "exr", .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_EXR, .priv_data_size = sizeof(EXRContext), .close = decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS | CODEC_CAP_SLICE_THREADS, .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"), };