/* * (c) 2001 Fabrice Bellard * 2007 Marc Hoffman <marc.hoffman@analog.com> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * DCT test (c) 2001 Fabrice Bellard * Started from sample code by Juan J. Sierralta P. */ #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #include <unistd.h> #include <math.h> #include "libavutil/cpu.h" #include "libavutil/common.h" #include "libavutil/lfg.h" #include "simple_idct.h" #include "aandcttab.h" #include "faandct.h" #include "faanidct.h" #include "x86/idct_xvid.h" #include "dctref.h" #undef printf void ff_mmx_idct(DCTELEM *data); void ff_mmxext_idct(DCTELEM *data); void odivx_idct_c(short *block); // BFIN void ff_bfin_idct(DCTELEM *block); void ff_bfin_fdct(DCTELEM *block); // ALTIVEC void fdct_altivec(DCTELEM *block); //void idct_altivec(DCTELEM *block);?? no routine // ARM void ff_j_rev_dct_arm(DCTELEM *data); void ff_simple_idct_arm(DCTELEM *data); void ff_simple_idct_armv5te(DCTELEM *data); void ff_simple_idct_armv6(DCTELEM *data); void ff_simple_idct_neon(DCTELEM *data); void ff_simple_idct_axp(DCTELEM *data); struct algo { const char *name; enum { FDCT, IDCT } is_idct; void (* func) (DCTELEM *block); void (* ref) (DCTELEM *block); enum formattag { NO_PERM,MMX_PERM, MMX_SIMPLE_PERM, SCALE_PERM, SSE2_PERM, PARTTRANS_PERM } format; int mm_support; }; #ifndef FAAN_POSTSCALE #define FAAN_SCALE SCALE_PERM #else #define FAAN_SCALE NO_PERM #endif static int cpu_flags; struct algo algos[] = { {"REF-DBL", 0, ff_ref_fdct, ff_ref_fdct, NO_PERM}, {"FAAN", 0, ff_faandct, ff_ref_fdct, FAAN_SCALE}, {"FAANI", 1, ff_faanidct, ff_ref_idct, NO_PERM}, {"IJG-AAN-INT", 0, fdct_ifast, ff_ref_fdct, SCALE_PERM}, {"IJG-LLM-INT", 0, ff_jpeg_fdct_islow, ff_ref_fdct, NO_PERM}, {"REF-DBL", 1, ff_ref_idct, ff_ref_idct, NO_PERM}, {"INT", 1, j_rev_dct, ff_ref_idct, MMX_PERM}, {"SIMPLE-C", 1, ff_simple_idct, ff_ref_idct, NO_PERM}, #if HAVE_MMX {"MMX", 0, ff_fdct_mmx, ff_ref_fdct, NO_PERM, AV_CPU_FLAG_MMX}, #if HAVE_MMX2 {"MMX2", 0, ff_fdct_mmx2, ff_ref_fdct, NO_PERM, AV_CPU_FLAG_MMX2}, {"SSE2", 0, ff_fdct_sse2, ff_ref_fdct, NO_PERM, AV_CPU_FLAG_SSE2}, #endif #if CONFIG_GPL {"LIBMPEG2-MMX", 1, ff_mmx_idct, ff_ref_idct, MMX_PERM, AV_CPU_FLAG_MMX}, {"LIBMPEG2-MMX2", 1, ff_mmxext_idct, ff_ref_idct, MMX_PERM, AV_CPU_FLAG_MMX2}, #endif {"SIMPLE-MMX", 1, ff_simple_idct_mmx, ff_ref_idct, MMX_SIMPLE_PERM, AV_CPU_FLAG_MMX}, {"XVID-MMX", 1, ff_idct_xvid_mmx, ff_ref_idct, NO_PERM, AV_CPU_FLAG_MMX}, {"XVID-MMX2", 1, ff_idct_xvid_mmx2, ff_ref_idct, NO_PERM, AV_CPU_FLAG_MMX2}, {"XVID-SSE2", 1, ff_idct_xvid_sse2, ff_ref_idct, SSE2_PERM, AV_CPU_FLAG_SSE2}, #endif #if HAVE_ALTIVEC {"altivecfdct", 0, fdct_altivec, ff_ref_fdct, NO_PERM, AV_CPU_FLAG_ALTIVEC}, #endif #if ARCH_BFIN {"BFINfdct", 0, ff_bfin_fdct, ff_ref_fdct, NO_PERM}, {"BFINidct", 1, ff_bfin_idct, ff_ref_idct, NO_PERM}, #endif #if ARCH_ARM {"SIMPLE-ARM", 1, ff_simple_idct_arm, ff_ref_idct, NO_PERM }, {"INT-ARM", 1, ff_j_rev_dct_arm, ff_ref_idct, MMX_PERM }, #if HAVE_ARMV5TE {"SIMPLE-ARMV5TE", 1, ff_simple_idct_armv5te, ff_ref_idct, NO_PERM }, #endif #if HAVE_ARMV6 {"SIMPLE-ARMV6", 1, ff_simple_idct_armv6, ff_ref_idct, MMX_PERM }, #endif #if HAVE_NEON {"SIMPLE-NEON", 1, ff_simple_idct_neon, ff_ref_idct, PARTTRANS_PERM }, #endif #endif /* ARCH_ARM */ #if ARCH_ALPHA {"SIMPLE-ALPHA", 1, ff_simple_idct_axp, ff_ref_idct, NO_PERM }, #endif { 0 } }; #define AANSCALE_BITS 12 uint8_t cropTbl[256 + 2 * MAX_NEG_CROP]; static int64_t gettime(void) { struct timeval tv; gettimeofday(&tv,NULL); return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec; } #define NB_ITS 20000 #define NB_ITS_SPEED 50000 static short idct_mmx_perm[64]; static short idct_simple_mmx_perm[64]={ 0x00, 0x08, 0x04, 0x09, 0x01, 0x0C, 0x05, 0x0D, 0x10, 0x18, 0x14, 0x19, 0x11, 0x1C, 0x15, 0x1D, 0x20, 0x28, 0x24, 0x29, 0x21, 0x2C, 0x25, 0x2D, 0x12, 0x1A, 0x16, 0x1B, 0x13, 0x1E, 0x17, 0x1F, 0x02, 0x0A, 0x06, 0x0B, 0x03, 0x0E, 0x07, 0x0F, 0x30, 0x38, 0x34, 0x39, 0x31, 0x3C, 0x35, 0x3D, 0x22, 0x2A, 0x26, 0x2B, 0x23, 0x2E, 0x27, 0x2F, 0x32, 0x3A, 0x36, 0x3B, 0x33, 0x3E, 0x37, 0x3F, }; static const uint8_t idct_sse2_row_perm[8] = {0, 4, 1, 5, 2, 6, 3, 7}; static void idct_mmx_init(void) { int i; /* the mmx/mmxext idct uses a reordered input, so we patch scan tables */ for (i = 0; i < 64; i++) { idct_mmx_perm[i] = (i & 0x38) | ((i & 6) >> 1) | ((i & 1) << 2); // idct_simple_mmx_perm[i] = simple_block_permute_op(i); } } DECLARE_ALIGNED(16, static DCTELEM, block)[64]; DECLARE_ALIGNED(8, static DCTELEM, block1)[64]; DECLARE_ALIGNED(8, static DCTELEM, block_org)[64]; static inline void mmx_emms(void) { #if HAVE_MMX if (cpu_flags & AV_CPU_FLAG_MMX) __asm__ volatile ("emms\n\t"); #endif } static void dct_error(const char *name, int is_idct, void (*fdct_func)(DCTELEM *block), void (*fdct_ref)(DCTELEM *block), int form, int test, const int bits) { int it, i, scale; int err_inf, v; int64_t err2, ti, ti1, it1; int64_t sysErr[64], sysErrMax=0; int maxout=0; int blockSumErrMax=0, blockSumErr; AVLFG prng; const int vals=1<<bits; av_lfg_init(&prng, 1); err_inf = 0; err2 = 0; for(i=0; i<64; i++) sysErr[i]=0; for(it=0;it<NB_ITS;it++) { for(i=0;i<64;i++) block1[i] = 0; switch(test){ case 0: for(i=0;i<64;i++) block1[i] = (av_lfg_get(&prng) % (2*vals)) -vals; if (is_idct){ ff_ref_fdct(block1); for(i=0;i<64;i++) block1[i]>>=3; } break; case 1:{ int num = av_lfg_get(&prng) % 10 + 1; for(i=0;i<num;i++) block1[av_lfg_get(&prng) % 64] = av_lfg_get(&prng) % (2*vals) -vals; }break; case 2: block1[0] = av_lfg_get(&prng) % (16*vals) - (8*vals); block1[63]= (block1[0]&1)^1; break; } #if 0 // simulate mismatch control { int sum=0; for(i=0;i<64;i++) sum+=block1[i]; if((sum&1)==0) block1[63]^=1; } #endif for(i=0; i<64; i++) block_org[i]= block1[i]; if (form == MMX_PERM) { for(i=0;i<64;i++) block[idct_mmx_perm[i]] = block1[i]; } else if (form == MMX_SIMPLE_PERM) { for(i=0;i<64;i++) block[idct_simple_mmx_perm[i]] = block1[i]; } else if (form == SSE2_PERM) { for(i=0; i<64; i++) block[(i&0x38) | idct_sse2_row_perm[i&7]] = block1[i]; } else if (form == PARTTRANS_PERM) { for(i=0; i<64; i++) block[(i&0x24) | ((i&3)<<3) | ((i>>3)&3)] = block1[i]; } else { for(i=0; i<64; i++) block[i]= block1[i]; } #if 0 // simulate mismatch control for tested IDCT but not the ref { int sum=0; for(i=0;i<64;i++) sum+=block[i]; if((sum&1)==0) block[63]^=1; } #endif fdct_func(block); mmx_emms(); if (form == SCALE_PERM) { for(i=0; i<64; i++) { scale = 8*(1 << (AANSCALE_BITS + 11)) / ff_aanscales[i]; block[i] = (block[i] * scale /*+ (1<<(AANSCALE_BITS-1))*/) >> AANSCALE_BITS; } } fdct_ref(block1); blockSumErr=0; for(i=0;i<64;i++) { v = abs(block[i] - block1[i]); if (v > err_inf) err_inf = v; err2 += v * v; sysErr[i] += block[i] - block1[i]; blockSumErr += v; if( abs(block[i])>maxout) maxout=abs(block[i]); } if(blockSumErrMax < blockSumErr) blockSumErrMax= blockSumErr; #if 0 // print different matrix pairs if(blockSumErr){ printf("\n"); for(i=0; i<64; i++){ if((i&7)==0) printf("\n"); printf("%4d ", block_org[i]); } for(i=0; i<64; i++){ if((i&7)==0) printf("\n"); printf("%4d ", block[i] - block1[i]); } } #endif } for(i=0; i<64; i++) sysErrMax= FFMAX(sysErrMax, FFABS(sysErr[i])); for(i=0; i<64; i++){ if(i%8==0) printf("\n"); printf("%7d ", (int)sysErr[i]); } printf("\n"); printf("%s %s: err_inf=%d err2=%0.8f syserr=%0.8f maxout=%d blockSumErr=%d\n", is_idct ? "IDCT" : "DCT", name, err_inf, (double)err2 / NB_ITS / 64.0, (double)sysErrMax / NB_ITS, maxout, blockSumErrMax); /* speed test */ for(i=0;i<64;i++) block1[i] = 0; switch(test){ case 0: for(i=0;i<64;i++) block1[i] = av_lfg_get(&prng) % (2*vals) -vals; if (is_idct){ ff_ref_fdct(block1); for(i=0;i<64;i++) block1[i]>>=3; } break; case 1:{ case 2: block1[0] = av_lfg_get(&prng) % (2*vals) -vals; block1[1] = av_lfg_get(&prng) % (2*vals) -vals; block1[2] = av_lfg_get(&prng) % (2*vals) -vals; block1[3] = av_lfg_get(&prng) % (2*vals) -vals; }break; } if (form == MMX_PERM) { for(i=0;i<64;i++) block[idct_mmx_perm[i]] = block1[i]; } else if(form == MMX_SIMPLE_PERM) { for(i=0;i<64;i++) block[idct_simple_mmx_perm[i]] = block1[i]; } else { for(i=0; i<64; i++) block[i]= block1[i]; } ti = gettime(); it1 = 0; do { for(it=0;it<NB_ITS_SPEED;it++) { for(i=0; i<64; i++) block[i]= block1[i]; // memcpy(block, block1, sizeof(DCTELEM) * 64); // do not memcpy especially not fastmemcpy because it does movntq !!! fdct_func(block); } it1 += NB_ITS_SPEED; ti1 = gettime() - ti; } while (ti1 < 1000000); mmx_emms(); printf("%s %s: %0.1f kdct/s\n", is_idct ? "IDCT" : "DCT", name, (double)it1 * 1000.0 / (double)ti1); } DECLARE_ALIGNED(8, static uint8_t, img_dest)[64]; DECLARE_ALIGNED(8, static uint8_t, img_dest1)[64]; static void idct248_ref(uint8_t *dest, int linesize, int16_t *block) { static int init; static double c8[8][8]; static double c4[4][4]; double block1[64], block2[64], block3[64]; double s, sum, v; int i, j, k; if (!init) { init = 1; for(i=0;i<8;i++) { sum = 0; for(j=0;j<8;j++) { s = (i==0) ? sqrt(1.0/8.0) : sqrt(1.0/4.0); c8[i][j] = s * cos(M_PI * i * (j + 0.5) / 8.0); sum += c8[i][j] * c8[i][j]; } } for(i=0;i<4;i++) { sum = 0; for(j=0;j<4;j++) { s = (i==0) ? sqrt(1.0/4.0) : sqrt(1.0/2.0); c4[i][j] = s * cos(M_PI * i * (j + 0.5) / 4.0); sum += c4[i][j] * c4[i][j]; } } } /* butterfly */ s = 0.5 * sqrt(2.0); for(i=0;i<4;i++) { for(j=0;j<8;j++) { block1[8*(2*i)+j] = (block[8*(2*i)+j] + block[8*(2*i+1)+j]) * s; block1[8*(2*i+1)+j] = (block[8*(2*i)+j] - block[8*(2*i+1)+j]) * s; } } /* idct8 on lines */ for(i=0;i<8;i++) { for(j=0;j<8;j++) { sum = 0; for(k=0;k<8;k++) sum += c8[k][j] * block1[8*i+k]; block2[8*i+j] = sum; } } /* idct4 */ for(i=0;i<8;i++) { for(j=0;j<4;j++) { /* top */ sum = 0; for(k=0;k<4;k++) sum += c4[k][j] * block2[8*(2*k)+i]; block3[8*(2*j)+i] = sum; /* bottom */ sum = 0; for(k=0;k<4;k++) sum += c4[k][j] * block2[8*(2*k+1)+i]; block3[8*(2*j+1)+i] = sum; } } /* clamp and store the result */ for(i=0;i<8;i++) { for(j=0;j<8;j++) { v = block3[8*i+j]; if (v < 0) v = 0; else if (v > 255) v = 255; dest[i * linesize + j] = (int)rint(v); } } } static void idct248_error(const char *name, void (*idct248_put)(uint8_t *dest, int line_size, int16_t *block)) { int it, i, it1, ti, ti1, err_max, v; AVLFG prng; av_lfg_init(&prng, 1); /* just one test to see if code is correct (precision is less important here) */ err_max = 0; for(it=0;it<NB_ITS;it++) { /* XXX: use forward transform to generate values */ for(i=0;i<64;i++) block1[i] = av_lfg_get(&prng) % 256 - 128; block1[0] += 1024; for(i=0; i<64; i++) block[i]= block1[i]; idct248_ref(img_dest1, 8, block); for(i=0; i<64; i++) block[i]= block1[i]; idct248_put(img_dest, 8, block); for(i=0;i<64;i++) { v = abs((int)img_dest[i] - (int)img_dest1[i]); if (v == 255) printf("%d %d\n", img_dest[i], img_dest1[i]); if (v > err_max) err_max = v; } #if 0 printf("ref=\n"); for(i=0;i<8;i++) { int j; for(j=0;j<8;j++) { printf(" %3d", img_dest1[i*8+j]); } printf("\n"); } printf("out=\n"); for(i=0;i<8;i++) { int j; for(j=0;j<8;j++) { printf(" %3d", img_dest[i*8+j]); } printf("\n"); } #endif } printf("%s %s: err_inf=%d\n", 1 ? "IDCT248" : "DCT248", name, err_max); ti = gettime(); it1 = 0; do { for(it=0;it<NB_ITS_SPEED;it++) { for(i=0; i<64; i++) block[i]= block1[i]; // memcpy(block, block1, sizeof(DCTELEM) * 64); // do not memcpy especially not fastmemcpy because it does movntq !!! idct248_put(img_dest, 8, block); } it1 += NB_ITS_SPEED; ti1 = gettime() - ti; } while (ti1 < 1000000); mmx_emms(); printf("%s %s: %0.1f kdct/s\n", 1 ? "IDCT248" : "DCT248", name, (double)it1 * 1000.0 / (double)ti1); } static void help(void) { printf("dct-test [-i] [<test-number>]\n" "test-number 0 -> test with random matrixes\n" " 1 -> test with random sparse matrixes\n" " 2 -> do 3. test from mpeg4 std\n" "-i test IDCT implementations\n" "-4 test IDCT248 implementations\n"); } int main(int argc, char **argv) { int test_idct = 0, test_248_dct = 0; int c,i; int test=1; int bits=8; cpu_flags = av_get_cpu_flags(); ff_ref_dct_init(); idct_mmx_init(); for(i=0;i<256;i++) cropTbl[i + MAX_NEG_CROP] = i; for(i=0;i<MAX_NEG_CROP;i++) { cropTbl[i] = 0; cropTbl[i + MAX_NEG_CROP + 256] = 255; } for(;;) { c = getopt(argc, argv, "ih4"); if (c == -1) break; switch(c) { case 'i': test_idct = 1; break; case '4': test_248_dct = 1; break; default : case 'h': help(); return 0; } } if(optind <argc) test= atoi(argv[optind]); if(optind+1 < argc) bits= atoi(argv[optind+1]); printf("ffmpeg DCT/IDCT test\n"); if (test_248_dct) { idct248_error("SIMPLE-C", ff_simple_idct248_put); } else { for (i=0;algos[i].name;i++) if (algos[i].is_idct == test_idct && !(~cpu_flags & algos[i].mm_support)) { dct_error (algos[i].name, algos[i].is_idct, algos[i].func, algos[i].ref, algos[i].format, test, bits); } } return 0; }