/*
 * DCA compatible decoder
 * Copyright (C) 2004 Gildas Bazin
 * Copyright (C) 2004 Benjamin Zores
 * Copyright (C) 2006 Benjamin Larsson
 * Copyright (C) 2007 Konstantin Shishkov
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file libavcodec/dca.c
 */

#include <math.h>
#include <stddef.h>
#include <stdio.h>

#include "avcodec.h"
#include "dsputil.h"
#include "get_bits.h"
#include "put_bits.h"
#include "dcadata.h"
#include "dcahuff.h"
#include "dca.h"

//#define TRACE

#define DCA_PRIM_CHANNELS_MAX (5)
#define DCA_SUBBANDS (32)
#define DCA_ABITS_MAX (32)      /* Should be 28 */
#define DCA_SUBSUBFAMES_MAX (4)
#define DCA_LFE_MAX (3)

enum DCAMode {
    DCA_MONO = 0,
    DCA_CHANNEL,
    DCA_STEREO,
    DCA_STEREO_SUMDIFF,
    DCA_STEREO_TOTAL,
    DCA_3F,
    DCA_2F1R,
    DCA_3F1R,
    DCA_2F2R,
    DCA_3F2R,
    DCA_4F2R
};

/* Tables for mapping dts channel configurations to libavcodec multichannel api.
 * Some compromises have been made for special configurations. Most configurations
 * are never used so complete accuracy is not needed.
 *
 * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
 * S  -> side, when both rear and back are configured move one of them to the side channel
 * OV -> center back
 * All 2 channel configurations -> CH_LAYOUT_STEREO
 */

static const int64_t dca_core_channel_layout[] = {
    CH_FRONT_CENTER,                                               ///< 1, A
    CH_LAYOUT_STEREO,                                              ///< 2, A + B (dual mono)
    CH_LAYOUT_STEREO,                                              ///< 2, L + R (stereo)
    CH_LAYOUT_STEREO,                                              ///< 2, (L+R) + (L-R) (sum-difference)
    CH_LAYOUT_STEREO,                                              ///< 2, LT +RT (left and right total)
    CH_LAYOUT_STEREO|CH_FRONT_CENTER,                              ///< 3, C+L+R
    CH_LAYOUT_STEREO|CH_BACK_CENTER,                               ///< 3, L+R+S
    CH_LAYOUT_STEREO|CH_FRONT_CENTER|CH_BACK_CENTER,               ///< 4, C + L + R+ S
    CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_SIDE_RIGHT,                   ///< 4, L + R +SL+ SR
    CH_LAYOUT_STEREO|CH_FRONT_CENTER|CH_SIDE_LEFT|CH_SIDE_RIGHT,   ///< 5, C + L + R+ SL+SR
    CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_SIDE_RIGHT|CH_FRONT_LEFT_OF_CENTER|CH_FRONT_RIGHT_OF_CENTER,                 ///< 6, CL + CR + L + R + SL + SR
    CH_LAYOUT_STEREO|CH_BACK_LEFT|CH_BACK_RIGHT|CH_FRONT_CENTER|CH_BACK_CENTER,                                   ///< 6, C + L + R+ LR + RR + OV
    CH_FRONT_CENTER|CH_FRONT_RIGHT_OF_CENTER|CH_FRONT_LEFT_OF_CENTER|CH_BACK_CENTER|CH_BACK_LEFT|CH_BACK_RIGHT,   ///< 6, CF+ CR+LF+ RF+LR + RR
    CH_FRONT_LEFT_OF_CENTER|CH_FRONT_CENTER|CH_FRONT_RIGHT_OF_CENTER|CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
    CH_FRONT_LEFT_OF_CENTER|CH_FRONT_RIGHT_OF_CENTER|CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_SIDE_RIGHT|CH_BACK_LEFT|CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2+ SR1 + SR2
    CH_FRONT_LEFT_OF_CENTER|CH_FRONT_CENTER|CH_FRONT_RIGHT_OF_CENTER|CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_BACK_CENTER|CH_SIDE_RIGHT, ///< 8, CL + C+ CR + L + R + SL + S+ SR
};

static const int8_t dca_lfe_index[] = {
    1,2,2,2,2,3,2,3,2,3,2,3,1,3,2,3
};

static const int8_t dca_channel_reorder_lfe[][8] = {
    { 0, -1, -1, -1, -1, -1, -1, -1},
    { 0,  1, -1, -1, -1, -1, -1, -1},
    { 0,  1, -1, -1, -1, -1, -1, -1},
    { 0,  1, -1, -1, -1, -1, -1, -1},
    { 0,  1, -1, -1, -1, -1, -1, -1},
    { 2,  0,  1, -1, -1, -1, -1, -1},
    { 0,  1,  3, -1, -1, -1, -1, -1},
    { 2,  0,  1,  4, -1, -1, -1, -1},
    { 0,  1,  3,  4, -1, -1, -1, -1},
    { 2,  0,  1,  4,  5, -1, -1, -1},
    { 3,  4,  0,  1,  5,  6, -1, -1},
    { 2,  0,  1,  4,  5,  6, -1, -1},
    { 0,  6,  4,  5,  2,  3, -1, -1},
    { 4,  2,  5,  0,  1,  6,  7, -1},
    { 5,  6,  0,  1,  7,  3,  8,  4},
    { 4,  2,  5,  0,  1,  6,  8,  7},
};

static const int8_t dca_channel_reorder_nolfe[][8] = {
    { 0, -1, -1, -1, -1, -1, -1, -1},
    { 0,  1, -1, -1, -1, -1, -1, -1},
    { 0,  1, -1, -1, -1, -1, -1, -1},
    { 0,  1, -1, -1, -1, -1, -1, -1},
    { 0,  1, -1, -1, -1, -1, -1, -1},
    { 2,  0,  1, -1, -1, -1, -1, -1},
    { 0,  1,  2, -1, -1, -1, -1, -1},
    { 2,  0,  1,  3, -1, -1, -1, -1},
    { 0,  1,  2,  3, -1, -1, -1, -1},
    { 2,  0,  1,  3,  4, -1, -1, -1},
    { 2,  3,  0,  1,  4,  5, -1, -1},
    { 2,  0,  1,  3,  4,  5, -1, -1},
    { 0,  5,  3,  4,  1,  2, -1, -1},
    { 3,  2,  4,  0,  1,  5,  6, -1},
    { 4,  5,  0,  1,  6,  2,  7,  3},
    { 3,  2,  4,  0,  1,  5,  7,  6},
};


#define DCA_DOLBY 101           /* FIXME */

#define DCA_CHANNEL_BITS 6
#define DCA_CHANNEL_MASK 0x3F

#define DCA_LFE 0x80

#define HEADER_SIZE 14

#define DCA_MAX_FRAME_SIZE 16384

/** Bit allocation */
typedef struct {
    int offset;                 ///< code values offset
    int maxbits[8];             ///< max bits in VLC
    int wrap;                   ///< wrap for get_vlc2()
    VLC vlc[8];                 ///< actual codes
} BitAlloc;

static BitAlloc dca_bitalloc_index;    ///< indexes for samples VLC select
static BitAlloc dca_tmode;             ///< transition mode VLCs
static BitAlloc dca_scalefactor;       ///< scalefactor VLCs
static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs

static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba, int idx)
{
    return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) + ba->offset;
}

typedef struct {
    AVCodecContext *avctx;
    /* Frame header */
    int frame_type;             ///< type of the current frame
    int samples_deficit;        ///< deficit sample count
    int crc_present;            ///< crc is present in the bitstream
    int sample_blocks;          ///< number of PCM sample blocks
    int frame_size;             ///< primary frame byte size
    int amode;                  ///< audio channels arrangement
    int sample_rate;            ///< audio sampling rate
    int bit_rate;               ///< transmission bit rate
    int bit_rate_index;         ///< transmission bit rate index

    int downmix;                ///< embedded downmix enabled
    int dynrange;               ///< embedded dynamic range flag
    int timestamp;              ///< embedded time stamp flag
    int aux_data;               ///< auxiliary data flag
    int hdcd;                   ///< source material is mastered in HDCD
    int ext_descr;              ///< extension audio descriptor flag
    int ext_coding;             ///< extended coding flag
    int aspf;                   ///< audio sync word insertion flag
    int lfe;                    ///< low frequency effects flag
    int predictor_history;      ///< predictor history flag
    int header_crc;             ///< header crc check bytes
    int multirate_inter;        ///< multirate interpolator switch
    int version;                ///< encoder software revision
    int copy_history;           ///< copy history
    int source_pcm_res;         ///< source pcm resolution
    int front_sum;              ///< front sum/difference flag
    int surround_sum;           ///< surround sum/difference flag
    int dialog_norm;            ///< dialog normalisation parameter

    /* Primary audio coding header */
    int subframes;              ///< number of subframes
    int total_channels;         ///< number of channels including extensions
    int prim_channels;          ///< number of primary audio channels
    int subband_activity[DCA_PRIM_CHANNELS_MAX];    ///< subband activity count
    int vq_start_subband[DCA_PRIM_CHANNELS_MAX];    ///< high frequency vq start subband
    int joint_intensity[DCA_PRIM_CHANNELS_MAX];     ///< joint intensity coding index
    int transient_huffman[DCA_PRIM_CHANNELS_MAX];   ///< transient mode code book
    int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
    int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX];    ///< bit allocation quantizer select
    int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
    float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX];   ///< scale factor adjustment

    /* Primary audio coding side information */
    int subsubframes;           ///< number of subsubframes
    int partial_samples;        ///< partial subsubframe samples count
    int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];    ///< prediction mode (ADPCM used or not)
    int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];      ///< prediction VQ coefs
    int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];           ///< bit allocation index
    int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];    ///< transition mode (transients)
    int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2];    ///< scale factors (2 if transient)
    int joint_huff[DCA_PRIM_CHANNELS_MAX];                       ///< joint subband scale factors codebook
    int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
    int downmix_coef[DCA_PRIM_CHANNELS_MAX][2];                  ///< stereo downmix coefficients
    int dynrange_coef;                                           ///< dynamic range coefficient

    int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];       ///< VQ encoded high frequency subbands

    float lfe_data[2 * DCA_SUBSUBFAMES_MAX * DCA_LFE_MAX *
                   2 /*history */ ];    ///< Low frequency effect data
    int lfe_scale_factor;

    /* Subband samples history (for ADPCM) */
    float subband_samples_hist[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
    DECLARE_ALIGNED_16(float, subband_fir_hist[DCA_PRIM_CHANNELS_MAX][512]);
    float subband_fir_noidea[DCA_PRIM_CHANNELS_MAX][32];
    int hist_index[DCA_PRIM_CHANNELS_MAX];

    int output;                 ///< type of output
    float add_bias;             ///< output bias
    float scale_bias;           ///< output scale

    DECLARE_ALIGNED_16(float, samples[1536]);  /* 6 * 256 = 1536, might only need 5 */
    const float *samples_chanptr[6];

    uint8_t dca_buffer[DCA_MAX_FRAME_SIZE];
    int dca_buffer_size;        ///< how much data is in the dca_buffer

    const int8_t* channel_order_tab;                             ///< channel reordering table, lfe and non lfe
    GetBitContext gb;
    /* Current position in DCA frame */
    int current_subframe;
    int current_subsubframe;

    int debug_flag;             ///< used for suppressing repeated error messages output
    DSPContext dsp;
    MDCTContext imdct;
} DCAContext;

static av_cold void dca_init_vlcs(void)
{
    static int vlcs_initialized = 0;
    int i, j;

    if (vlcs_initialized)
        return;

    dca_bitalloc_index.offset = 1;
    dca_bitalloc_index.wrap = 2;
    for (i = 0; i < 5; i++)
        init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
                 bitalloc_12_bits[i], 1, 1,
                 bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_STATIC);
    dca_scalefactor.offset = -64;
    dca_scalefactor.wrap = 2;
    for (i = 0; i < 5; i++)
        init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
                 scales_bits[i], 1, 1,
                 scales_codes[i], 2, 2, INIT_VLC_USE_STATIC);
    dca_tmode.offset = 0;
    dca_tmode.wrap = 1;
    for (i = 0; i < 4; i++)
        init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
                 tmode_bits[i], 1, 1,
                 tmode_codes[i], 2, 2, INIT_VLC_USE_STATIC);

    for(i = 0; i < 10; i++)
        for(j = 0; j < 7; j++){
            if(!bitalloc_codes[i][j]) break;
            dca_smpl_bitalloc[i+1].offset = bitalloc_offsets[i];
            dca_smpl_bitalloc[i+1].wrap = 1 + (j > 4);
            init_vlc(&dca_smpl_bitalloc[i+1].vlc[j], bitalloc_maxbits[i][j],
                     bitalloc_sizes[i],
                     bitalloc_bits[i][j], 1, 1,
                     bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_STATIC);
        }
    vlcs_initialized = 1;
}

static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
{
    while(len--)
        *dst++ = get_bits(gb, bits);
}

static int dca_parse_frame_header(DCAContext * s)
{
    int i, j;
    static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
    static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
    static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };

    init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);

    /* Sync code */
    get_bits(&s->gb, 32);

    /* Frame header */
    s->frame_type        = get_bits(&s->gb, 1);
    s->samples_deficit   = get_bits(&s->gb, 5) + 1;
    s->crc_present       = get_bits(&s->gb, 1);
    s->sample_blocks     = get_bits(&s->gb, 7) + 1;
    s->frame_size        = get_bits(&s->gb, 14) + 1;
    if (s->frame_size < 95)
        return -1;
    s->amode             = get_bits(&s->gb, 6);
    s->sample_rate       = dca_sample_rates[get_bits(&s->gb, 4)];
    if (!s->sample_rate)
        return -1;
    s->bit_rate_index    = get_bits(&s->gb, 5);
    s->bit_rate          = dca_bit_rates[s->bit_rate_index];
    if (!s->bit_rate)
        return -1;

    s->downmix           = get_bits(&s->gb, 1);
    s->dynrange          = get_bits(&s->gb, 1);
    s->timestamp         = get_bits(&s->gb, 1);
    s->aux_data          = get_bits(&s->gb, 1);
    s->hdcd              = get_bits(&s->gb, 1);
    s->ext_descr         = get_bits(&s->gb, 3);
    s->ext_coding        = get_bits(&s->gb, 1);
    s->aspf              = get_bits(&s->gb, 1);
    s->lfe               = get_bits(&s->gb, 2);
    s->predictor_history = get_bits(&s->gb, 1);

    /* TODO: check CRC */
    if (s->crc_present)
        s->header_crc    = get_bits(&s->gb, 16);

    s->multirate_inter   = get_bits(&s->gb, 1);
    s->version           = get_bits(&s->gb, 4);
    s->copy_history      = get_bits(&s->gb, 2);
    s->source_pcm_res    = get_bits(&s->gb, 3);
    s->front_sum         = get_bits(&s->gb, 1);
    s->surround_sum      = get_bits(&s->gb, 1);
    s->dialog_norm       = get_bits(&s->gb, 4);

    /* FIXME: channels mixing levels */
    s->output = s->amode;
    if(s->lfe) s->output |= DCA_LFE;

#ifdef TRACE
    av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
    av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
    av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
    av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
           s->sample_blocks, s->sample_blocks * 32);
    av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
    av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
           s->amode, dca_channels[s->amode]);
    av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
           s->sample_rate);
    av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
           s->bit_rate);
    av_log(s->avctx, AV_LOG_DEBUG, "downmix: %i\n", s->downmix);
    av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
    av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
    av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
    av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
    av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
    av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
    av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
    av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
    av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
           s->predictor_history);
    av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
    av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
           s->multirate_inter);
    av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
    av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
    av_log(s->avctx, AV_LOG_DEBUG,
           "source pcm resolution: %i (%i bits/sample)\n",
           s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
    av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
    av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
    av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
    av_log(s->avctx, AV_LOG_DEBUG, "\n");
#endif

    /* Primary audio coding header */
    s->subframes         = get_bits(&s->gb, 4) + 1;
    s->total_channels    = get_bits(&s->gb, 3) + 1;
    s->prim_channels     = s->total_channels;
    if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
        s->prim_channels = DCA_PRIM_CHANNELS_MAX;   /* We only support DTS core */


    for (i = 0; i < s->prim_channels; i++) {
        s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
        if (s->subband_activity[i] > DCA_SUBBANDS)
            s->subband_activity[i] = DCA_SUBBANDS;
    }
    for (i = 0; i < s->prim_channels; i++) {
        s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
        if (s->vq_start_subband[i] > DCA_SUBBANDS)
            s->vq_start_subband[i] = DCA_SUBBANDS;
    }
    get_array(&s->gb, s->joint_intensity,     s->prim_channels, 3);
    get_array(&s->gb, s->transient_huffman,   s->prim_channels, 2);
    get_array(&s->gb, s->scalefactor_huffman, s->prim_channels, 3);
    get_array(&s->gb, s->bitalloc_huffman,    s->prim_channels, 3);

    /* Get codebooks quantization indexes */
    memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
    for (j = 1; j < 11; j++)
        for (i = 0; i < s->prim_channels; i++)
            s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);

    /* Get scale factor adjustment */
    for (j = 0; j < 11; j++)
        for (i = 0; i < s->prim_channels; i++)
            s->scalefactor_adj[i][j] = 1;

    for (j = 1; j < 11; j++)
        for (i = 0; i < s->prim_channels; i++)
            if (s->quant_index_huffman[i][j] < thr[j])
                s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];

    if (s->crc_present) {
        /* Audio header CRC check */
        get_bits(&s->gb, 16);
    }

    s->current_subframe = 0;
    s->current_subsubframe = 0;

#ifdef TRACE
    av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
    av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
    for(i = 0; i < s->prim_channels; i++){
        av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n", s->subband_activity[i]);
        av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n", s->vq_start_subband[i]);
        av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n", s->joint_intensity[i]);
        av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n", s->transient_huffman[i]);
        av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n", s->scalefactor_huffman[i]);
        av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n", s->bitalloc_huffman[i]);
        av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
        for (j = 0; j < 11; j++)
            av_log(s->avctx, AV_LOG_DEBUG, " %i",
                   s->quant_index_huffman[i][j]);
        av_log(s->avctx, AV_LOG_DEBUG, "\n");
        av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
        for (j = 0; j < 11; j++)
            av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
        av_log(s->avctx, AV_LOG_DEBUG, "\n");
    }
#endif

    return 0;
}


static inline int get_scale(GetBitContext *gb, int level, int value)
{
   if (level < 5) {
       /* huffman encoded */
       value += get_bitalloc(gb, &dca_scalefactor, level);
   } else if(level < 8)
       value = get_bits(gb, level + 1);
   return value;
}

static int dca_subframe_header(DCAContext * s)
{
    /* Primary audio coding side information */
    int j, k;

    s->subsubframes = get_bits(&s->gb, 2) + 1;
    s->partial_samples = get_bits(&s->gb, 3);
    for (j = 0; j < s->prim_channels; j++) {
        for (k = 0; k < s->subband_activity[j]; k++)
            s->prediction_mode[j][k] = get_bits(&s->gb, 1);
    }

    /* Get prediction codebook */
    for (j = 0; j < s->prim_channels; j++) {
        for (k = 0; k < s->subband_activity[j]; k++) {
            if (s->prediction_mode[j][k] > 0) {
                /* (Prediction coefficient VQ address) */
                s->prediction_vq[j][k] = get_bits(&s->gb, 12);
            }
        }
    }

    /* Bit allocation index */
    for (j = 0; j < s->prim_channels; j++) {
        for (k = 0; k < s->vq_start_subband[j]; k++) {
            if (s->bitalloc_huffman[j] == 6)
                s->bitalloc[j][k] = get_bits(&s->gb, 5);
            else if (s->bitalloc_huffman[j] == 5)
                s->bitalloc[j][k] = get_bits(&s->gb, 4);
            else if (s->bitalloc_huffman[j] == 7) {
                av_log(s->avctx, AV_LOG_ERROR,
                       "Invalid bit allocation index\n");
                return -1;
            } else {
                s->bitalloc[j][k] =
                    get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
            }

            if (s->bitalloc[j][k] > 26) {
//                 av_log(s->avctx,AV_LOG_DEBUG,"bitalloc index [%i][%i] too big (%i)\n",
//                          j, k, s->bitalloc[j][k]);
                return -1;
            }
        }
    }

    /* Transition mode */
    for (j = 0; j < s->prim_channels; j++) {
        for (k = 0; k < s->subband_activity[j]; k++) {
            s->transition_mode[j][k] = 0;
            if (s->subsubframes > 1 &&
                k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
                s->transition_mode[j][k] =
                    get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
            }
        }
    }

    for (j = 0; j < s->prim_channels; j++) {
        const uint32_t *scale_table;
        int scale_sum;

        memset(s->scale_factor[j], 0, s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);

        if (s->scalefactor_huffman[j] == 6)
            scale_table = scale_factor_quant7;
        else
            scale_table = scale_factor_quant6;

        /* When huffman coded, only the difference is encoded */
        scale_sum = 0;

        for (k = 0; k < s->subband_activity[j]; k++) {
            if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
                scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum);
                s->scale_factor[j][k][0] = scale_table[scale_sum];
            }

            if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
                /* Get second scale factor */
                scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum);
                s->scale_factor[j][k][1] = scale_table[scale_sum];
            }
        }
    }

    /* Joint subband scale factor codebook select */
    for (j = 0; j < s->prim_channels; j++) {
        /* Transmitted only if joint subband coding enabled */
        if (s->joint_intensity[j] > 0)
            s->joint_huff[j] = get_bits(&s->gb, 3);
    }

    /* Scale factors for joint subband coding */
    for (j = 0; j < s->prim_channels; j++) {
        int source_channel;

        /* Transmitted only if joint subband coding enabled */
        if (s->joint_intensity[j] > 0) {
            int scale = 0;
            source_channel = s->joint_intensity[j] - 1;

            /* When huffman coded, only the difference is encoded
             * (is this valid as well for joint scales ???) */

            for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
                scale = get_scale(&s->gb, s->joint_huff[j], 0);
                scale += 64;    /* bias */
                s->joint_scale_factor[j][k] = scale;    /*joint_scale_table[scale]; */
            }

            if (!s->debug_flag & 0x02) {
                av_log(s->avctx, AV_LOG_DEBUG,
                       "Joint stereo coding not supported\n");
                s->debug_flag |= 0x02;
            }
        }
    }

    /* Stereo downmix coefficients */
    if (s->prim_channels > 2) {
        if(s->downmix) {
            for (j = 0; j < s->prim_channels; j++) {
                s->downmix_coef[j][0] = get_bits(&s->gb, 7);
                s->downmix_coef[j][1] = get_bits(&s->gb, 7);
            }
        } else {
            int am = s->amode & DCA_CHANNEL_MASK;
            for (j = 0; j < s->prim_channels; j++) {
                s->downmix_coef[j][0] = dca_default_coeffs[am][j][0];
                s->downmix_coef[j][1] = dca_default_coeffs[am][j][1];
            }
        }
    }

    /* Dynamic range coefficient */
    if (s->dynrange)
        s->dynrange_coef = get_bits(&s->gb, 8);

    /* Side information CRC check word */
    if (s->crc_present) {
        get_bits(&s->gb, 16);
    }

    /*
     * Primary audio data arrays
     */

    /* VQ encoded high frequency subbands */
    for (j = 0; j < s->prim_channels; j++)
        for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
            /* 1 vector -> 32 samples */
            s->high_freq_vq[j][k] = get_bits(&s->gb, 10);

    /* Low frequency effect data */
    if (s->lfe) {
        /* LFE samples */
        int lfe_samples = 2 * s->lfe * s->subsubframes;
        float lfe_scale;

        for (j = lfe_samples; j < lfe_samples * 2; j++) {
            /* Signed 8 bits int */
            s->lfe_data[j] = get_sbits(&s->gb, 8);
        }

        /* Scale factor index */
        s->lfe_scale_factor = scale_factor_quant7[get_bits(&s->gb, 8)];

        /* Quantization step size * scale factor */
        lfe_scale = 0.035 * s->lfe_scale_factor;

        for (j = lfe_samples; j < lfe_samples * 2; j++)
            s->lfe_data[j] *= lfe_scale;
    }

#ifdef TRACE
    av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n", s->subsubframes);
    av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
           s->partial_samples);
    for (j = 0; j < s->prim_channels; j++) {
        av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
        for (k = 0; k < s->subband_activity[j]; k++)
            av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
        av_log(s->avctx, AV_LOG_DEBUG, "\n");
    }
    for (j = 0; j < s->prim_channels; j++) {
        for (k = 0; k < s->subband_activity[j]; k++)
                av_log(s->avctx, AV_LOG_DEBUG,
                       "prediction coefs: %f, %f, %f, %f\n",
                       (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
                       (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
                       (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
                       (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
    }
    for (j = 0; j < s->prim_channels; j++) {
        av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
        for (k = 0; k < s->vq_start_subband[j]; k++)
            av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
        av_log(s->avctx, AV_LOG_DEBUG, "\n");
    }
    for (j = 0; j < s->prim_channels; j++) {
        av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
        for (k = 0; k < s->subband_activity[j]; k++)
            av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
        av_log(s->avctx, AV_LOG_DEBUG, "\n");
    }
    for (j = 0; j < s->prim_channels; j++) {
        av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
        for (k = 0; k < s->subband_activity[j]; k++) {
            if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
                av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
            if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
                av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
        }
        av_log(s->avctx, AV_LOG_DEBUG, "\n");
    }
    for (j = 0; j < s->prim_channels; j++) {
        if (s->joint_intensity[j] > 0) {
            int source_channel = s->joint_intensity[j] - 1;
            av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
            for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
                av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
            av_log(s->avctx, AV_LOG_DEBUG, "\n");
        }
    }
    if (s->prim_channels > 2 && s->downmix) {
        av_log(s->avctx, AV_LOG_DEBUG, "Downmix coeffs:\n");
        for (j = 0; j < s->prim_channels; j++) {
            av_log(s->avctx, AV_LOG_DEBUG, "Channel 0,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][0]]);
            av_log(s->avctx, AV_LOG_DEBUG, "Channel 1,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][1]]);
        }
        av_log(s->avctx, AV_LOG_DEBUG, "\n");
    }
    for (j = 0; j < s->prim_channels; j++)
        for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
            av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
    if(s->lfe){
        int lfe_samples = 2 * s->lfe * s->subsubframes;
        av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
        for (j = lfe_samples; j < lfe_samples * 2; j++)
            av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
        av_log(s->avctx, AV_LOG_DEBUG, "\n");
    }
#endif

    return 0;
}

static void qmf_32_subbands(DCAContext * s, int chans,
                            float samples_in[32][8], float *samples_out,
                            float scale, float bias)
{
    const float *prCoeff;
    int i, j;
    DECLARE_ALIGNED_16(float, raXin[32]);

    int hist_index= s->hist_index[chans];
    float *subband_fir_hist2 = s->subband_fir_noidea[chans];

    int subindex;

    scale *= sqrt(1/8.0);

    /* Select filter */
    if (!s->multirate_inter)    /* Non-perfect reconstruction */
        prCoeff = fir_32bands_nonperfect;
    else                        /* Perfect reconstruction */
        prCoeff = fir_32bands_perfect;

    /* Reconstructed channel sample index */
    for (subindex = 0; subindex < 8; subindex++) {
        float *subband_fir_hist = s->subband_fir_hist[chans] + hist_index;
        /* Load in one sample from each subband and clear inactive subbands */
        for (i = 0; i < s->subband_activity[chans]; i++){
            if((i-1)&2) raXin[i] = -samples_in[i][subindex];
            else        raXin[i] =  samples_in[i][subindex];
        }
        for (; i < 32; i++)
            raXin[i] = 0.0;

        ff_imdct_half(&s->imdct, subband_fir_hist, raXin);

        /* Multiply by filter coefficients */
        for (i = 0; i < 16; i++){
            float a= subband_fir_hist2[i   ];
            float b= subband_fir_hist2[i+16];
            float c= 0;
            float d= 0;
            for (j = 0; j < 512-hist_index; j += 64){
                a += prCoeff[i+j   ]*(-subband_fir_hist[15-i+j]);
                b += prCoeff[i+j+16]*( subband_fir_hist[   i+j]);
                c += prCoeff[i+j+32]*( subband_fir_hist[16+i+j]);
                d += prCoeff[i+j+48]*( subband_fir_hist[31-i+j]);
            }
            for (     ; j < 512; j += 64){
                a += prCoeff[i+j   ]*(-subband_fir_hist[15-i+j-512]);
                b += prCoeff[i+j+16]*( subband_fir_hist[   i+j-512]);
                c += prCoeff[i+j+32]*( subband_fir_hist[16+i+j-512]);
                d += prCoeff[i+j+48]*( subband_fir_hist[31-i+j-512]);
            }
            samples_out[i   ] = a * scale + bias;
            samples_out[i+16] = b * scale + bias;
            subband_fir_hist2[i   ] = c;
            subband_fir_hist2[i+16] = d;
        }
        samples_out+= 32;

        hist_index = (hist_index-32)&511;
    }
    s->hist_index[chans]= hist_index;
}

static void lfe_interpolation_fir(int decimation_select,
                                  int num_deci_sample, float *samples_in,
                                  float *samples_out, float scale,
                                  float bias)
{
    /* samples_in: An array holding decimated samples.
     *   Samples in current subframe starts from samples_in[0],
     *   while samples_in[-1], samples_in[-2], ..., stores samples
     *   from last subframe as history.
     *
     * samples_out: An array holding interpolated samples
     */

    int decifactor, k, j;
    const float *prCoeff;

    int interp_index = 0;       /* Index to the interpolated samples */
    int deciindex;

    /* Select decimation filter */
    if (decimation_select == 1) {
        decifactor = 128;
        prCoeff = lfe_fir_128;
    } else {
        decifactor = 64;
        prCoeff = lfe_fir_64;
    }
    /* Interpolation */
    for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
        /* One decimated sample generates decifactor interpolated ones */
        for (k = 0; k < decifactor; k++) {
            float rTmp = 0.0;
            //FIXME the coeffs are symetric, fix that
            for (j = 0; j < 512 / decifactor; j++)
                rTmp += samples_in[deciindex - j] * prCoeff[k + j * decifactor];
            samples_out[interp_index++] = (rTmp * scale) + bias;
        }
    }
}

/* downmixing routines */
#define MIX_REAR1(samples, si1, rs, coef) \
     samples[i]     += samples[si1] * coef[rs][0]; \
     samples[i+256] += samples[si1] * coef[rs][1];

#define MIX_REAR2(samples, si1, si2, rs, coef) \
     samples[i]     += samples[si1] * coef[rs][0] + samples[si2] * coef[rs+1][0]; \
     samples[i+256] += samples[si1] * coef[rs][1] + samples[si2] * coef[rs+1][1];

#define MIX_FRONT3(samples, coef) \
    t = samples[i]; \
    samples[i]     = t * coef[0][0] + samples[i+256] * coef[1][0] + samples[i+512] * coef[2][0]; \
    samples[i+256] = t * coef[0][1] + samples[i+256] * coef[1][1] + samples[i+512] * coef[2][1];

#define DOWNMIX_TO_STEREO(op1, op2) \
    for(i = 0; i < 256; i++){ \
        op1 \
        op2 \
    }

static void dca_downmix(float *samples, int srcfmt,
                        int downmix_coef[DCA_PRIM_CHANNELS_MAX][2])
{
    int i;
    float t;
    float coef[DCA_PRIM_CHANNELS_MAX][2];

    for(i=0; i<DCA_PRIM_CHANNELS_MAX; i++) {
        coef[i][0] = dca_downmix_coeffs[downmix_coef[i][0]];
        coef[i][1] = dca_downmix_coeffs[downmix_coef[i][1]];
    }

    switch (srcfmt) {
    case DCA_MONO:
    case DCA_CHANNEL:
    case DCA_STEREO_TOTAL:
    case DCA_STEREO_SUMDIFF:
    case DCA_4F2R:
        av_log(NULL, 0, "Not implemented!\n");
        break;
    case DCA_STEREO:
        break;
    case DCA_3F:
        DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),);
        break;
    case DCA_2F1R:
        DOWNMIX_TO_STEREO(MIX_REAR1(samples, i + 512, 2, coef),);
        break;
    case DCA_3F1R:
        DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
                          MIX_REAR1(samples, i + 768, 3, coef));
        break;
    case DCA_2F2R:
        DOWNMIX_TO_STEREO(MIX_REAR2(samples, i + 512, i + 768, 2, coef),);
        break;
    case DCA_3F2R:
        DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
                          MIX_REAR2(samples, i + 768, i + 1024, 3, coef));
        break;
    }
}


/* Very compact version of the block code decoder that does not use table
 * look-up but is slightly slower */
static int decode_blockcode(int code, int levels, int *values)
{
    int i;
    int offset = (levels - 1) >> 1;

    for (i = 0; i < 4; i++) {
        values[i] = (code % levels) - offset;
        code /= levels;
    }

    if (code == 0)
        return 0;
    else {
        av_log(NULL, AV_LOG_ERROR, "ERROR: block code look-up failed\n");
        return -1;
    }
}

static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };

static int dca_subsubframe(DCAContext * s)
{
    int k, l;
    int subsubframe = s->current_subsubframe;

    const float *quant_step_table;

    /* FIXME */
    float subband_samples[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];

    /*
     * Audio data
     */

    /* Select quantization step size table */
    if (s->bit_rate_index == 0x1f)
        quant_step_table = lossless_quant_d;
    else
        quant_step_table = lossy_quant_d;

    for (k = 0; k < s->prim_channels; k++) {
        for (l = 0; l < s->vq_start_subband[k]; l++) {
            int m;

            /* Select the mid-tread linear quantizer */
            int abits = s->bitalloc[k][l];

            float quant_step_size = quant_step_table[abits];
            float rscale;

            /*
             * Determine quantization index code book and its type
             */

            /* Select quantization index code book */
            int sel = s->quant_index_huffman[k][abits];

            /*
             * Extract bits from the bit stream
             */
            if(!abits){
                memset(subband_samples[k][l], 0, 8 * sizeof(subband_samples[0][0][0]));
            }else if(abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table){
                if(abits <= 7){
                    /* Block code */
                    int block_code1, block_code2, size, levels;
                    int block[8];

                    size = abits_sizes[abits-1];
                    levels = abits_levels[abits-1];

                    block_code1 = get_bits(&s->gb, size);
                    /* FIXME Should test return value */
                    decode_blockcode(block_code1, levels, block);
                    block_code2 = get_bits(&s->gb, size);
                    decode_blockcode(block_code2, levels, &block[4]);
                    for (m = 0; m < 8; m++)
                        subband_samples[k][l][m] = block[m];
                }else{
                    /* no coding */
                    for (m = 0; m < 8; m++)
                        subband_samples[k][l][m] = get_sbits(&s->gb, abits - 3);
                }
            }else{
                /* Huffman coded */
                for (m = 0; m < 8; m++)
                    subband_samples[k][l][m] = get_bitalloc(&s->gb, &dca_smpl_bitalloc[abits], sel);
            }

            /* Deal with transients */
            if (s->transition_mode[k][l] &&
                subsubframe >= s->transition_mode[k][l])
                rscale = quant_step_size * s->scale_factor[k][l][1];
            else
                rscale = quant_step_size * s->scale_factor[k][l][0];

            rscale *= s->scalefactor_adj[k][sel];

            for (m = 0; m < 8; m++)
                subband_samples[k][l][m] *= rscale;

            /*
             * Inverse ADPCM if in prediction mode
             */
            if (s->prediction_mode[k][l]) {
                int n;
                for (m = 0; m < 8; m++) {
                    for (n = 1; n <= 4; n++)
                        if (m >= n)
                            subband_samples[k][l][m] +=
                                (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
                                 subband_samples[k][l][m - n] / 8192);
                        else if (s->predictor_history)
                            subband_samples[k][l][m] +=
                                (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
                                 s->subband_samples_hist[k][l][m - n +
                                                               4] / 8192);
                }
            }
        }

        /*
         * Decode VQ encoded high frequencies
         */
        for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) {
            /* 1 vector -> 32 samples but we only need the 8 samples
             * for this subsubframe. */
            int m;

            if (!s->debug_flag & 0x01) {
                av_log(s->avctx, AV_LOG_DEBUG, "Stream with high frequencies VQ coding\n");
                s->debug_flag |= 0x01;
            }

            for (m = 0; m < 8; m++) {
                subband_samples[k][l][m] =
                    high_freq_vq[s->high_freq_vq[k][l]][subsubframe * 8 +
                                                        m]
                    * (float) s->scale_factor[k][l][0] / 16.0;
            }
        }
    }

    /* Check for DSYNC after subsubframe */
    if (s->aspf || subsubframe == s->subsubframes - 1) {
        if (0xFFFF == get_bits(&s->gb, 16)) {   /* 0xFFFF */
#ifdef TRACE
            av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
#endif
        } else {
            av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
        }
    }

    /* Backup predictor history for adpcm */
    for (k = 0; k < s->prim_channels; k++)
        for (l = 0; l < s->vq_start_subband[k]; l++)
            memcpy(s->subband_samples_hist[k][l], &subband_samples[k][l][4],
                        4 * sizeof(subband_samples[0][0][0]));

    /* 32 subbands QMF */
    for (k = 0; k < s->prim_channels; k++) {
/*        static float pcm_to_double[8] =
            {32768.0, 32768.0, 524288.0, 524288.0, 0, 8388608.0, 8388608.0};*/
         qmf_32_subbands(s, k, subband_samples[k], &s->samples[256 * s->channel_order_tab[k]],
                            M_SQRT1_2*s->scale_bias /*pcm_to_double[s->source_pcm_res] */ ,
                            s->add_bias );
    }

    /* Down mixing */

    if (s->prim_channels > dca_channels[s->output & DCA_CHANNEL_MASK]) {
        dca_downmix(s->samples, s->amode, s->downmix_coef);
    }

    /* Generate LFE samples for this subsubframe FIXME!!! */
    if (s->output & DCA_LFE) {
        int lfe_samples = 2 * s->lfe * s->subsubframes;

        lfe_interpolation_fir(s->lfe, 2 * s->lfe,
                              s->lfe_data + lfe_samples +
                              2 * s->lfe * subsubframe,
                              &s->samples[256 * dca_lfe_index[s->amode]],
                              (1.0/256.0)*s->scale_bias,  s->add_bias);
        /* Outputs 20bits pcm samples */
    }

    return 0;
}


static int dca_subframe_footer(DCAContext * s)
{
    int aux_data_count = 0, i;
    int lfe_samples;

    /*
     * Unpack optional information
     */

    if (s->timestamp)
        get_bits(&s->gb, 32);

    if (s->aux_data)
        aux_data_count = get_bits(&s->gb, 6);

    for (i = 0; i < aux_data_count; i++)
        get_bits(&s->gb, 8);

    if (s->crc_present && (s->downmix || s->dynrange))
        get_bits(&s->gb, 16);

    lfe_samples = 2 * s->lfe * s->subsubframes;
    for (i = 0; i < lfe_samples; i++) {
        s->lfe_data[i] = s->lfe_data[i + lfe_samples];
    }

    return 0;
}

/**
 * Decode a dca frame block
 *
 * @param s     pointer to the DCAContext
 */

static int dca_decode_block(DCAContext * s)
{

    /* Sanity check */
    if (s->current_subframe >= s->subframes) {
        av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
               s->current_subframe, s->subframes);
        return -1;
    }

    if (!s->current_subsubframe) {
#ifdef TRACE
        av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
#endif
        /* Read subframe header */
        if (dca_subframe_header(s))
            return -1;
    }

    /* Read subsubframe */
#ifdef TRACE
    av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
#endif
    if (dca_subsubframe(s))
        return -1;

    /* Update state */
    s->current_subsubframe++;
    if (s->current_subsubframe >= s->subsubframes) {
        s->current_subsubframe = 0;
        s->current_subframe++;
    }
    if (s->current_subframe >= s->subframes) {
#ifdef TRACE
        av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
#endif
        /* Read subframe footer */
        if (dca_subframe_footer(s))
            return -1;
    }

    return 0;
}

/**
 * Convert bitstream to one representation based on sync marker
 */
static int dca_convert_bitstream(const uint8_t * src, int src_size, uint8_t * dst,
                          int max_size)
{
    uint32_t mrk;
    int i, tmp;
    const uint16_t *ssrc = (const uint16_t *) src;
    uint16_t *sdst = (uint16_t *) dst;
    PutBitContext pb;

    if((unsigned)src_size > (unsigned)max_size) {
//        av_log(NULL, AV_LOG_ERROR, "Input frame size larger then DCA_MAX_FRAME_SIZE!\n");
//        return -1;
        src_size = max_size;
    }

    mrk = AV_RB32(src);
    switch (mrk) {
    case DCA_MARKER_RAW_BE:
        memcpy(dst, src, src_size);
        return src_size;
    case DCA_MARKER_RAW_LE:
        for (i = 0; i < (src_size + 1) >> 1; i++)
            *sdst++ = bswap_16(*ssrc++);
        return src_size;
    case DCA_MARKER_14B_BE:
    case DCA_MARKER_14B_LE:
        init_put_bits(&pb, dst, max_size);
        for (i = 0; i < (src_size + 1) >> 1; i++, src += 2) {
            tmp = ((mrk == DCA_MARKER_14B_BE) ? AV_RB16(src) : AV_RL16(src)) & 0x3FFF;
            put_bits(&pb, 14, tmp);
        }
        flush_put_bits(&pb);
        return (put_bits_count(&pb) + 7) >> 3;
    default:
        return -1;
    }
}

/**
 * Main frame decoding function
 * FIXME add arguments
 */
static int dca_decode_frame(AVCodecContext * avctx,
                            void *data, int *data_size,
                            AVPacket *avpkt)
{
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;

    int i;
    int16_t *samples = data;
    DCAContext *s = avctx->priv_data;
    int channels;


    s->dca_buffer_size = dca_convert_bitstream(buf, buf_size, s->dca_buffer, DCA_MAX_FRAME_SIZE);
    if (s->dca_buffer_size == -1) {
        av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
        return -1;
    }

    init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
    if (dca_parse_frame_header(s) < 0) {
        //seems like the frame is corrupt, try with the next one
        *data_size=0;
        return buf_size;
    }
    //set AVCodec values with parsed data
    avctx->sample_rate = s->sample_rate;
    avctx->bit_rate = s->bit_rate;

    channels = s->prim_channels + !!s->lfe;

    if (s->amode<16) {
        avctx->channel_layout = dca_core_channel_layout[s->amode];

        if (s->lfe) {
            avctx->channel_layout |= CH_LOW_FREQUENCY;
            s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
        } else
            s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];

        if(avctx->request_channels == 2 && s->prim_channels > 2) {
            channels = 2;
            s->output = DCA_STEREO;
            avctx->channel_layout = CH_LAYOUT_STEREO;
        }
    } else {
        av_log(avctx, AV_LOG_ERROR, "Non standard configuration %d !\n",s->amode);
        return -1;
    }


    /* There is nothing that prevents a dts frame to change channel configuration
       but FFmpeg doesn't support that so only set the channels if it is previously
       unset. Ideally during the first probe for channels the crc should be checked
       and only set avctx->channels when the crc is ok. Right now the decoder could
       set the channels based on a broken first frame.*/
    if (!avctx->channels)
        avctx->channels = channels;

    if(*data_size < (s->sample_blocks / 8) * 256 * sizeof(int16_t) * channels)
        return -1;
    *data_size = 256 / 8 * s->sample_blocks * sizeof(int16_t) * channels;
    for (i = 0; i < (s->sample_blocks / 8); i++) {
        dca_decode_block(s);
        s->dsp.float_to_int16_interleave(samples, s->samples_chanptr, 256, channels);
        samples += 256 * channels;
    }

    return buf_size;
}



/**
 * DCA initialization
 *
 * @param avctx     pointer to the AVCodecContext
 */

static av_cold int dca_decode_init(AVCodecContext * avctx)
{
    DCAContext *s = avctx->priv_data;
    int i;

    s->avctx = avctx;
    dca_init_vlcs();

    dsputil_init(&s->dsp, avctx);
    ff_mdct_init(&s->imdct, 6, 1);

    for(i = 0; i < 6; i++)
        s->samples_chanptr[i] = s->samples + i * 256;
    avctx->sample_fmt = SAMPLE_FMT_S16;

    if(s->dsp.float_to_int16 == ff_float_to_int16_c) {
        s->add_bias = 385.0f;
        s->scale_bias = 1.0 / 32768.0;
    } else {
        s->add_bias = 0.0f;
        s->scale_bias = 1.0;

        /* allow downmixing to stereo */
        if (avctx->channels > 0 && avctx->request_channels < avctx->channels &&
                avctx->request_channels == 2) {
            avctx->channels = avctx->request_channels;
        }
    }


    return 0;
}

static av_cold int dca_decode_end(AVCodecContext * avctx)
{
    DCAContext *s = avctx->priv_data;
    ff_mdct_end(&s->imdct);
    return 0;
}

AVCodec dca_decoder = {
    .name = "dca",
    .type = CODEC_TYPE_AUDIO,
    .id = CODEC_ID_DTS,
    .priv_data_size = sizeof(DCAContext),
    .init = dca_decode_init,
    .decode = dca_decode_frame,
    .close = dca_decode_end,
    .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
};