/* * Chinese AVS video (AVS1-P2, JiZhun profile) decoder. * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Chinese AVS video (AVS1-P2, JiZhun profile) decoder * @author Stefan Gehrer <stefan.gehrer@gmx.de> */ #include "avcodec.h" #include "get_bits.h" #include "golomb.h" #include "h264chroma.h" #include "mathops.h" #include "cavs.h" static const uint8_t alpha_tab[64] = { 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 26, 28, 30, 33, 33, 35, 35, 36, 37, 37, 39, 39, 42, 44, 46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 }; static const uint8_t beta_tab[64] = { 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27 }; static const uint8_t tc_tab[64] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9 }; /** mark block as unavailable, i.e. out of picture * or not yet decoded */ static const cavs_vector un_mv = { 0, 0, 1, NOT_AVAIL }; static const int8_t left_modifier_l[8] = { 0, -1, 6, -1, -1, 7, 6, 7 }; static const int8_t top_modifier_l[8] = { -1, 1, 5, -1, -1, 5, 7, 7 }; static const int8_t left_modifier_c[7] = { 5, -1, 2, -1, 6, 5, 6 }; static const int8_t top_modifier_c[7] = { 4, 1, -1, -1, 4, 6, 6 }; /***************************************************************************** * * in-loop deblocking filter * ****************************************************************************/ static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b) { if ((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA)) return 2; if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4)) return 1; if (b) { mvP += MV_BWD_OFFS; mvQ += MV_BWD_OFFS; if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4)) return 1; } else { if (mvP->ref != mvQ->ref) return 1; } return 0; } #define SET_PARAMS \ alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)]; \ beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0, 63)]; \ tc = tc_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)]; /** * in-loop deblocking filter for a single macroblock * * boundary strength (bs) mapping: * * --4---5-- * 0 2 | * | 6 | 7 | * 1 3 | * --------- * */ void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type) { uint8_t bs[8]; int qp_avg, alpha, beta, tc; int i; /* save un-deblocked lines */ h->topleft_border_y = h->top_border_y[h->mbx * 16 + 15]; h->topleft_border_u = h->top_border_u[h->mbx * 10 + 8]; h->topleft_border_v = h->top_border_v[h->mbx * 10 + 8]; memcpy(&h->top_border_y[h->mbx * 16], h->cy + 15 * h->l_stride, 16); memcpy(&h->top_border_u[h->mbx * 10 + 1], h->cu + 7 * h->c_stride, 8); memcpy(&h->top_border_v[h->mbx * 10 + 1], h->cv + 7 * h->c_stride, 8); for (i = 0; i < 8; i++) { h->left_border_y[i * 2 + 1] = *(h->cy + 15 + (i * 2 + 0) * h->l_stride); h->left_border_y[i * 2 + 2] = *(h->cy + 15 + (i * 2 + 1) * h->l_stride); h->left_border_u[i + 1] = *(h->cu + 7 + i * h->c_stride); h->left_border_v[i + 1] = *(h->cv + 7 + i * h->c_stride); } if (!h->loop_filter_disable) { /* determine bs */ if (mb_type == I_8X8) memset(bs, 2, 8); else { memset(bs, 0, 8); if (ff_cavs_partition_flags[mb_type] & SPLITV) { bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8); bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8); } if (ff_cavs_partition_flags[mb_type] & SPLITH) { bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8); bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8); } bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8); bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8); bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8); bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8); } if (AV_RN64(bs)) { if (h->flags & A_AVAIL) { qp_avg = (h->qp + h->left_qp + 1) >> 1; SET_PARAMS; h->cdsp.cavs_filter_lv(h->cy, h->l_stride, alpha, beta, tc, bs[0], bs[1]); h->cdsp.cavs_filter_cv(h->cu, h->c_stride, alpha, beta, tc, bs[0], bs[1]); h->cdsp.cavs_filter_cv(h->cv, h->c_stride, alpha, beta, tc, bs[0], bs[1]); } qp_avg = h->qp; SET_PARAMS; h->cdsp.cavs_filter_lv(h->cy + 8, h->l_stride, alpha, beta, tc, bs[2], bs[3]); h->cdsp.cavs_filter_lh(h->cy + 8 * h->l_stride, h->l_stride, alpha, beta, tc, bs[6], bs[7]); if (h->flags & B_AVAIL) { qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1; SET_PARAMS; h->cdsp.cavs_filter_lh(h->cy, h->l_stride, alpha, beta, tc, bs[4], bs[5]); h->cdsp.cavs_filter_ch(h->cu, h->c_stride, alpha, beta, tc, bs[4], bs[5]); h->cdsp.cavs_filter_ch(h->cv, h->c_stride, alpha, beta, tc, bs[4], bs[5]); } } } h->left_qp = h->qp; h->top_qp[h->mbx] = h->qp; } #undef SET_PARAMS /***************************************************************************** * * spatial intra prediction * ****************************************************************************/ void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top, uint8_t **left, int block) { int i; switch (block) { case 0: *left = h->left_border_y; h->left_border_y[0] = h->left_border_y[1]; memset(&h->left_border_y[17], h->left_border_y[16], 9); memcpy(&top[1], &h->top_border_y[h->mbx * 16], 16); top[17] = top[16]; top[0] = top[1]; if ((h->flags & A_AVAIL) && (h->flags & B_AVAIL)) h->left_border_y[0] = top[0] = h->topleft_border_y; break; case 1: *left = h->intern_border_y; for (i = 0; i < 8; i++) h->intern_border_y[i + 1] = *(h->cy + 7 + i * h->l_stride); memset(&h->intern_border_y[9], h->intern_border_y[8], 9); h->intern_border_y[0] = h->intern_border_y[1]; memcpy(&top[1], &h->top_border_y[h->mbx * 16 + 8], 8); if (h->flags & C_AVAIL) memcpy(&top[9], &h->top_border_y[(h->mbx + 1) * 16], 8); else memset(&top[9], top[8], 9); top[17] = top[16]; top[0] = top[1]; if (h->flags & B_AVAIL) h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx * 16 + 7]; break; case 2: *left = &h->left_border_y[8]; memcpy(&top[1], h->cy + 7 * h->l_stride, 16); top[17] = top[16]; top[0] = top[1]; if (h->flags & A_AVAIL) top[0] = h->left_border_y[8]; break; case 3: *left = &h->intern_border_y[8]; for (i = 0; i < 8; i++) h->intern_border_y[i + 9] = *(h->cy + 7 + (i + 8) * h->l_stride); memset(&h->intern_border_y[17], h->intern_border_y[16], 9); memcpy(&top[0], h->cy + 7 + 7 * h->l_stride, 9); memset(&top[9], top[8], 9); break; } } void ff_cavs_load_intra_pred_chroma(AVSContext *h) { /* extend borders by one pixel */ h->left_border_u[9] = h->left_border_u[8]; h->left_border_v[9] = h->left_border_v[8]; h->top_border_u[h->mbx * 10 + 9] = h->top_border_u[h->mbx * 10 + 8]; h->top_border_v[h->mbx * 10 + 9] = h->top_border_v[h->mbx * 10 + 8]; if (h->mbx && h->mby) { h->top_border_u[h->mbx * 10] = h->left_border_u[0] = h->topleft_border_u; h->top_border_v[h->mbx * 10] = h->left_border_v[0] = h->topleft_border_v; } else { h->left_border_u[0] = h->left_border_u[1]; h->left_border_v[0] = h->left_border_v[1]; h->top_border_u[h->mbx * 10] = h->top_border_u[h->mbx * 10 + 1]; h->top_border_v[h->mbx * 10] = h->top_border_v[h->mbx * 10 + 1]; } } static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, int stride) { int y; uint64_t a = AV_RN64(&top[1]); for (y = 0; y < 8; y++) *((uint64_t *)(d + y * stride)) = a; } static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, int stride) { int y; uint64_t a; for (y = 0; y < 8; y++) { a = left[y + 1] * 0x0101010101010101ULL; *((uint64_t *)(d + y * stride)) = a; } } static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, int stride) { int y; uint64_t a = 0x8080808080808080ULL; for (y = 0; y < 8; y++) *((uint64_t *)(d + y * stride)) = a; } static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, int stride) { int x, y, ia; int ih = 0; int iv = 0; const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP; for (x = 0; x < 4; x++) { ih += (x + 1) * (top[5 + x] - top[3 - x]); iv += (x + 1) * (left[5 + x] - left[3 - x]); } ia = (top[8] + left[8]) << 4; ih = (17 * ih + 16) >> 5; iv = (17 * iv + 16) >> 5; for (y = 0; y < 8; y++) for (x = 0; x < 8; x++) d[y * stride + x] = cm[(ia + (x - 3) * ih + (y - 3) * iv + 16) >> 5]; } #define LOWPASS(ARRAY, INDEX) \ ((ARRAY[(INDEX) - 1] + 2 * ARRAY[(INDEX)] + ARRAY[(INDEX) + 1] + 2) >> 2) static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, int stride) { int x, y; for (y = 0; y < 8; y++) for (x = 0; x < 8; x++) d[y * stride + x] = (LOWPASS(top, x + 1) + LOWPASS(left, y + 1)) >> 1; } static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride) { int x, y; for (y = 0; y < 8; y++) for (x = 0; x < 8; x++) d[y * stride + x] = (LOWPASS(top, x + y + 2) + LOWPASS(left, x + y + 2)) >> 1; } static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, int stride) { int x, y; for (y = 0; y < 8; y++) for (x = 0; x < 8; x++) if (x == y) d[y * stride + x] = (left[1] + 2 * top[0] + top[1] + 2) >> 2; else if (x > y) d[y * stride + x] = LOWPASS(top, x - y); else d[y * stride + x] = LOWPASS(left, y - x); } static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride) { int x, y; for (y = 0; y < 8; y++) for (x = 0; x < 8; x++) d[y * stride + x] = LOWPASS(left, y + 1); } static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, int stride) { int x, y; for (y = 0; y < 8; y++) for (x = 0; x < 8; x++) d[y * stride + x] = LOWPASS(top, x + 1); } #undef LOWPASS static inline void modify_pred(const int8_t *mod_table, int *mode) { *mode = mod_table[*mode]; if (*mode < 0) { av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n"); *mode = 0; } } void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv) { /* save pred modes before they get modified */ h->pred_mode_Y[3] = h->pred_mode_Y[5]; h->pred_mode_Y[6] = h->pred_mode_Y[8]; h->top_pred_Y[h->mbx * 2 + 0] = h->pred_mode_Y[7]; h->top_pred_Y[h->mbx * 2 + 1] = h->pred_mode_Y[8]; /* modify pred modes according to availability of neighbour samples */ if (!(h->flags & A_AVAIL)) { modify_pred(left_modifier_l, &h->pred_mode_Y[4]); modify_pred(left_modifier_l, &h->pred_mode_Y[7]); modify_pred(left_modifier_c, pred_mode_uv); } if (!(h->flags & B_AVAIL)) { modify_pred(top_modifier_l, &h->pred_mode_Y[4]); modify_pred(top_modifier_l, &h->pred_mode_Y[5]); modify_pred(top_modifier_c, pred_mode_uv); } } /***************************************************************************** * * motion compensation * ****************************************************************************/ static inline void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height, int delta, int list, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int src_x_offset, int src_y_offset, qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op, cavs_vector *mv) { const int mx = mv->x + src_x_offset * 8; const int my = mv->y + src_y_offset * 8; const int luma_xy = (mx & 3) + ((my & 3) << 2); uint8_t *src_y = pic->data[0] + (mx >> 2) + (my >> 2) * h->l_stride; uint8_t *src_cb = pic->data[1] + (mx >> 3) + (my >> 3) * h->c_stride; uint8_t *src_cr = pic->data[2] + (mx >> 3) + (my >> 3) * h->c_stride; int extra_width = 0; int extra_height = extra_width; const int full_mx = mx >> 2; const int full_my = my >> 2; const int pic_width = 16 * h->mb_width; const int pic_height = 16 * h->mb_height; int emu = 0; if (!pic->data[0]) return; if (mx & 7) extra_width -= 3; if (my & 7) extra_height -= 3; if (full_mx < 0 - extra_width || full_my < 0 - extra_height || full_mx + 16 /* FIXME */ > pic_width + extra_width || full_my + 16 /* FIXME */ > pic_height + extra_height) { h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_y - 2 - 2 * h->l_stride, h->l_stride, h->l_stride, 16 + 5, 16 + 5 /* FIXME */, full_mx - 2, full_my - 2, pic_width, pic_height); src_y = h->edge_emu_buffer + 2 + 2 * h->l_stride; emu = 1; } // FIXME try variable height perhaps? qpix_op[luma_xy](dest_y, src_y, h->l_stride); if (emu) { h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb, h->c_stride, h->c_stride, 9, 9 /* FIXME */, mx >> 3, my >> 3, pic_width >> 1, pic_height >> 1); src_cb = h->edge_emu_buffer; } chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx & 7, my & 7); if (emu) { h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr, h->c_stride, h->c_stride, 9, 9 /* FIXME */, mx >> 3, my >> 3, pic_width >> 1, pic_height >> 1); src_cr = h->edge_emu_buffer; } chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx & 7, my & 7); } static inline void mc_part_std(AVSContext *h, int chroma_height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, cavs_vector *mv) { qpel_mc_func *qpix_op = qpix_put; h264_chroma_mc_func chroma_op = chroma_put; dest_y += x_offset * 2 + y_offset * h->l_stride * 2; dest_cb += x_offset + y_offset * h->c_stride; dest_cr += x_offset + y_offset * h->c_stride; x_offset += 8 * h->mbx; y_offset += 8 * h->mby; if (mv->ref >= 0) { AVFrame *ref = h->DPB[mv->ref].f; mc_dir_part(h, ref, chroma_height, delta, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_op, chroma_op, mv); qpix_op = qpix_avg; chroma_op = chroma_avg; } if ((mv + MV_BWD_OFFS)->ref >= 0) { AVFrame *ref = h->DPB[0].f; mc_dir_part(h, ref, chroma_height, delta, 1, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_op, chroma_op, mv + MV_BWD_OFFS); } } void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type) { if (ff_cavs_partition_flags[mb_type] == 0) { // 16x16 mc_part_std(h, 8, 0, h->cy, h->cu, h->cv, 0, 0, h->cdsp.put_cavs_qpel_pixels_tab[0], h->h264chroma.put_h264_chroma_pixels_tab[0], h->cdsp.avg_cavs_qpel_pixels_tab[0], h->h264chroma.avg_h264_chroma_pixels_tab[0], &h->mv[MV_FWD_X0]); } else { mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 0, h->cdsp.put_cavs_qpel_pixels_tab[1], h->h264chroma.put_h264_chroma_pixels_tab[1], h->cdsp.avg_cavs_qpel_pixels_tab[1], h->h264chroma.avg_h264_chroma_pixels_tab[1], &h->mv[MV_FWD_X0]); mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 0, h->cdsp.put_cavs_qpel_pixels_tab[1], h->h264chroma.put_h264_chroma_pixels_tab[1], h->cdsp.avg_cavs_qpel_pixels_tab[1], h->h264chroma.avg_h264_chroma_pixels_tab[1], &h->mv[MV_FWD_X1]); mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 4, h->cdsp.put_cavs_qpel_pixels_tab[1], h->h264chroma.put_h264_chroma_pixels_tab[1], h->cdsp.avg_cavs_qpel_pixels_tab[1], h->h264chroma.avg_h264_chroma_pixels_tab[1], &h->mv[MV_FWD_X2]); mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 4, h->cdsp.put_cavs_qpel_pixels_tab[1], h->h264chroma.put_h264_chroma_pixels_tab[1], h->cdsp.avg_cavs_qpel_pixels_tab[1], h->h264chroma.avg_h264_chroma_pixels_tab[1], &h->mv[MV_FWD_X3]); } } /***************************************************************************** * * motion vector prediction * ****************************************************************************/ static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, cavs_vector *src, int distp) { int den = h->scale_den[src->ref]; *d_x = (src->x * distp * den + 256 + (src->x >> 31)) >> 9; *d_y = (src->y * distp * den + 256 + (src->y >> 31)) >> 9; } static inline void mv_pred_median(AVSContext *h, cavs_vector *mvP, cavs_vector *mvA, cavs_vector *mvB, cavs_vector *mvC) { int ax, ay, bx, by, cx, cy; int len_ab, len_bc, len_ca, len_mid; /* scale candidates according to their temporal span */ scale_mv(h, &ax, &ay, mvA, mvP->dist); scale_mv(h, &bx, &by, mvB, mvP->dist); scale_mv(h, &cx, &cy, mvC, mvP->dist); /* find the geometrical median of the three candidates */ len_ab = abs(ax - bx) + abs(ay - by); len_bc = abs(bx - cx) + abs(by - cy); len_ca = abs(cx - ax) + abs(cy - ay); len_mid = mid_pred(len_ab, len_bc, len_ca); if (len_mid == len_ab) { mvP->x = cx; mvP->y = cy; } else if (len_mid == len_bc) { mvP->x = ax; mvP->y = ay; } else { mvP->x = bx; mvP->y = by; } } void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC, enum cavs_mv_pred mode, enum cavs_block size, int ref) { cavs_vector *mvP = &h->mv[nP]; cavs_vector *mvA = &h->mv[nP-1]; cavs_vector *mvB = &h->mv[nP-4]; cavs_vector *mvC = &h->mv[nC]; const cavs_vector *mvP2 = NULL; mvP->ref = ref; mvP->dist = h->dist[mvP->ref]; if (mvC->ref == NOT_AVAIL) mvC = &h->mv[nP - 5]; // set to top-left (mvD) if (mode == MV_PRED_PSKIP && (mvA->ref == NOT_AVAIL || mvB->ref == NOT_AVAIL || (mvA->x | mvA->y | mvA->ref) == 0 || (mvB->x | mvB->y | mvB->ref) == 0)) { mvP2 = &un_mv; /* if there is only one suitable candidate, take it */ } else if (mvA->ref >= 0 && mvB->ref < 0 && mvC->ref < 0) { mvP2 = mvA; } else if (mvA->ref < 0 && mvB->ref >= 0 && mvC->ref < 0) { mvP2 = mvB; } else if (mvA->ref < 0 && mvB->ref < 0 && mvC->ref >= 0) { mvP2 = mvC; } else if (mode == MV_PRED_LEFT && mvA->ref == ref) { mvP2 = mvA; } else if (mode == MV_PRED_TOP && mvB->ref == ref) { mvP2 = mvB; } else if (mode == MV_PRED_TOPRIGHT && mvC->ref == ref) { mvP2 = mvC; } if (mvP2) { mvP->x = mvP2->x; mvP->y = mvP2->y; } else mv_pred_median(h, mvP, mvA, mvB, mvC); if (mode < MV_PRED_PSKIP) { mvP->x += get_se_golomb(&h->gb); mvP->y += get_se_golomb(&h->gb); } set_mvs(mvP, size); } /***************************************************************************** * * macroblock level * ****************************************************************************/ /** * initialise predictors for motion vectors and intra prediction */ void ff_cavs_init_mb(AVSContext *h) { int i; /* copy predictors from top line (MB B and C) into cache */ for (i = 0; i < 3; i++) { h->mv[MV_FWD_B2 + i] = h->top_mv[0][h->mbx * 2 + i]; h->mv[MV_BWD_B2 + i] = h->top_mv[1][h->mbx * 2 + i]; } h->pred_mode_Y[1] = h->top_pred_Y[h->mbx * 2 + 0]; h->pred_mode_Y[2] = h->top_pred_Y[h->mbx * 2 + 1]; /* clear top predictors if MB B is not available */ if (!(h->flags & B_AVAIL)) { h->mv[MV_FWD_B2] = un_mv; h->mv[MV_FWD_B3] = un_mv; h->mv[MV_BWD_B2] = un_mv; h->mv[MV_BWD_B3] = un_mv; h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL; h->flags &= ~(C_AVAIL | D_AVAIL); } else if (h->mbx) { h->flags |= D_AVAIL; } if (h->mbx == h->mb_width - 1) // MB C not available h->flags &= ~C_AVAIL; /* clear top-right predictors if MB C is not available */ if (!(h->flags & C_AVAIL)) { h->mv[MV_FWD_C2] = un_mv; h->mv[MV_BWD_C2] = un_mv; } /* clear top-left predictors if MB D is not available */ if (!(h->flags & D_AVAIL)) { h->mv[MV_FWD_D3] = un_mv; h->mv[MV_BWD_D3] = un_mv; } } /** * save predictors for later macroblocks and increase * macroblock address * @return 0 if end of frame is reached, 1 otherwise */ int ff_cavs_next_mb(AVSContext *h) { int i; h->flags |= A_AVAIL; h->cy += 16; h->cu += 8; h->cv += 8; /* copy mvs as predictors to the left */ for (i = 0; i <= 20; i += 4) h->mv[i] = h->mv[i + 2]; /* copy bottom mvs from cache to top line */ h->top_mv[0][h->mbx * 2 + 0] = h->mv[MV_FWD_X2]; h->top_mv[0][h->mbx * 2 + 1] = h->mv[MV_FWD_X3]; h->top_mv[1][h->mbx * 2 + 0] = h->mv[MV_BWD_X2]; h->top_mv[1][h->mbx * 2 + 1] = h->mv[MV_BWD_X3]; /* next MB address */ h->mbidx++; h->mbx++; if (h->mbx == h->mb_width) { // New mb line h->flags = B_AVAIL | C_AVAIL; /* clear left pred_modes */ h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL; /* clear left mv predictors */ for (i = 0; i <= 20; i += 4) h->mv[i] = un_mv; h->mbx = 0; h->mby++; /* re-calculate sample pointers */ h->cy = h->cur.f->data[0] + h->mby * 16 * h->l_stride; h->cu = h->cur.f->data[1] + h->mby * 8 * h->c_stride; h->cv = h->cur.f->data[2] + h->mby * 8 * h->c_stride; if (h->mby == h->mb_height) { // Frame end return 0; } } return 1; } /***************************************************************************** * * frame level * ****************************************************************************/ int ff_cavs_init_pic(AVSContext *h) { int i; /* clear some predictors */ for (i = 0; i <= 20; i += 4) h->mv[i] = un_mv; h->mv[MV_BWD_X0] = ff_cavs_dir_mv; set_mvs(&h->mv[MV_BWD_X0], BLK_16X16); h->mv[MV_FWD_X0] = ff_cavs_dir_mv; set_mvs(&h->mv[MV_FWD_X0], BLK_16X16); h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL; h->cy = h->cur.f->data[0]; h->cu = h->cur.f->data[1]; h->cv = h->cur.f->data[2]; h->l_stride = h->cur.f->linesize[0]; h->c_stride = h->cur.f->linesize[1]; h->luma_scan[2] = 8 * h->l_stride; h->luma_scan[3] = 8 * h->l_stride + 8; h->mbx = h->mby = h->mbidx = 0; h->flags = 0; return 0; } /***************************************************************************** * * headers and interface * ****************************************************************************/ /** * some predictions require data from the top-neighbouring macroblock. * this data has to be stored for one complete row of macroblocks * and this storage space is allocated here */ void ff_cavs_init_top_lines(AVSContext *h) { /* alloc top line of predictors */ h->top_qp = av_mallocz(h->mb_width); h->top_mv[0] = av_mallocz((h->mb_width * 2 + 1) * sizeof(cavs_vector)); h->top_mv[1] = av_mallocz((h->mb_width * 2 + 1) * sizeof(cavs_vector)); h->top_pred_Y = av_mallocz(h->mb_width * 2 * sizeof(*h->top_pred_Y)); h->top_border_y = av_mallocz((h->mb_width + 1) * 16); h->top_border_u = av_mallocz(h->mb_width * 10); h->top_border_v = av_mallocz(h->mb_width * 10); /* alloc space for co-located MVs and types */ h->col_mv = av_mallocz(h->mb_width * h->mb_height * 4 * sizeof(cavs_vector)); h->col_type_base = av_mallocz(h->mb_width * h->mb_height); h->block = av_mallocz(64 * sizeof(int16_t)); } av_cold int ff_cavs_init(AVCodecContext *avctx) { AVSContext *h = avctx->priv_data; ff_dsputil_init(&h->dsp, avctx); ff_h264chroma_init(&h->h264chroma, 8); ff_videodsp_init(&h->vdsp, 8); ff_cavsdsp_init(&h->cdsp, avctx); ff_init_scantable_permutation(h->dsp.idct_permutation, h->cdsp.idct_perm); ff_init_scantable(h->dsp.idct_permutation, &h->scantable, ff_zigzag_direct); h->avctx = avctx; avctx->pix_fmt = AV_PIX_FMT_YUV420P; h->cur.f = av_frame_alloc(); h->DPB[0].f = av_frame_alloc(); h->DPB[1].f = av_frame_alloc(); if (!h->cur.f || !h->DPB[0].f || !h->DPB[1].f) { ff_cavs_end(avctx); return AVERROR(ENOMEM); } h->luma_scan[0] = 0; h->luma_scan[1] = 8; h->intra_pred_l[INTRA_L_VERT] = intra_pred_vert; h->intra_pred_l[INTRA_L_HORIZ] = intra_pred_horiz; h->intra_pred_l[INTRA_L_LP] = intra_pred_lp; h->intra_pred_l[INTRA_L_DOWN_LEFT] = intra_pred_down_left; h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right; h->intra_pred_l[INTRA_L_LP_LEFT] = intra_pred_lp_left; h->intra_pred_l[INTRA_L_LP_TOP] = intra_pred_lp_top; h->intra_pred_l[INTRA_L_DC_128] = intra_pred_dc_128; h->intra_pred_c[INTRA_C_LP] = intra_pred_lp; h->intra_pred_c[INTRA_C_HORIZ] = intra_pred_horiz; h->intra_pred_c[INTRA_C_VERT] = intra_pred_vert; h->intra_pred_c[INTRA_C_PLANE] = intra_pred_plane; h->intra_pred_c[INTRA_C_LP_LEFT] = intra_pred_lp_left; h->intra_pred_c[INTRA_C_LP_TOP] = intra_pred_lp_top; h->intra_pred_c[INTRA_C_DC_128] = intra_pred_dc_128; h->mv[7] = un_mv; h->mv[19] = un_mv; return 0; } av_cold int ff_cavs_end(AVCodecContext *avctx) { AVSContext *h = avctx->priv_data; av_frame_free(&h->cur.f); av_frame_free(&h->DPB[0].f); av_frame_free(&h->DPB[1].f); av_free(h->top_qp); av_free(h->top_mv[0]); av_free(h->top_mv[1]); av_free(h->top_pred_Y); av_free(h->top_border_y); av_free(h->top_border_u); av_free(h->top_border_v); av_free(h->col_mv); av_free(h->col_type_base); av_free(h->block); av_freep(&h->edge_emu_buffer); return 0; }