/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include <stddef.h> #include <string.h> #include "libavutil/attributes.h" #include "libavutil/macros.h" #include "libavutil/mem.h" #include "libavutil/tx.h" #include "avfft.h" typedef struct AVTXWrapper { AVTXContext *ctx; av_tx_fn fn; AVTXContext *ctx2; av_tx_fn fn2; ptrdiff_t stride; int len; int inv; float *tmp; int out_of_place; } AVTXWrapper; /* FFT */ FFTContext *av_fft_init(int nbits, int inverse) { int ret; float scale = 1.0f; AVTXWrapper *s = av_mallocz(sizeof(*s)); if (!s) return NULL; ret = av_tx_init(&s->ctx, &s->fn, AV_TX_FLOAT_FFT, inverse, 1 << nbits, &scale, AV_TX_INPLACE); if (ret < 0) { av_free(s); return NULL; } return (FFTContext *)s; } void av_fft_permute(FFTContext *s, FFTComplex *z) { /* Empty */ } void av_fft_calc(FFTContext *s, FFTComplex *z) { AVTXWrapper *w = (AVTXWrapper *)s; w->fn(w->ctx, z, (void *)z, sizeof(AVComplexFloat)); } av_cold void av_fft_end(FFTContext *s) { if (s) { AVTXWrapper *w = (AVTXWrapper *)s; av_tx_uninit(&w->ctx); av_tx_uninit(&w->ctx2); av_free(w); } } FFTContext *av_mdct_init(int nbits, int inverse, double scale) { int ret; float scale_f = scale; AVTXWrapper *s = av_mallocz(sizeof(*s)); if (!s) return NULL; ret = av_tx_init(&s->ctx, &s->fn, AV_TX_FLOAT_MDCT, inverse, 1 << (nbits - 1), &scale_f, 0); if (ret < 0) { av_free(s); return NULL; } if (inverse) { ret = av_tx_init(&s->ctx2, &s->fn2, AV_TX_FLOAT_MDCT, inverse, 1 << (nbits - 1), &scale_f, AV_TX_FULL_IMDCT); if (ret < 0) { av_tx_uninit(&s->ctx); av_free(s); return NULL; } } return (FFTContext *)s; } void av_imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input) { AVTXWrapper *w = (AVTXWrapper *)s; w->fn2(w->ctx2, output, (void *)input, sizeof(float)); } void av_imdct_half(FFTContext *s, FFTSample *output, const FFTSample *input) { AVTXWrapper *w = (AVTXWrapper *)s; w->fn(w->ctx, output, (void *)input, sizeof(float)); } void av_mdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input) { AVTXWrapper *w = (AVTXWrapper *)s; w->fn(w->ctx, output, (void *)input, sizeof(float)); } av_cold void av_mdct_end(FFTContext *s) { if (s) { AVTXWrapper *w = (AVTXWrapper *)s; av_tx_uninit(&w->ctx2); av_tx_uninit(&w->ctx); av_free(w); } } RDFTContext *av_rdft_init(int nbits, enum RDFTransformType trans) { int ret; float scale = trans == IDFT_C2R ? 0.5f : 1.0f; AVTXWrapper *s; /* The other 2 modes are unconventional, do not form an orthogonal * transform, have never been useful, and so they're not implemented. */ if (trans != IDFT_C2R && trans != DFT_R2C) return NULL; s = av_mallocz(sizeof(*s)); if (!s) return NULL; ret = av_tx_init(&s->ctx, &s->fn, AV_TX_FLOAT_RDFT, trans == IDFT_C2R, 1 << nbits, &scale, 0x0); if (ret < 0) { av_free(s); return NULL; } s->stride = (trans == DFT_C2R) ? sizeof(AVComplexFloat) : sizeof(float); s->len = 1 << nbits; s->inv = trans == IDFT_C2R; s->tmp = av_malloc((s->len + 2)*sizeof(float)); if (!s->tmp) { av_tx_uninit(&s->ctx); av_free(s); return NULL; } return (RDFTContext *)s; } void av_rdft_calc(RDFTContext *s, FFTSample *data) { AVTXWrapper *w = (AVTXWrapper *)s; float *src = w->inv ? w->tmp : (float *)data; float *dst = w->inv ? (float *)data : w->tmp; if (w->inv) { memcpy(src, data, w->len*sizeof(float)); src[w->len] = src[1]; src[1] = 0.0f; } w->fn(w->ctx, dst, (void *)src, w->stride); if (!w->inv) { dst[1] = dst[w->len]; memcpy(data, dst, w->len*sizeof(float)); } } av_cold void av_rdft_end(RDFTContext *s) { if (s) { AVTXWrapper *w = (AVTXWrapper *)s; av_tx_uninit(&w->ctx); av_free(w->tmp); av_free(w); } } DCTContext *av_dct_init(int nbits, enum DCTTransformType inverse) { int ret; const float scale_map[] = { [DCT_II] = 0.5f, [DCT_III] = 1.0f / (1 << nbits), [DCT_I] = 0.5f, [DST_I] = 2.0f, }; static const enum AVTXType type_map[] = { [DCT_II] = AV_TX_FLOAT_DCT, [DCT_III] = AV_TX_FLOAT_DCT, [DCT_I] = AV_TX_FLOAT_DCT_I, [DST_I] = AV_TX_FLOAT_DST_I, }; AVTXWrapper *s = av_mallocz(sizeof(*s)); if (!s) return NULL; s->len = (1 << nbits); s->out_of_place = (inverse == DCT_I) || (inverse == DST_I); ret = av_tx_init(&s->ctx, &s->fn, type_map[inverse], (inverse == DCT_III), 1 << (nbits - (inverse == DCT_III)), &scale_map[inverse], s->out_of_place ? 0 : AV_TX_INPLACE); if (ret < 0) { av_free(s); return NULL; } if (s->out_of_place) { s->tmp = av_malloc((1 << (nbits + 1))*sizeof(float)); if (!s->tmp) { av_tx_uninit(&s->ctx); av_free(s); return NULL; } } return (DCTContext *)s; } void av_dct_calc(DCTContext *s, FFTSample *data) { AVTXWrapper *w = (AVTXWrapper *)s; if (w->out_of_place) { memcpy(w->tmp, data, w->len*sizeof(float)); w->fn(w->ctx, (void *)data, w->tmp, sizeof(float)); } else { w->fn(w->ctx, data, (void *)data, sizeof(float)); } } av_cold void av_dct_end(DCTContext *s) { if (s) { AVTXWrapper *w = (AVTXWrapper *)s; av_tx_uninit(&w->ctx); av_free(w->tmp); av_free(w); } }