/* * ASUS V1/V2 codec * Copyright (c) 2003 Michael Niedermayer * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * ASUS V1/V2 codec. */ #include "avcodec.h" #include "libavutil/common.h" #include "put_bits.h" #include "dsputil.h" #include "mpeg12data.h" //#undef NDEBUG //#include <assert.h> #define VLC_BITS 6 #define ASV2_LEVEL_VLC_BITS 10 typedef struct ASV1Context{ AVCodecContext *avctx; DSPContext dsp; AVFrame picture; PutBitContext pb; GetBitContext gb; ScanTable scantable; int inv_qscale; int mb_width; int mb_height; int mb_width2; int mb_height2; DECLARE_ALIGNED(16, DCTELEM, block)[6][64]; uint16_t intra_matrix[64]; int q_intra_matrix[64]; uint8_t *bitstream_buffer; unsigned int bitstream_buffer_size; } ASV1Context; static const uint8_t scantab[64]={ 0x00,0x08,0x01,0x09,0x10,0x18,0x11,0x19, 0x02,0x0A,0x03,0x0B,0x12,0x1A,0x13,0x1B, 0x04,0x0C,0x05,0x0D,0x20,0x28,0x21,0x29, 0x06,0x0E,0x07,0x0F,0x14,0x1C,0x15,0x1D, 0x22,0x2A,0x23,0x2B,0x30,0x38,0x31,0x39, 0x16,0x1E,0x17,0x1F,0x24,0x2C,0x25,0x2D, 0x32,0x3A,0x33,0x3B,0x26,0x2E,0x27,0x2F, 0x34,0x3C,0x35,0x3D,0x36,0x3E,0x37,0x3F, }; static const uint8_t ccp_tab[17][2]={ {0x2,2}, {0x7,5}, {0xB,5}, {0x3,5}, {0xD,5}, {0x5,5}, {0x9,5}, {0x1,5}, {0xE,5}, {0x6,5}, {0xA,5}, {0x2,5}, {0xC,5}, {0x4,5}, {0x8,5}, {0x3,2}, {0xF,5}, //EOB }; static const uint8_t level_tab[7][2]={ {3,4}, {3,3}, {3,2}, {0,3}, {2,2}, {2,3}, {2,4} }; static const uint8_t dc_ccp_tab[8][2]={ {0x1,2}, {0xD,4}, {0xF,4}, {0xC,4}, {0x5,3}, {0xE,4}, {0x4,3}, {0x0,2}, }; static const uint8_t ac_ccp_tab[16][2]={ {0x00,2}, {0x3B,6}, {0x0A,4}, {0x3A,6}, {0x02,3}, {0x39,6}, {0x3C,6}, {0x38,6}, {0x03,3}, {0x3D,6}, {0x08,4}, {0x1F,5}, {0x09,4}, {0x0B,4}, {0x0D,4}, {0x0C,4}, }; static const uint8_t asv2_level_tab[63][2]={ {0x3F,10},{0x2F,10},{0x37,10},{0x27,10},{0x3B,10},{0x2B,10},{0x33,10},{0x23,10}, {0x3D,10},{0x2D,10},{0x35,10},{0x25,10},{0x39,10},{0x29,10},{0x31,10},{0x21,10}, {0x1F, 8},{0x17, 8},{0x1B, 8},{0x13, 8},{0x1D, 8},{0x15, 8},{0x19, 8},{0x11, 8}, {0x0F, 6},{0x0B, 6},{0x0D, 6},{0x09, 6}, {0x07, 4},{0x05, 4}, {0x03, 2}, {0x00, 5}, {0x02, 2}, {0x04, 4},{0x06, 4}, {0x08, 6},{0x0C, 6},{0x0A, 6},{0x0E, 6}, {0x10, 8},{0x18, 8},{0x14, 8},{0x1C, 8},{0x12, 8},{0x1A, 8},{0x16, 8},{0x1E, 8}, {0x20,10},{0x30,10},{0x28,10},{0x38,10},{0x24,10},{0x34,10},{0x2C,10},{0x3C,10}, {0x22,10},{0x32,10},{0x2A,10},{0x3A,10},{0x26,10},{0x36,10},{0x2E,10},{0x3E,10}, }; static VLC ccp_vlc; static VLC level_vlc; static VLC dc_ccp_vlc; static VLC ac_ccp_vlc; static VLC asv2_level_vlc; static av_cold void init_vlcs(ASV1Context *a){ static int done = 0; if (!done) { done = 1; INIT_VLC_STATIC(&ccp_vlc, VLC_BITS, 17, &ccp_tab[0][1], 2, 1, &ccp_tab[0][0], 2, 1, 64); INIT_VLC_STATIC(&dc_ccp_vlc, VLC_BITS, 8, &dc_ccp_tab[0][1], 2, 1, &dc_ccp_tab[0][0], 2, 1, 64); INIT_VLC_STATIC(&ac_ccp_vlc, VLC_BITS, 16, &ac_ccp_tab[0][1], 2, 1, &ac_ccp_tab[0][0], 2, 1, 64); INIT_VLC_STATIC(&level_vlc, VLC_BITS, 7, &level_tab[0][1], 2, 1, &level_tab[0][0], 2, 1, 64); INIT_VLC_STATIC(&asv2_level_vlc, ASV2_LEVEL_VLC_BITS, 63, &asv2_level_tab[0][1], 2, 1, &asv2_level_tab[0][0], 2, 1, 1024); } } //FIXME write a reversed bitstream reader to avoid the double reverse static inline int asv2_get_bits(GetBitContext *gb, int n){ return av_reverse[ get_bits(gb, n) << (8-n) ]; } static inline void asv2_put_bits(PutBitContext *pb, int n, int v){ put_bits(pb, n, av_reverse[ v << (8-n) ]); } static inline int asv1_get_level(GetBitContext *gb){ int code= get_vlc2(gb, level_vlc.table, VLC_BITS, 1); if(code==3) return get_sbits(gb, 8); else return code - 3; } static inline int asv2_get_level(GetBitContext *gb){ int code= get_vlc2(gb, asv2_level_vlc.table, ASV2_LEVEL_VLC_BITS, 1); if(code==31) return (int8_t)asv2_get_bits(gb, 8); else return code - 31; } static inline void asv1_put_level(PutBitContext *pb, int level){ unsigned int index= level + 3; if(index <= 6) put_bits(pb, level_tab[index][1], level_tab[index][0]); else{ put_bits(pb, level_tab[3][1], level_tab[3][0]); put_sbits(pb, 8, level); } } static inline void asv2_put_level(PutBitContext *pb, int level){ unsigned int index= level + 31; if(index <= 62) put_bits(pb, asv2_level_tab[index][1], asv2_level_tab[index][0]); else{ put_bits(pb, asv2_level_tab[31][1], asv2_level_tab[31][0]); asv2_put_bits(pb, 8, level&0xFF); } } static inline int asv1_decode_block(ASV1Context *a, DCTELEM block[64]){ int i; block[0]= 8*get_bits(&a->gb, 8); for(i=0; i<11; i++){ const int ccp= get_vlc2(&a->gb, ccp_vlc.table, VLC_BITS, 1); if(ccp){ if(ccp == 16) break; if(ccp < 0 || i>=10){ av_log(a->avctx, AV_LOG_ERROR, "coded coeff pattern damaged\n"); return -1; } if(ccp&8) block[a->scantable.permutated[4*i+0]]= (asv1_get_level(&a->gb) * a->intra_matrix[4*i+0])>>4; if(ccp&4) block[a->scantable.permutated[4*i+1]]= (asv1_get_level(&a->gb) * a->intra_matrix[4*i+1])>>4; if(ccp&2) block[a->scantable.permutated[4*i+2]]= (asv1_get_level(&a->gb) * a->intra_matrix[4*i+2])>>4; if(ccp&1) block[a->scantable.permutated[4*i+3]]= (asv1_get_level(&a->gb) * a->intra_matrix[4*i+3])>>4; } } return 0; } static inline int asv2_decode_block(ASV1Context *a, DCTELEM block[64]){ int i, count, ccp; count= asv2_get_bits(&a->gb, 4); block[0]= 8*asv2_get_bits(&a->gb, 8); ccp= get_vlc2(&a->gb, dc_ccp_vlc.table, VLC_BITS, 1); if(ccp){ if(ccp&4) block[a->scantable.permutated[1]]= (asv2_get_level(&a->gb) * a->intra_matrix[1])>>4; if(ccp&2) block[a->scantable.permutated[2]]= (asv2_get_level(&a->gb) * a->intra_matrix[2])>>4; if(ccp&1) block[a->scantable.permutated[3]]= (asv2_get_level(&a->gb) * a->intra_matrix[3])>>4; } for(i=1; i<count+1; i++){ const int ccp= get_vlc2(&a->gb, ac_ccp_vlc.table, VLC_BITS, 1); if(ccp){ if(ccp&8) block[a->scantable.permutated[4*i+0]]= (asv2_get_level(&a->gb) * a->intra_matrix[4*i+0])>>4; if(ccp&4) block[a->scantable.permutated[4*i+1]]= (asv2_get_level(&a->gb) * a->intra_matrix[4*i+1])>>4; if(ccp&2) block[a->scantable.permutated[4*i+2]]= (asv2_get_level(&a->gb) * a->intra_matrix[4*i+2])>>4; if(ccp&1) block[a->scantable.permutated[4*i+3]]= (asv2_get_level(&a->gb) * a->intra_matrix[4*i+3])>>4; } } return 0; } static inline void asv1_encode_block(ASV1Context *a, DCTELEM block[64]){ int i; int nc_count=0; put_bits(&a->pb, 8, (block[0] + 32)>>6); block[0]= 0; for(i=0; i<10; i++){ const int index= scantab[4*i]; int ccp=0; if( (block[index + 0] = (block[index + 0]*a->q_intra_matrix[index + 0] + (1<<15))>>16) ) ccp |= 8; if( (block[index + 8] = (block[index + 8]*a->q_intra_matrix[index + 8] + (1<<15))>>16) ) ccp |= 4; if( (block[index + 1] = (block[index + 1]*a->q_intra_matrix[index + 1] + (1<<15))>>16) ) ccp |= 2; if( (block[index + 9] = (block[index + 9]*a->q_intra_matrix[index + 9] + (1<<15))>>16) ) ccp |= 1; if(ccp){ for(;nc_count; nc_count--) put_bits(&a->pb, ccp_tab[0][1], ccp_tab[0][0]); put_bits(&a->pb, ccp_tab[ccp][1], ccp_tab[ccp][0]); if(ccp&8) asv1_put_level(&a->pb, block[index + 0]); if(ccp&4) asv1_put_level(&a->pb, block[index + 8]); if(ccp&2) asv1_put_level(&a->pb, block[index + 1]); if(ccp&1) asv1_put_level(&a->pb, block[index + 9]); }else{ nc_count++; } } put_bits(&a->pb, ccp_tab[16][1], ccp_tab[16][0]); } static inline void asv2_encode_block(ASV1Context *a, DCTELEM block[64]){ int i; int count=0; for(count=63; count>3; count--){ const int index= scantab[count]; if( (block[index]*a->q_intra_matrix[index] + (1<<15))>>16 ) break; } count >>= 2; asv2_put_bits(&a->pb, 4, count); asv2_put_bits(&a->pb, 8, (block[0] + 32)>>6); block[0]= 0; for(i=0; i<=count; i++){ const int index= scantab[4*i]; int ccp=0; if( (block[index + 0] = (block[index + 0]*a->q_intra_matrix[index + 0] + (1<<15))>>16) ) ccp |= 8; if( (block[index + 8] = (block[index + 8]*a->q_intra_matrix[index + 8] + (1<<15))>>16) ) ccp |= 4; if( (block[index + 1] = (block[index + 1]*a->q_intra_matrix[index + 1] + (1<<15))>>16) ) ccp |= 2; if( (block[index + 9] = (block[index + 9]*a->q_intra_matrix[index + 9] + (1<<15))>>16) ) ccp |= 1; assert(i || ccp<8); if(i) put_bits(&a->pb, ac_ccp_tab[ccp][1], ac_ccp_tab[ccp][0]); else put_bits(&a->pb, dc_ccp_tab[ccp][1], dc_ccp_tab[ccp][0]); if(ccp){ if(ccp&8) asv2_put_level(&a->pb, block[index + 0]); if(ccp&4) asv2_put_level(&a->pb, block[index + 8]); if(ccp&2) asv2_put_level(&a->pb, block[index + 1]); if(ccp&1) asv2_put_level(&a->pb, block[index + 9]); } } } static inline int decode_mb(ASV1Context *a, DCTELEM block[6][64]){ int i; a->dsp.clear_blocks(block[0]); if(a->avctx->codec_id == CODEC_ID_ASV1){ for(i=0; i<6; i++){ if( asv1_decode_block(a, block[i]) < 0) return -1; } }else{ for(i=0; i<6; i++){ if( asv2_decode_block(a, block[i]) < 0) return -1; } } return 0; } #define MAX_MB_SIZE (30*16*16*3/2/8) static inline int encode_mb(ASV1Context *a, DCTELEM block[6][64]){ int i; if (a->pb.buf_end - a->pb.buf - (put_bits_count(&a->pb)>>3) < MAX_MB_SIZE) { av_log(a->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } if(a->avctx->codec_id == CODEC_ID_ASV1){ for(i=0; i<6; i++) asv1_encode_block(a, block[i]); }else{ for(i=0; i<6; i++) asv2_encode_block(a, block[i]); } return 0; } static inline void idct_put(ASV1Context *a, int mb_x, int mb_y){ DCTELEM (*block)[64]= a->block; int linesize= a->picture.linesize[0]; uint8_t *dest_y = a->picture.data[0] + (mb_y * 16* linesize ) + mb_x * 16; uint8_t *dest_cb = a->picture.data[1] + (mb_y * 8 * a->picture.linesize[1]) + mb_x * 8; uint8_t *dest_cr = a->picture.data[2] + (mb_y * 8 * a->picture.linesize[2]) + mb_x * 8; a->dsp.idct_put(dest_y , linesize, block[0]); a->dsp.idct_put(dest_y + 8, linesize, block[1]); a->dsp.idct_put(dest_y + 8*linesize , linesize, block[2]); a->dsp.idct_put(dest_y + 8*linesize + 8, linesize, block[3]); if(!(a->avctx->flags&CODEC_FLAG_GRAY)){ a->dsp.idct_put(dest_cb, a->picture.linesize[1], block[4]); a->dsp.idct_put(dest_cr, a->picture.linesize[2], block[5]); } } static inline void dct_get(ASV1Context *a, int mb_x, int mb_y){ DCTELEM (*block)[64]= a->block; int linesize= a->picture.linesize[0]; int i; uint8_t *ptr_y = a->picture.data[0] + (mb_y * 16* linesize ) + mb_x * 16; uint8_t *ptr_cb = a->picture.data[1] + (mb_y * 8 * a->picture.linesize[1]) + mb_x * 8; uint8_t *ptr_cr = a->picture.data[2] + (mb_y * 8 * a->picture.linesize[2]) + mb_x * 8; a->dsp.get_pixels(block[0], ptr_y , linesize); a->dsp.get_pixels(block[1], ptr_y + 8, linesize); a->dsp.get_pixels(block[2], ptr_y + 8*linesize , linesize); a->dsp.get_pixels(block[3], ptr_y + 8*linesize + 8, linesize); for(i=0; i<4; i++) a->dsp.fdct(block[i]); if(!(a->avctx->flags&CODEC_FLAG_GRAY)){ a->dsp.get_pixels(block[4], ptr_cb, a->picture.linesize[1]); a->dsp.get_pixels(block[5], ptr_cr, a->picture.linesize[2]); for(i=4; i<6; i++) a->dsp.fdct(block[i]); } } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; ASV1Context * const a = avctx->priv_data; AVFrame *picture = data; AVFrame * const p= &a->picture; int mb_x, mb_y; if(p->data[0]) avctx->release_buffer(avctx, p); p->reference= 0; if(avctx->get_buffer(avctx, p) < 0){ av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return -1; } p->pict_type= AV_PICTURE_TYPE_I; p->key_frame= 1; av_fast_padded_malloc(&a->bitstream_buffer, &a->bitstream_buffer_size, buf_size); if (!a->bitstream_buffer) return AVERROR(ENOMEM); if(avctx->codec_id == CODEC_ID_ASV1) a->dsp.bswap_buf((uint32_t*)a->bitstream_buffer, (const uint32_t*)buf, buf_size/4); else{ int i; for(i=0; i<buf_size; i++) a->bitstream_buffer[i]= av_reverse[ buf[i] ]; } init_get_bits(&a->gb, a->bitstream_buffer, buf_size*8); for(mb_y=0; mb_y<a->mb_height2; mb_y++){ for(mb_x=0; mb_x<a->mb_width2; mb_x++){ if( decode_mb(a, a->block) <0) return -1; idct_put(a, mb_x, mb_y); } } if(a->mb_width2 != a->mb_width){ mb_x= a->mb_width2; for(mb_y=0; mb_y<a->mb_height2; mb_y++){ if( decode_mb(a, a->block) <0) return -1; idct_put(a, mb_x, mb_y); } } if(a->mb_height2 != a->mb_height){ mb_y= a->mb_height2; for(mb_x=0; mb_x<a->mb_width; mb_x++){ if( decode_mb(a, a->block) <0) return -1; idct_put(a, mb_x, mb_y); } } *picture = a->picture; *data_size = sizeof(AVPicture); emms_c(); return (get_bits_count(&a->gb)+31)/32*4; } #if CONFIG_ASV1_ENCODER || CONFIG_ASV2_ENCODER static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet) { ASV1Context * const a = avctx->priv_data; AVFrame * const p= &a->picture; int size, ret; int mb_x, mb_y; if (!pkt->data && (ret = av_new_packet(pkt, a->mb_height*a->mb_width*MAX_MB_SIZE + FF_MIN_BUFFER_SIZE)) < 0) { av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n"); return ret; } init_put_bits(&a->pb, pkt->data, pkt->size); *p = *pict; p->pict_type= AV_PICTURE_TYPE_I; p->key_frame= 1; for(mb_y=0; mb_y<a->mb_height2; mb_y++){ for(mb_x=0; mb_x<a->mb_width2; mb_x++){ dct_get(a, mb_x, mb_y); encode_mb(a, a->block); } } if(a->mb_width2 != a->mb_width){ mb_x= a->mb_width2; for(mb_y=0; mb_y<a->mb_height2; mb_y++){ dct_get(a, mb_x, mb_y); encode_mb(a, a->block); } } if(a->mb_height2 != a->mb_height){ mb_y= a->mb_height2; for(mb_x=0; mb_x<a->mb_width; mb_x++){ dct_get(a, mb_x, mb_y); encode_mb(a, a->block); } } emms_c(); avpriv_align_put_bits(&a->pb); while(put_bits_count(&a->pb)&31) put_bits(&a->pb, 8, 0); size= put_bits_count(&a->pb)/32; if(avctx->codec_id == CODEC_ID_ASV1) a->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size); else{ int i; for(i=0; i<4*size; i++) pkt->data[i] = av_reverse[pkt->data[i]]; } pkt->size = size*4; pkt->flags |= AV_PKT_FLAG_KEY; *got_packet = 1; return 0; } #endif /* CONFIG_ASV1_ENCODER || CONFIG_ASV2_ENCODER */ static av_cold void common_init(AVCodecContext *avctx){ ASV1Context * const a = avctx->priv_data; ff_dsputil_init(&a->dsp, avctx); a->mb_width = (avctx->width + 15) / 16; a->mb_height = (avctx->height + 15) / 16; a->mb_width2 = (avctx->width + 0) / 16; a->mb_height2 = (avctx->height + 0) / 16; avctx->coded_frame= &a->picture; a->avctx= avctx; } static av_cold int decode_init(AVCodecContext *avctx){ ASV1Context * const a = avctx->priv_data; AVFrame *p= &a->picture; int i; const int scale= avctx->codec_id == CODEC_ID_ASV1 ? 1 : 2; common_init(avctx); init_vlcs(a); ff_init_scantable(a->dsp.idct_permutation, &a->scantable, scantab); avctx->pix_fmt= PIX_FMT_YUV420P; a->inv_qscale= avctx->extradata[0]; if(a->inv_qscale == 0){ av_log(avctx, AV_LOG_ERROR, "illegal qscale 0\n"); if(avctx->codec_id == CODEC_ID_ASV1) a->inv_qscale= 6; else a->inv_qscale= 10; } for(i=0; i<64; i++){ int index= scantab[i]; a->intra_matrix[i]= 64*scale*ff_mpeg1_default_intra_matrix[index] / a->inv_qscale; } p->qstride= a->mb_width; p->qscale_table= av_malloc( p->qstride * a->mb_height); p->quality= (32*scale + a->inv_qscale/2)/a->inv_qscale; memset(p->qscale_table, p->quality, p->qstride*a->mb_height); return 0; } #if CONFIG_ASV1_ENCODER || CONFIG_ASV2_ENCODER static av_cold int encode_init(AVCodecContext *avctx){ ASV1Context * const a = avctx->priv_data; int i; const int scale= avctx->codec_id == CODEC_ID_ASV1 ? 1 : 2; common_init(avctx); if(avctx->global_quality == 0) avctx->global_quality= 4*FF_QUALITY_SCALE; a->inv_qscale= (32*scale*FF_QUALITY_SCALE + avctx->global_quality/2) / avctx->global_quality; avctx->extradata= av_mallocz(8); avctx->extradata_size=8; ((uint32_t*)avctx->extradata)[0]= av_le2ne32(a->inv_qscale); ((uint32_t*)avctx->extradata)[1]= av_le2ne32(AV_RL32("ASUS")); for(i=0; i<64; i++){ int q= 32*scale*ff_mpeg1_default_intra_matrix[i]; a->q_intra_matrix[i]= ((a->inv_qscale<<16) + q/2) / q; } return 0; } #endif /* CONFIG_ASV1_ENCODER || CONFIG_ASV2_ENCODER */ static av_cold int decode_end(AVCodecContext *avctx){ ASV1Context * const a = avctx->priv_data; av_freep(&a->bitstream_buffer); av_freep(&a->picture.qscale_table); a->bitstream_buffer_size=0; if(a->picture.data[0]) avctx->release_buffer(avctx, &a->picture); return 0; } AVCodec ff_asv1_decoder = { .name = "asv1", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_ASV1, .priv_data_size = sizeof(ASV1Context), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1, .long_name = NULL_IF_CONFIG_SMALL("ASUS V1"), }; AVCodec ff_asv2_decoder = { .name = "asv2", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_ASV2, .priv_data_size = sizeof(ASV1Context), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1, .long_name = NULL_IF_CONFIG_SMALL("ASUS V2"), }; #if CONFIG_ASV1_ENCODER AVCodec ff_asv1_encoder = { .name = "asv1", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_ASV1, .priv_data_size = sizeof(ASV1Context), .init = encode_init, .encode2 = encode_frame, .pix_fmts = (const enum PixelFormat[]){ PIX_FMT_YUV420P, PIX_FMT_NONE }, .long_name = NULL_IF_CONFIG_SMALL("ASUS V1"), }; #endif #if CONFIG_ASV2_ENCODER AVCodec ff_asv2_encoder = { .name = "asv2", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_ASV2, .priv_data_size = sizeof(ASV1Context), .init = encode_init, .encode2 = encode_frame, .pix_fmts = (const enum PixelFormat[]){ PIX_FMT_YUV420P, PIX_FMT_NONE }, .long_name = NULL_IF_CONFIG_SMALL("ASUS V2"), }; #endif