/* * AMR Audio decoder stub * Copyright (c) 2003 the ffmpeg project * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* This code implements amr-nb and amr-wb audio encoder/decoder through external reference code from www.3gpp.org. The licence of the code from 3gpp is unclear so you have to download the code separately. Two versions exists: One fixed-point and one with floats. For some reason the float-encoder is significant faster atleast on a P4 1.5GHz (0.9s instead of 9.9s on a 30s audio clip at MR102). Both float and fixed point is supported for amr-nb, but only float for amr-wb. --AMR-NB-- The fixed-point (TS26.073) can be downloaded from: http://www.3gpp.org/ftp/Specs/archive/26_series/26.073/26073-510.zip Extract the soure into ffmpeg/libavcodec/amr To use the fixed version run "./configure" with "--enable-amr_nb-fixed" The float version (default) can be downloaded from: http://www.3gpp.org/ftp/Specs/archive/26_series/26.104/26104-510.zip Extract the soure into ffmpeg/libavcodec/amr_float The specification for amr-nb can be found in TS 26.071 (http://www.3gpp.org/ftp/Specs/html-info/26071.htm) and some other info at http://www.3gpp.org/ftp/Specs/html-info/26-series.htm --AMR-WB-- The reference code can be downloaded from: http://www.3gpp.org/ftp/Specs/archive/26_series/26.204/26204-510.zip It should be extracted to "libavcodec/amrwb_float". Enable it with "--enable-amr_wb". The specification for amr-wb can be downloaded from: http://www.3gpp.org/ftp/Specs/archive/26_series/26.171/26171-500.zip If someone want to use the fixed point version it can be downloaded from: http://www.3gpp.org/ftp/Specs/archive/26_series/26.173/26173-571.zip */ #include "avcodec.h" #ifdef AMR_NB_FIXED #define MMS_IO #include "amr/sp_dec.h" #include "amr/d_homing.h" #include "amr/typedef.h" #include "amr/sp_enc.h" #include "amr/sid_sync.h" #include "amr/e_homing.h" #else #include "amr_float/interf_dec.h" #include "amr_float/interf_enc.h" #endif /* Common code for fixed and float version*/ typedef struct AMR_bitrates { int startrate; int stoprate; enum Mode mode; } AMR_bitrates; /* Match desired bitrate with closest one*/ static enum Mode getBitrateMode(int bitrate) { /* Adjusted so that all bitrates can be used from commandline where only a multiple of 1000 can be specified*/ AMR_bitrates rates[]={ {0,4999,MR475}, //4 {5000,5899,MR515},//5 {5900,6699,MR59},//6 {6700,7000,MR67},//7 {7001,7949,MR74},//8 {7950,9999,MR795},//9 {10000,11999,MR102},//10 {12000,64000,MR122},//12 }; int i; for(i=0;i<8;i++) { if(rates[i].startrate<=bitrate && rates[i].stoprate>=bitrate) { return(rates[i].mode); } } /*Return highest possible*/ return(MR122); } #ifdef AMR_NB_FIXED /* fixed point version*/ /* frame size in serial bitstream file (frame type + serial stream + flags) */ #define SERIAL_FRAMESIZE (1+MAX_SERIAL_SIZE+5) typedef struct AMRContext { int frameCount; Speech_Decode_FrameState *speech_decoder_state; enum RXFrameType rx_type; enum Mode mode; Word16 reset_flag; Word16 reset_flag_old; enum Mode enc_bitrate; Speech_Encode_FrameState *enstate; sid_syncState *sidstate; enum TXFrameType tx_frametype; } AMRContext; static int amr_nb_decode_init(AVCodecContext * avctx) { AMRContext *s = avctx->priv_data; s->frameCount=0; s->speech_decoder_state=NULL; s->rx_type = (enum RXFrameType)0; s->mode= (enum Mode)0; s->reset_flag=0; s->reset_flag_old=1; if(Speech_Decode_Frame_init(&s->speech_decoder_state, "Decoder")) { av_log(avctx, AV_LOG_ERROR, "Speech_Decode_Frame_init error\n"); return -1; } return 0; } static int amr_nb_encode_init(AVCodecContext * avctx) { AMRContext *s = avctx->priv_data; s->frameCount=0; s->speech_decoder_state=NULL; s->rx_type = (enum RXFrameType)0; s->mode= (enum Mode)0; s->reset_flag=0; s->reset_flag_old=1; if(avctx->sample_rate!=8000) { if(avctx->debug) { av_log(avctx, AV_LOG_DEBUG, "Only 8000Hz sample rate supported\n"); } return -1; } if(avctx->channels!=1) { if(avctx->debug) { av_log(avctx, AV_LOG_DEBUG, "Only mono supported\n"); } return -1; } avctx->frame_size=160; avctx->coded_frame= avcodec_alloc_frame(); if(Speech_Encode_Frame_init(&s->enstate, 0, "encoder") || sid_sync_init (&s->sidstate)) { if(avctx->debug) { av_log(avctx, AV_LOG_DEBUG, "Speech_Encode_Frame_init error\n"); } return -1; } s->enc_bitrate=getBitrateMode(avctx->bit_rate); return 0; } static int amr_nb_encode_close(AVCodecContext * avctx) { AMRContext *s = avctx->priv_data; Speech_Encode_Frame_exit(&s->enstate); sid_sync_exit (&s->sidstate); av_freep(&avctx->coded_frame); return 0; } static int amr_nb_decode_close(AVCodecContext * avctx) { AMRContext *s = avctx->priv_data; Speech_Decode_Frame_exit(&s->speech_decoder_state); return 0; } static int amr_nb_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t * buf, int buf_size) { AMRContext *s = avctx->priv_data; uint8_t*amrData=buf; int offset=0; UWord8 toc, q, ft; Word16 serial[SERIAL_FRAMESIZE]; /* coded bits */ Word16 *synth; UWord8 *packed_bits; static Word16 packed_size[16] = {12, 13, 15, 17, 19, 20, 26, 31, 5, 0, 0, 0, 0, 0, 0, 0}; int i; //printf("amr_decode_frame data_size=%i buf=0x%X buf_size=%d frameCount=%d!!\n",*data_size,buf,buf_size,s->frameCount); synth=data; // while(offset<buf_size) { toc=amrData[offset]; /* read rest of the frame based on ToC byte */ q = (toc >> 2) & 0x01; ft = (toc >> 3) & 0x0F; //printf("offset=%d, packet_size=%d amrData= 0x%X %X %X %X\n",offset,packed_size[ft],amrData[offset],amrData[offset+1],amrData[offset+2],amrData[offset+3]); offset++; packed_bits=amrData+offset; offset+=packed_size[ft]; //Unsort and unpack bits s->rx_type = UnpackBits(q, ft, packed_bits, &s->mode, &serial[1]); //We have a new frame s->frameCount++; if (s->rx_type == RX_NO_DATA) { s->mode = s->speech_decoder_state->prev_mode; } else { s->speech_decoder_state->prev_mode = s->mode; } /* if homed: check if this frame is another homing frame */ if (s->reset_flag_old == 1) { /* only check until end of first subframe */ s->reset_flag = decoder_homing_frame_test_first(&serial[1], s->mode); } /* produce encoder homing frame if homed & input=decoder homing frame */ if ((s->reset_flag != 0) && (s->reset_flag_old != 0)) { for (i = 0; i < L_FRAME; i++) { synth[i] = EHF_MASK; } } else { /* decode frame */ Speech_Decode_Frame(s->speech_decoder_state, s->mode, &serial[1], s->rx_type, synth); } //Each AMR-frame results in 160 16-bit samples *data_size+=160*2; synth+=160; /* if not homed: check whether current frame is a homing frame */ if (s->reset_flag_old == 0) { /* check whole frame */ s->reset_flag = decoder_homing_frame_test(&serial[1], s->mode); } /* reset decoder if current frame is a homing frame */ if (s->reset_flag != 0) { Speech_Decode_Frame_reset(s->speech_decoder_state); } s->reset_flag_old = s->reset_flag; } return offset; } static int amr_nb_encode_frame(AVCodecContext *avctx, unsigned char *frame/*out*/, int buf_size, void *data/*in*/) { short serial_data[250] = {0}; AMRContext *s = avctx->priv_data; int written; s->reset_flag = encoder_homing_frame_test(data); Speech_Encode_Frame(s->enstate, s->enc_bitrate, data, &serial_data[1], &s->mode); /* add frame type and mode */ sid_sync (s->sidstate, s->mode, &s->tx_frametype); written = PackBits(s->mode, s->enc_bitrate, s->tx_frametype, &serial_data[1], frame); if (s->reset_flag != 0) { Speech_Encode_Frame_reset(s->enstate); sid_sync_reset(s->sidstate); } return written; } #else /* Float point version*/ typedef struct AMRContext { int frameCount; void * decState; int *enstate; enum Mode enc_bitrate; } AMRContext; static int amr_nb_decode_init(AVCodecContext * avctx) { AMRContext *s = avctx->priv_data; s->frameCount=0; s->decState=Decoder_Interface_init(); if(!s->decState) { av_log(avctx, AV_LOG_ERROR, "Decoder_Interface_init error\r\n"); return -1; } return 0; } static int amr_nb_encode_init(AVCodecContext * avctx) { AMRContext *s = avctx->priv_data; s->frameCount=0; if(avctx->sample_rate!=8000) { if(avctx->debug) { av_log(avctx, AV_LOG_DEBUG, "Only 8000Hz sample rate supported\n"); } return -1; } if(avctx->channels!=1) { if(avctx->debug) { av_log(avctx, AV_LOG_DEBUG, "Only mono supported\n"); } return -1; } avctx->frame_size=160; avctx->coded_frame= avcodec_alloc_frame(); s->enstate=Encoder_Interface_init(0); if(!s->enstate) { if(avctx->debug) { av_log(avctx, AV_LOG_DEBUG, "Encoder_Interface_init error\n"); } return -1; } s->enc_bitrate=getBitrateMode(avctx->bit_rate); return 0; } static int amr_nb_decode_close(AVCodecContext * avctx) { AMRContext *s = avctx->priv_data; Decoder_Interface_exit(s->decState); return 0; } static int amr_nb_encode_close(AVCodecContext * avctx) { AMRContext *s = avctx->priv_data; Encoder_Interface_exit(s->enstate); av_freep(&avctx->coded_frame); return 0; } static int amr_nb_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t * buf, int buf_size) { AMRContext *s = (AMRContext*)avctx->priv_data; uint8_t*amrData=buf; int offset=0; static short block_size[16]={ 12, 13, 15, 17, 19, 20, 26, 31, 5, 0, 0, 0, 0, 0, 0, 0 }; enum Mode dec_mode; int packet_size; //printf("amr_decode_frame data_size=%i buf=0x%X buf_size=%d frameCount=%d!!\n",*data_size,buf,buf_size,s->frameCount); while(offset<buf_size) { dec_mode = (amrData[offset] >> 3) & 0x000F; packet_size = block_size[dec_mode]; s->frameCount++; //printf("offset=%d, packet_size=%d amrData= 0x%X %X %X %X\n",offset,packet_size,amrData[offset],amrData[offset+1],amrData[offset+2],amrData[offset+3]); /* call decoder */ Decoder_Interface_Decode(s->decState, &amrData[offset], data+*data_size, 0); *data_size+=160*2; offset+=packet_size+1; } return buf_size; } static int amr_nb_encode_frame(AVCodecContext *avctx, unsigned char *frame/*out*/, int buf_size, void *data/*in*/) { AMRContext *s = (AMRContext*)avctx->priv_data; int written; written = Encoder_Interface_Encode(s->enstate, s->enc_bitrate, data, frame, 0); return written; } #endif AVCodec amr_nb_decoder = { "amr_nb", CODEC_TYPE_AUDIO, CODEC_ID_AMR_NB, sizeof(AMRContext), amr_nb_decode_init, NULL, amr_nb_decode_close, amr_nb_decode_frame, }; AVCodec amr_nb_encoder = { "amr_nb", CODEC_TYPE_AUDIO, CODEC_ID_AMR_NB, sizeof(AMRContext), amr_nb_encode_init, amr_nb_encode_frame, amr_nb_encode_close, NULL, }; /* -----------AMR wideband ------------*/ #ifdef AMR_WB #ifdef _TYPEDEF_H //To avoid duplicate typedefs from typdef in amr-nb #define typedef_h #endif #include "amrwb_float/enc_if.h" #include "amrwb_float/dec_if.h" /* Common code for fixed and float version*/ typedef struct AMRWB_bitrates { int startrate; int stoprate; int mode; } AMRWB_bitrates; static int getWBBitrateMode(int bitrate) { /* Adjusted so that all bitrates can be used from commandline where only a multiple of 1000 can be specified*/ AMRWB_bitrates rates[]={ {0,7999,0}, //6.6kHz {8000,9999,1},//8.85 {10000,13000,2},//12.65 {13001,14999,3},//14.25 {15000,17000,4},//15.85 {17001,18000,5},//18.25 {18001,22000,6},//19.85 {22001,23000,7},//23.05 {23001,24000,8},//23.85 }; int i; for(i=0;i<9;i++) { if(rates[i].startrate<=bitrate && rates[i].stoprate>=bitrate) { return(rates[i].mode); } } /*Return highest possible*/ return(8); } typedef struct AMRWBContext { int frameCount; void *state; int mode; Word16 allow_dtx; } AMRWBContext; static int amr_wb_encode_init(AVCodecContext * avctx) { AMRWBContext *s = (AMRWBContext*)avctx->priv_data; s->frameCount=0; if(avctx->sample_rate!=16000) { if(avctx->debug) { av_log(avctx, AV_LOG_DEBUG, "Only 16000Hz sample rate supported\n"); } return -1; } if(avctx->channels!=1) { if(avctx->debug) { av_log(avctx, AV_LOG_DEBUG, "Only mono supported\n"); } return -1; } avctx->frame_size=320; avctx->coded_frame= avcodec_alloc_frame(); s->state = E_IF_init(); s->mode=getWBBitrateMode(avctx->bit_rate); s->allow_dtx=0; return 0; } static int amr_wb_encode_close(AVCodecContext * avctx) { AMRWBContext *s = (AMRWBContext*) avctx->priv_data; E_IF_exit(s->state); av_freep(&avctx->coded_frame); s->frameCount++; return 0; } static int amr_wb_encode_frame(AVCodecContext *avctx, unsigned char *frame/*out*/, int buf_size, void *data/*in*/) { AMRWBContext *s = (AMRWBContext*) avctx->priv_data; int size = E_IF_encode(s->state, s->mode, data, frame, s->allow_dtx); return size; } static int amr_wb_decode_init(AVCodecContext * avctx) { AMRWBContext *s = (AMRWBContext *)avctx->priv_data; s->frameCount=0; s->state = D_IF_init(); return 0; } extern const UWord8 block_size[]; static int amr_wb_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t * buf, int buf_size) { AMRWBContext *s = (AMRWBContext*)avctx->priv_data; uint8_t*amrData=buf; int offset=0; int mode; int packet_size; while(offset<buf_size) { s->frameCount++; mode = (Word16)((amrData[offset] >> 3) & 0x0F); packet_size = block_size[mode]; D_IF_decode( s->state, &amrData[offset], data+*data_size, _good_frame); *data_size+=320*2; offset+=packet_size; } return buf_size; } static int amr_wb_decode_close(AVCodecContext * avctx) { AMRWBContext *s = (AMRWBContext *)avctx->priv_data; D_IF_exit(s->state); return 0; } AVCodec amr_wb_decoder = { "amr_wb", CODEC_TYPE_AUDIO, CODEC_ID_AMR_WB, sizeof(AMRWBContext), amr_wb_decode_init, NULL, amr_wb_decode_close, amr_wb_decode_frame, }; AVCodec amr_wb_encoder = { "amr_wb", CODEC_TYPE_AUDIO, CODEC_ID_AMR_WB, sizeof(AMRWBContext), amr_wb_encode_init, amr_wb_encode_frame, amr_wb_encode_close, NULL, }; #endif //AMR_WB