/* * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com> * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config.h" #include "libavutil/attributes.h" #include "aacpsdsp.h" static void ps_add_squares_c(float *dst, const float (*src)[2], int n) { int i; for (i = 0; i < n; i++) dst[i] += src[i][0] * src[i][0] + src[i][1] * src[i][1]; } static void ps_mul_pair_single_c(float (*dst)[2], float (*src0)[2], float *src1, int n) { int i; for (i = 0; i < n; i++) { dst[i][0] = src0[i][0] * src1[i]; dst[i][1] = src0[i][1] * src1[i]; } } static void ps_hybrid_analysis_c(float (*out)[2], float (*in)[2], const float (*filter)[8][2], int stride, int n) { int i, j; for (i = 0; i < n; i++) { float sum_re = filter[i][6][0] * in[6][0]; float sum_im = filter[i][6][0] * in[6][1]; for (j = 0; j < 6; j++) { float in0_re = in[j][0]; float in0_im = in[j][1]; float in1_re = in[12-j][0]; float in1_im = in[12-j][1]; sum_re += filter[i][j][0] * (in0_re + in1_re) - filter[i][j][1] * (in0_im - in1_im); sum_im += filter[i][j][0] * (in0_im + in1_im) + filter[i][j][1] * (in0_re - in1_re); } out[i * stride][0] = sum_re; out[i * stride][1] = sum_im; } } static void ps_hybrid_analysis_ileave_c(float (*out)[32][2], float L[2][38][64], int i, int len) { int j; for (; i < 64; i++) { for (j = 0; j < len; j++) { out[i][j][0] = L[0][j][i]; out[i][j][1] = L[1][j][i]; } } } static void ps_hybrid_synthesis_deint_c(float out[2][38][64], float (*in)[32][2], int i, int len) { int n; for (; i < 64; i++) { for (n = 0; n < len; n++) { out[0][n][i] = in[i][n][0]; out[1][n][i] = in[i][n][1]; } } } static void ps_decorrelate_c(float (*out)[2], float (*delay)[2], float (*ap_delay)[PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2], const float phi_fract[2], const float (*Q_fract)[2], const float *transient_gain, float g_decay_slope, int len) { static const float a[] = { 0.65143905753106f, 0.56471812200776f, 0.48954165955695f }; float ag[PS_AP_LINKS]; int m, n; for (m = 0; m < PS_AP_LINKS; m++) ag[m] = a[m] * g_decay_slope; for (n = 0; n < len; n++) { float in_re = delay[n][0] * phi_fract[0] - delay[n][1] * phi_fract[1]; float in_im = delay[n][0] * phi_fract[1] + delay[n][1] * phi_fract[0]; for (m = 0; m < PS_AP_LINKS; m++) { float a_re = ag[m] * in_re; float a_im = ag[m] * in_im; float link_delay_re = ap_delay[m][n+2-m][0]; float link_delay_im = ap_delay[m][n+2-m][1]; float fractional_delay_re = Q_fract[m][0]; float fractional_delay_im = Q_fract[m][1]; float apd_re = in_re; float apd_im = in_im; in_re = link_delay_re * fractional_delay_re - link_delay_im * fractional_delay_im - a_re; in_im = link_delay_re * fractional_delay_im + link_delay_im * fractional_delay_re - a_im; ap_delay[m][n+5][0] = apd_re + ag[m] * in_re; ap_delay[m][n+5][1] = apd_im + ag[m] * in_im; } out[n][0] = transient_gain[n] * in_re; out[n][1] = transient_gain[n] * in_im; } } static void ps_stereo_interpolate_c(float (*l)[2], float (*r)[2], float h[2][4], float h_step[2][4], int len) { float h0 = h[0][0]; float h1 = h[0][1]; float h2 = h[0][2]; float h3 = h[0][3]; float hs0 = h_step[0][0]; float hs1 = h_step[0][1]; float hs2 = h_step[0][2]; float hs3 = h_step[0][3]; int n; for (n = 0; n < len; n++) { //l is s, r is d float l_re = l[n][0]; float l_im = l[n][1]; float r_re = r[n][0]; float r_im = r[n][1]; h0 += hs0; h1 += hs1; h2 += hs2; h3 += hs3; l[n][0] = h0 * l_re + h2 * r_re; l[n][1] = h0 * l_im + h2 * r_im; r[n][0] = h1 * l_re + h3 * r_re; r[n][1] = h1 * l_im + h3 * r_im; } } static void ps_stereo_interpolate_ipdopd_c(float (*l)[2], float (*r)[2], float h[2][4], float h_step[2][4], int len) { float h00 = h[0][0], h10 = h[1][0]; float h01 = h[0][1], h11 = h[1][1]; float h02 = h[0][2], h12 = h[1][2]; float h03 = h[0][3], h13 = h[1][3]; float hs00 = h_step[0][0], hs10 = h_step[1][0]; float hs01 = h_step[0][1], hs11 = h_step[1][1]; float hs02 = h_step[0][2], hs12 = h_step[1][2]; float hs03 = h_step[0][3], hs13 = h_step[1][3]; int n; for (n = 0; n < len; n++) { //l is s, r is d float l_re = l[n][0]; float l_im = l[n][1]; float r_re = r[n][0]; float r_im = r[n][1]; h00 += hs00; h01 += hs01; h02 += hs02; h03 += hs03; h10 += hs10; h11 += hs11; h12 += hs12; h13 += hs13; l[n][0] = h00 * l_re + h02 * r_re - h10 * l_im - h12 * r_im; l[n][1] = h00 * l_im + h02 * r_im + h10 * l_re + h12 * r_re; r[n][0] = h01 * l_re + h03 * r_re - h11 * l_im - h13 * r_im; r[n][1] = h01 * l_im + h03 * r_im + h11 * l_re + h13 * r_re; } } av_cold void ff_psdsp_init(PSDSPContext *s) { s->add_squares = ps_add_squares_c; s->mul_pair_single = ps_mul_pair_single_c; s->hybrid_analysis = ps_hybrid_analysis_c; s->hybrid_analysis_ileave = ps_hybrid_analysis_ileave_c; s->hybrid_synthesis_deint = ps_hybrid_synthesis_deint_c; s->decorrelate = ps_decorrelate_c; s->stereo_interpolate[0] = ps_stereo_interpolate_c; s->stereo_interpolate[1] = ps_stereo_interpolate_ipdopd_c; if (ARCH_ARM) ff_psdsp_init_arm(s); }