/* * MPEG-4 Parametric Stereo decoding functions * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com> * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include <stdint.h> #include "libavutil/common.h" #include "libavutil/internal.h" #include "libavutil/mathematics.h" #include "avcodec.h" #include "get_bits.h" #include "aacps.h" #include "aacps_tablegen.h" #include "aacpsdata.c" #define PS_BASELINE 0 ///< Operate in Baseline PS mode ///< Baseline implies 10 or 20 stereo bands, ///< mixing mode A, and no ipd/opd #define numQMFSlots 32 //numTimeSlots * RATE static const int8_t num_env_tab[2][4] = { { 0, 1, 2, 4, }, { 1, 2, 3, 4, }, }; static const int8_t nr_iidicc_par_tab[] = { 10, 20, 34, 10, 20, 34, }; static const int8_t nr_iidopd_par_tab[] = { 5, 11, 17, 5, 11, 17, }; enum { huff_iid_df1, huff_iid_dt1, huff_iid_df0, huff_iid_dt0, huff_icc_df, huff_icc_dt, huff_ipd_df, huff_ipd_dt, huff_opd_df, huff_opd_dt, }; static const int huff_iid[] = { huff_iid_df0, huff_iid_df1, huff_iid_dt0, huff_iid_dt1, }; static VLC vlc_ps[10]; #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \ /** \ * Read Inter-channel Intensity Difference/Inter-Channel Coherence/ \ * Inter-channel Phase Difference/Overall Phase Difference parameters from the \ * bitstream. \ * \ * @param avctx contains the current codec context \ * @param gb pointer to the input bitstream \ * @param ps pointer to the Parametric Stereo context \ * @param PAR pointer to the parameter to be read \ * @param e envelope to decode \ * @param dt 1: time delta-coded, 0: frequency delta-coded \ */ \ static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \ int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \ { \ int b, num = ps->nr_ ## PAR ## _par; \ VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \ if (dt) { \ int e_prev = e ? e - 1 : ps->num_env_old - 1; \ e_prev = FFMAX(e_prev, 0); \ for (b = 0; b < num; b++) { \ int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \ if (MASK) val &= MASK; \ PAR[e][b] = val; \ if (ERR_CONDITION) \ goto err; \ } \ } else { \ int val = 0; \ for (b = 0; b < num; b++) { \ val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \ if (MASK) val &= MASK; \ PAR[e][b] = val; \ if (ERR_CONDITION) \ goto err; \ } \ } \ return 0; \ err: \ av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \ return -1; \ } READ_PAR_DATA(iid, huff_offset[table_idx], 0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant) READ_PAR_DATA(icc, huff_offset[table_idx], 0, ps->icc_par[e][b] > 7U) READ_PAR_DATA(ipdopd, 0, 0x07, 0) static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id) { int e; int count = get_bits_count(gb); if (ps_extension_id) return 0; ps->enable_ipdopd = get_bits1(gb); if (ps->enable_ipdopd) { for (e = 0; e < ps->num_env; e++) { int dt = get_bits1(gb); read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt); dt = get_bits1(gb); read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt); } } skip_bits1(gb); //reserved_ps return get_bits_count(gb) - count; } static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist) { int i; for (i = 0; i < PS_MAX_NR_IPDOPD; i++) { opd_hist[i] = 0; ipd_hist[i] = 0; } } int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left) { int e; int bit_count_start = get_bits_count(gb_host); int header; int bits_consumed; GetBitContext gbc = *gb_host, *gb = &gbc; header = get_bits1(gb); if (header) { //enable_ps_header ps->enable_iid = get_bits1(gb); if (ps->enable_iid) { int iid_mode = get_bits(gb, 3); if (iid_mode > 5) { av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n", iid_mode); goto err; } ps->nr_iid_par = nr_iidicc_par_tab[iid_mode]; ps->iid_quant = iid_mode > 2; ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode]; } ps->enable_icc = get_bits1(gb); if (ps->enable_icc) { ps->icc_mode = get_bits(gb, 3); if (ps->icc_mode > 5) { av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n", ps->icc_mode); goto err; } ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode]; } ps->enable_ext = get_bits1(gb); } ps->frame_class = get_bits1(gb); ps->num_env_old = ps->num_env; ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)]; ps->border_position[0] = -1; if (ps->frame_class) { for (e = 1; e <= ps->num_env; e++) ps->border_position[e] = get_bits(gb, 5); } else for (e = 1; e <= ps->num_env; e++) ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1; if (ps->enable_iid) { for (e = 0; e < ps->num_env; e++) { int dt = get_bits1(gb); if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt)) goto err; } } else memset(ps->iid_par, 0, sizeof(ps->iid_par)); if (ps->enable_icc) for (e = 0; e < ps->num_env; e++) { int dt = get_bits1(gb); if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt)) goto err; } else memset(ps->icc_par, 0, sizeof(ps->icc_par)); if (ps->enable_ext) { int cnt = get_bits(gb, 4); if (cnt == 15) { cnt += get_bits(gb, 8); } cnt *= 8; while (cnt > 7) { int ps_extension_id = get_bits(gb, 2); cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id); } if (cnt < 0) { av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d\n", cnt); goto err; } skip_bits(gb, cnt); } ps->enable_ipdopd &= !PS_BASELINE; //Fix up envelopes if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) { //Create a fake envelope int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1; if (source >= 0 && source != ps->num_env) { if (ps->enable_iid) { memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0])); } if (ps->enable_icc) { memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0])); } if (ps->enable_ipdopd) { memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0])); memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0])); } } ps->num_env++; ps->border_position[ps->num_env] = numQMFSlots - 1; } ps->is34bands_old = ps->is34bands; if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc)) ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) || (ps->enable_icc && ps->nr_icc_par == 34); //Baseline if (!ps->enable_ipdopd) { memset(ps->ipd_par, 0, sizeof(ps->ipd_par)); memset(ps->opd_par, 0, sizeof(ps->opd_par)); } if (header) ps->start = 1; bits_consumed = get_bits_count(gb) - bit_count_start; if (bits_consumed <= bits_left) { skip_bits_long(gb_host, bits_consumed); return bits_consumed; } av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed); err: ps->start = 0; skip_bits_long(gb_host, bits_left); memset(ps->iid_par, 0, sizeof(ps->iid_par)); memset(ps->icc_par, 0, sizeof(ps->icc_par)); memset(ps->ipd_par, 0, sizeof(ps->ipd_par)); memset(ps->opd_par, 0, sizeof(ps->opd_par)); return bits_left; } /** Split one subband into 2 subsubbands with a symmetric real filter. * The filter must have its non-center even coefficients equal to zero. */ static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[8], int len, int reverse) { int i, j; for (i = 0; i < len; i++, in++) { float re_in = filter[6] * in[6][0]; //real inphase float re_op = 0.0f; //real out of phase float im_in = filter[6] * in[6][1]; //imag inphase float im_op = 0.0f; //imag out of phase for (j = 0; j < 6; j += 2) { re_op += filter[j+1] * (in[j+1][0] + in[12-j-1][0]); im_op += filter[j+1] * (in[j+1][1] + in[12-j-1][1]); } out[ reverse][i][0] = re_in + re_op; out[ reverse][i][1] = im_in + im_op; out[!reverse][i][0] = re_in - re_op; out[!reverse][i][1] = im_in - im_op; } } /** Split one subband into 6 subsubbands with a complex filter */ static void hybrid6_cx(PSDSPContext *dsp, float (*in)[2], float (*out)[32][2], TABLE_CONST float (*filter)[8][2], int len) { int i; int N = 8; LOCAL_ALIGNED_16(float, temp, [8], [2]); for (i = 0; i < len; i++, in++) { dsp->hybrid_analysis(temp, in, (const float (*)[8][2]) filter, 1, N); out[0][i][0] = temp[6][0]; out[0][i][1] = temp[6][1]; out[1][i][0] = temp[7][0]; out[1][i][1] = temp[7][1]; out[2][i][0] = temp[0][0]; out[2][i][1] = temp[0][1]; out[3][i][0] = temp[1][0]; out[3][i][1] = temp[1][1]; out[4][i][0] = temp[2][0] + temp[5][0]; out[4][i][1] = temp[2][1] + temp[5][1]; out[5][i][0] = temp[3][0] + temp[4][0]; out[5][i][1] = temp[3][1] + temp[4][1]; } } static void hybrid4_8_12_cx(PSDSPContext *dsp, float (*in)[2], float (*out)[32][2], TABLE_CONST float (*filter)[8][2], int N, int len) { int i; for (i = 0; i < len; i++, in++) { dsp->hybrid_analysis(out[0] + i, in, (const float (*)[8][2]) filter, 32, N); } } static void hybrid_analysis(PSDSPContext *dsp, float out[91][32][2], float in[5][44][2], float L[2][38][64], int is34, int len) { int i, j; for (i = 0; i < 5; i++) { for (j = 0; j < 38; j++) { in[i][j+6][0] = L[0][j][i]; in[i][j+6][1] = L[1][j][i]; } } if (is34) { hybrid4_8_12_cx(dsp, in[0], out, f34_0_12, 12, len); hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8, 8, len); hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4, 4, len); hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4, 4, len); hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4, 4, len); dsp->hybrid_analysis_ileave(out + 27, L, 5, len); } else { hybrid6_cx(dsp, in[0], out, f20_0_8, len); hybrid2_re(in[1], out+6, g1_Q2, len, 1); hybrid2_re(in[2], out+8, g1_Q2, len, 0); dsp->hybrid_analysis_ileave(out + 7, L, 3, len); } //update in_buf for (i = 0; i < 5; i++) { memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0])); } } static void hybrid_synthesis(PSDSPContext *dsp, float out[2][38][64], float in[91][32][2], int is34, int len) { int i, n; if (is34) { for (n = 0; n < len; n++) { memset(out[0][n], 0, 5*sizeof(out[0][n][0])); memset(out[1][n], 0, 5*sizeof(out[1][n][0])); for (i = 0; i < 12; i++) { out[0][n][0] += in[ i][n][0]; out[1][n][0] += in[ i][n][1]; } for (i = 0; i < 8; i++) { out[0][n][1] += in[12+i][n][0]; out[1][n][1] += in[12+i][n][1]; } for (i = 0; i < 4; i++) { out[0][n][2] += in[20+i][n][0]; out[1][n][2] += in[20+i][n][1]; out[0][n][3] += in[24+i][n][0]; out[1][n][3] += in[24+i][n][1]; out[0][n][4] += in[28+i][n][0]; out[1][n][4] += in[28+i][n][1]; } } dsp->hybrid_synthesis_deint(out, in + 27, 5, len); } else { for (n = 0; n < len; n++) { out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] + in[3][n][0] + in[4][n][0] + in[5][n][0]; out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] + in[3][n][1] + in[4][n][1] + in[5][n][1]; out[0][n][1] = in[6][n][0] + in[7][n][0]; out[1][n][1] = in[6][n][1] + in[7][n][1]; out[0][n][2] = in[8][n][0] + in[9][n][0]; out[1][n][2] = in[8][n][1] + in[9][n][1]; } dsp->hybrid_synthesis_deint(out, in + 7, 3, len); } } /// All-pass filter decay slope #define DECAY_SLOPE 0.05f /// Number of frequency bands that can be addressed by the parameter index, b(k) static const int NR_PAR_BANDS[] = { 20, 34 }; /// Number of frequency bands that can be addressed by the sub subband index, k static const int NR_BANDS[] = { 71, 91 }; /// Start frequency band for the all-pass filter decay slope static const int DECAY_CUTOFF[] = { 10, 32 }; /// Number of all-pass filer bands static const int NR_ALLPASS_BANDS[] = { 30, 50 }; /// First stereo band using the short one sample delay static const int SHORT_DELAY_BAND[] = { 42, 62 }; /** Table 8.46 */ static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full) { int b; if (full) b = 9; else { b = 4; par_mapped[10] = 0; } for (; b >= 0; b--) { par_mapped[2*b+1] = par_mapped[2*b] = par[b]; } } static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full) { par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3; par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3; par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3; par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3; par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2; par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2; par_mapped[ 6] = par[10]; par_mapped[ 7] = par[11]; par_mapped[ 8] = ( par[12] + par[13]) / 2; par_mapped[ 9] = ( par[14] + par[15]) / 2; par_mapped[10] = par[16]; if (full) { par_mapped[11] = par[17]; par_mapped[12] = par[18]; par_mapped[13] = par[19]; par_mapped[14] = ( par[20] + par[21]) / 2; par_mapped[15] = ( par[22] + par[23]) / 2; par_mapped[16] = ( par[24] + par[25]) / 2; par_mapped[17] = ( par[26] + par[27]) / 2; par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4; par_mapped[19] = ( par[32] + par[33]) / 2; } } static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC]) { par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f; par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f; par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f; par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f; par[ 4] = ( par[ 6] + par[ 7]) * 0.5f; par[ 5] = ( par[ 8] + par[ 9]) * 0.5f; par[ 6] = par[10]; par[ 7] = par[11]; par[ 8] = ( par[12] + par[13]) * 0.5f; par[ 9] = ( par[14] + par[15]) * 0.5f; par[10] = par[16]; par[11] = par[17]; par[12] = par[18]; par[13] = par[19]; par[14] = ( par[20] + par[21]) * 0.5f; par[15] = ( par[22] + par[23]) * 0.5f; par[16] = ( par[24] + par[25]) * 0.5f; par[17] = ( par[26] + par[27]) * 0.5f; par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f; par[19] = ( par[32] + par[33]) * 0.5f; } static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full) { if (full) { par_mapped[33] = par[9]; par_mapped[32] = par[9]; par_mapped[31] = par[9]; par_mapped[30] = par[9]; par_mapped[29] = par[9]; par_mapped[28] = par[9]; par_mapped[27] = par[8]; par_mapped[26] = par[8]; par_mapped[25] = par[8]; par_mapped[24] = par[8]; par_mapped[23] = par[7]; par_mapped[22] = par[7]; par_mapped[21] = par[7]; par_mapped[20] = par[7]; par_mapped[19] = par[6]; par_mapped[18] = par[6]; par_mapped[17] = par[5]; par_mapped[16] = par[5]; } else { par_mapped[16] = 0; } par_mapped[15] = par[4]; par_mapped[14] = par[4]; par_mapped[13] = par[4]; par_mapped[12] = par[4]; par_mapped[11] = par[3]; par_mapped[10] = par[3]; par_mapped[ 9] = par[2]; par_mapped[ 8] = par[2]; par_mapped[ 7] = par[2]; par_mapped[ 6] = par[2]; par_mapped[ 5] = par[1]; par_mapped[ 4] = par[1]; par_mapped[ 3] = par[1]; par_mapped[ 2] = par[0]; par_mapped[ 1] = par[0]; par_mapped[ 0] = par[0]; } static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full) { if (full) { par_mapped[33] = par[19]; par_mapped[32] = par[19]; par_mapped[31] = par[18]; par_mapped[30] = par[18]; par_mapped[29] = par[18]; par_mapped[28] = par[18]; par_mapped[27] = par[17]; par_mapped[26] = par[17]; par_mapped[25] = par[16]; par_mapped[24] = par[16]; par_mapped[23] = par[15]; par_mapped[22] = par[15]; par_mapped[21] = par[14]; par_mapped[20] = par[14]; par_mapped[19] = par[13]; par_mapped[18] = par[12]; par_mapped[17] = par[11]; } par_mapped[16] = par[10]; par_mapped[15] = par[ 9]; par_mapped[14] = par[ 9]; par_mapped[13] = par[ 8]; par_mapped[12] = par[ 8]; par_mapped[11] = par[ 7]; par_mapped[10] = par[ 6]; par_mapped[ 9] = par[ 5]; par_mapped[ 8] = par[ 5]; par_mapped[ 7] = par[ 4]; par_mapped[ 6] = par[ 4]; par_mapped[ 5] = par[ 3]; par_mapped[ 4] = (par[ 2] + par[ 3]) / 2; par_mapped[ 3] = par[ 2]; par_mapped[ 2] = par[ 1]; par_mapped[ 1] = (par[ 0] + par[ 1]) / 2; par_mapped[ 0] = par[ 0]; } static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC]) { par[33] = par[19]; par[32] = par[19]; par[31] = par[18]; par[30] = par[18]; par[29] = par[18]; par[28] = par[18]; par[27] = par[17]; par[26] = par[17]; par[25] = par[16]; par[24] = par[16]; par[23] = par[15]; par[22] = par[15]; par[21] = par[14]; par[20] = par[14]; par[19] = par[13]; par[18] = par[12]; par[17] = par[11]; par[16] = par[10]; par[15] = par[ 9]; par[14] = par[ 9]; par[13] = par[ 8]; par[12] = par[ 8]; par[11] = par[ 7]; par[10] = par[ 6]; par[ 9] = par[ 5]; par[ 8] = par[ 5]; par[ 7] = par[ 4]; par[ 6] = par[ 4]; par[ 5] = par[ 3]; par[ 4] = (par[ 2] + par[ 3]) * 0.5f; par[ 3] = par[ 2]; par[ 2] = par[ 1]; par[ 1] = (par[ 0] + par[ 1]) * 0.5f; par[ 0] = par[ 0]; } static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34) { LOCAL_ALIGNED_16(float, power, [34], [PS_QMF_TIME_SLOTS]); LOCAL_ALIGNED_16(float, transient_gain, [34], [PS_QMF_TIME_SLOTS]); float *peak_decay_nrg = ps->peak_decay_nrg; float *power_smooth = ps->power_smooth; float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth; float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay; float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay; const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20; const float peak_decay_factor = 0.76592833836465f; const float transient_impact = 1.5f; const float a_smooth = 0.25f; ///< Smoothing coefficient int i, k, m, n; int n0 = 0, nL = 32; memset(power, 0, 34 * sizeof(*power)); if (is34 != ps->is34bands_old) { memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg)); memset(ps->power_smooth, 0, sizeof(ps->power_smooth)); memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth)); memset(ps->delay, 0, sizeof(ps->delay)); memset(ps->ap_delay, 0, sizeof(ps->ap_delay)); } for (k = 0; k < NR_BANDS[is34]; k++) { int i = k_to_i[k]; ps->dsp.add_squares(power[i], s[k], nL - n0); } //Transient detection for (i = 0; i < NR_PAR_BANDS[is34]; i++) { for (n = n0; n < nL; n++) { float decayed_peak = peak_decay_factor * peak_decay_nrg[i]; float denom; peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]); power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]); peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]); denom = transient_impact * peak_decay_diff_smooth[i]; transient_gain[i][n] = (denom > power_smooth[i]) ? power_smooth[i] / denom : 1.0f; } } //Decorrelation and transient reduction // PS_AP_LINKS - 1 // ----- // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k] //H[k][z] = z^-2 * phi_fract[k] * | | ---------------------------------------------------------------- // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m] // m = 0 //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z] for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) { int b = k_to_i[k]; float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]); g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f); memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); for (m = 0; m < PS_AP_LINKS; m++) { memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0])); } ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k], phi_fract[is34][k], (const float (*)[2]) Q_fract_allpass[is34][k], transient_gain[b], g_decay_slope, nL - n0); } for (; k < SHORT_DELAY_BAND[is34]; k++) { int i = k_to_i[k]; memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); //H = delay 14 ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14, transient_gain[i], nL - n0); } for (; k < NR_BANDS[is34]; k++) { int i = k_to_i[k]; memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); //H = delay 1 ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1, transient_gain[i], nL - n0); } } static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC], int8_t (*par)[PS_MAX_NR_IIDICC], int num_par, int num_env, int full) { int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped; int e; if (num_par == 20 || num_par == 11) { for (e = 0; e < num_env; e++) { map_idx_20_to_34(par_mapped[e], par[e], full); } } else if (num_par == 10 || num_par == 5) { for (e = 0; e < num_env; e++) { map_idx_10_to_34(par_mapped[e], par[e], full); } } else { *p_par_mapped = par; } } static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC], int8_t (*par)[PS_MAX_NR_IIDICC], int num_par, int num_env, int full) { int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped; int e; if (num_par == 34 || num_par == 17) { for (e = 0; e < num_env; e++) { map_idx_34_to_20(par_mapped[e], par[e], full); } } else if (num_par == 10 || num_par == 5) { for (e = 0; e < num_env; e++) { map_idx_10_to_20(par_mapped[e], par[e], full); } } else { *p_par_mapped = par; } } static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34) { int e, b, k; float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11; float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12; float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21; float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22; int8_t *opd_hist = ps->opd_hist; int8_t *ipd_hist = ps->ipd_hist; int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf; int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf; int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf; int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf; const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20; TABLE_CONST float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB; //Remapping if (ps->num_env_old) { memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0])); memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0])); memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0])); memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0])); memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0])); memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0])); memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0])); memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0])); } if (is34) { remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1); remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1); if (ps->enable_ipdopd) { remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0); remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0); } if (!ps->is34bands_old) { map_val_20_to_34(H11[0][0]); map_val_20_to_34(H11[1][0]); map_val_20_to_34(H12[0][0]); map_val_20_to_34(H12[1][0]); map_val_20_to_34(H21[0][0]); map_val_20_to_34(H21[1][0]); map_val_20_to_34(H22[0][0]); map_val_20_to_34(H22[1][0]); ipdopd_reset(ipd_hist, opd_hist); } } else { remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1); remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1); if (ps->enable_ipdopd) { remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0); remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0); } if (ps->is34bands_old) { map_val_34_to_20(H11[0][0]); map_val_34_to_20(H11[1][0]); map_val_34_to_20(H12[0][0]); map_val_34_to_20(H12[1][0]); map_val_34_to_20(H21[0][0]); map_val_34_to_20(H21[1][0]); map_val_34_to_20(H22[0][0]); map_val_34_to_20(H22[1][0]); ipdopd_reset(ipd_hist, opd_hist); } } //Mixing for (e = 0; e < ps->num_env; e++) { for (b = 0; b < NR_PAR_BANDS[is34]; b++) { float h11, h12, h21, h22; h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0]; h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1]; h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2]; h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3]; if (!PS_BASELINE && ps->enable_ipdopd && b < ps->nr_ipdopd_par) { //The spec say says to only run this smoother when enable_ipdopd //is set but the reference decoder appears to run it constantly float h11i, h12i, h21i, h22i; float ipd_adj_re, ipd_adj_im; int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b]; int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b]; float opd_re = pd_re_smooth[opd_idx]; float opd_im = pd_im_smooth[opd_idx]; float ipd_re = pd_re_smooth[ipd_idx]; float ipd_im = pd_im_smooth[ipd_idx]; opd_hist[b] = opd_idx & 0x3F; ipd_hist[b] = ipd_idx & 0x3F; ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im; ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im; h11i = h11 * opd_im; h11 = h11 * opd_re; h12i = h12 * ipd_adj_im; h12 = h12 * ipd_adj_re; h21i = h21 * opd_im; h21 = h21 * opd_re; h22i = h22 * ipd_adj_im; h22 = h22 * ipd_adj_re; H11[1][e+1][b] = h11i; H12[1][e+1][b] = h12i; H21[1][e+1][b] = h21i; H22[1][e+1][b] = h22i; } H11[0][e+1][b] = h11; H12[0][e+1][b] = h12; H21[0][e+1][b] = h21; H22[0][e+1][b] = h22; } for (k = 0; k < NR_BANDS[is34]; k++) { float h[2][4]; float h_step[2][4]; int start = ps->border_position[e]; int stop = ps->border_position[e+1]; float width = 1.f / (stop - start); b = k_to_i[k]; h[0][0] = H11[0][e][b]; h[0][1] = H12[0][e][b]; h[0][2] = H21[0][e][b]; h[0][3] = H22[0][e][b]; if (!PS_BASELINE && ps->enable_ipdopd) { //Is this necessary? ps_04_new seems unchanged if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) { h[1][0] = -H11[1][e][b]; h[1][1] = -H12[1][e][b]; h[1][2] = -H21[1][e][b]; h[1][3] = -H22[1][e][b]; } else { h[1][0] = H11[1][e][b]; h[1][1] = H12[1][e][b]; h[1][2] = H21[1][e][b]; h[1][3] = H22[1][e][b]; } } //Interpolation h_step[0][0] = (H11[0][e+1][b] - h[0][0]) * width; h_step[0][1] = (H12[0][e+1][b] - h[0][1]) * width; h_step[0][2] = (H21[0][e+1][b] - h[0][2]) * width; h_step[0][3] = (H22[0][e+1][b] - h[0][3]) * width; if (!PS_BASELINE && ps->enable_ipdopd) { h_step[1][0] = (H11[1][e+1][b] - h[1][0]) * width; h_step[1][1] = (H12[1][e+1][b] - h[1][1]) * width; h_step[1][2] = (H21[1][e+1][b] - h[1][2]) * width; h_step[1][3] = (H22[1][e+1][b] - h[1][3]) * width; } ps->dsp.stereo_interpolate[!PS_BASELINE && ps->enable_ipdopd]( l[k] + start + 1, r[k] + start + 1, h, h_step, stop - start); } } } int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top) { LOCAL_ALIGNED_16(float, Lbuf, [91], [32][2]); LOCAL_ALIGNED_16(float, Rbuf, [91], [32][2]); const int len = 32; int is34 = ps->is34bands; top += NR_BANDS[is34] - 64; memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0])); if (top < NR_ALLPASS_BANDS[is34]) memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0])); hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len); decorrelation(ps, Rbuf, (const float (*)[32][2]) Lbuf, is34); stereo_processing(ps, Lbuf, Rbuf, is34); hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len); hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len); return 0; } #define PS_INIT_VLC_STATIC(num, size) \ INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \ ps_tmp[num].ps_bits, 1, 1, \ ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \ size); #define PS_VLC_ROW(name) \ { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) } av_cold void ff_ps_init(void) { // Syntax initialization static const struct { const void *ps_codes, *ps_bits; const unsigned int table_size, elem_size; } ps_tmp[] = { PS_VLC_ROW(huff_iid_df1), PS_VLC_ROW(huff_iid_dt1), PS_VLC_ROW(huff_iid_df0), PS_VLC_ROW(huff_iid_dt0), PS_VLC_ROW(huff_icc_df), PS_VLC_ROW(huff_icc_dt), PS_VLC_ROW(huff_ipd_df), PS_VLC_ROW(huff_ipd_dt), PS_VLC_ROW(huff_opd_df), PS_VLC_ROW(huff_opd_dt), }; PS_INIT_VLC_STATIC(0, 1544); PS_INIT_VLC_STATIC(1, 832); PS_INIT_VLC_STATIC(2, 1024); PS_INIT_VLC_STATIC(3, 1036); PS_INIT_VLC_STATIC(4, 544); PS_INIT_VLC_STATIC(5, 544); PS_INIT_VLC_STATIC(6, 512); PS_INIT_VLC_STATIC(7, 512); PS_INIT_VLC_STATIC(8, 512); PS_INIT_VLC_STATIC(9, 512); ps_tableinit(); } av_cold void ff_ps_ctx_init(PSContext *ps) { ff_psdsp_init(&ps->dsp); }