summaryrefslogtreecommitdiffstats
path: root/tools/python/convert_header.py
Commit message (Collapse)AuthorAgeFilesLines
* dnn_backend_native_layer_mathunary: add floor supportMingyu Yin2020-08-071-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It can be tested with the model generated with below python script: import tensorflow as tf import os import numpy as np import imageio from tensorflow.python.framework import graph_util name = 'floor' pb_file_path = os.getcwd() if not os.path.exists(pb_file_path+'/{}_savemodel/'.format(name)): os.mkdir(pb_file_path+'/{}_savemodel/'.format(name)) with tf.Session(graph=tf.Graph()) as sess: in_img = imageio.imread('detection.jpg') in_img = in_img.astype(np.float32) in_data = in_img[np.newaxis, :] input_x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') y_ = tf.math.floor(input_x*255)/255 y = tf.identity(y_, name='dnn_out') sess.run(tf.global_variables_initializer()) constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) with tf.gfile.FastGFile(pb_file_path+'/{}_savemodel/model.pb'.format(name), mode='wb') as f: f.write(constant_graph.SerializeToString()) print("model.pb generated, please in ffmpeg path use\n \n \ python tools/python/convert.py {}_savemodel/model.pb --outdir={}_savemodel/ \n \nto generate model.model\n".format(name,name)) output = sess.run(y, feed_dict={ input_x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) print("To verify, please ffmpeg path use\n \n \ ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow -f framemd5 {}_savemodel/tensorflow_out.md5\n \ or\n \ ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow {}_savemodel/out_tensorflow.jpg\n \nto generate output result of tensorflow model\n".format(name, name, name, name)) print("To verify, please ffmpeg path use\n \n \ ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native -f framemd5 {}_savemodel/native_out.md5\n \ or \n \ ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native {}_savemodel/out_native.jpg\n \nto generate output result of native model\n".format(name, name, name, name)) Signed-off-by: Mingyu Yin <[email protected]>
* dnn_backend_native_layer_mathunary: add ceil supportMingyu Yin2020-08-041-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It can be tested with the model generated with below python script: import tensorflow as tf import os import numpy as np import imageio from tensorflow.python.framework import graph_util name = 'ceil' pb_file_path = os.getcwd() if not os.path.exists(pb_file_path+'/{}_savemodel/'.format(name)): os.mkdir(pb_file_path+'/{}_savemodel/'.format(name)) with tf.Session(graph=tf.Graph()) as sess: in_img = imageio.imread('detection.jpg') in_img = in_img.astype(np.float32) in_data = in_img[np.newaxis, :] input_x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') y = tf.math.ceil( input_x, name='dnn_out') sess.run(tf.global_variables_initializer()) constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) with tf.gfile.FastGFile(pb_file_path+'/{}_savemodel/model.pb'.format(name), mode='wb') as f: f.write(constant_graph.SerializeToString()) print("model.pb generated, please in ffmpeg path use\n \n \ python tools/python/convert.py ceil_savemodel/model.pb --outdir=ceil_savemodel/ \n \n \ to generate model.model\n") output = sess.run(y, feed_dict={ input_x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) print("To verify, please ffmpeg path use\n \n \ ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model=ceil_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow -f framemd5 ceil_savemodel/tensorflow_out.md5\n \n \ to generate output result of tensorflow model\n") print("To verify, please ffmpeg path use\n \n \ ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model=ceil_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native -f framemd5 ceil_savemodel/native_out.md5\n \n \ to generate output result of native model\n") Signed-off-by: Mingyu Yin <[email protected]> Reviewed-by: Guo, Yejun <[email protected]>
* dnn_backend_native_layer_mathunary: add atanh supportTing Fu2020-07-061-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It can be tested with the model generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') please uncomment the part you want to test x_sinh_1 = tf.sinh(x) x_out = tf.divide(x_sinh_1, 1.176) # sinh(1.0) x_cosh_1 = tf.cosh(x) x_out = tf.divide(x_cosh_1, 1.55) # cosh(1.0) x_tanh_1 = tf.tanh(x) x__out = tf.divide(x_tanh_1, 0.77) # tanh(1.0) x_asinh_1 = tf.asinh(x) x_out = tf.divide(x_asinh_1, 0.89) # asinh(1.0/1.1) x_acosh_1 = tf.add(x, 1.1) x_acosh_2 = tf.acosh(x_acosh_1) # accept (1, inf) x_out = tf.divide(x_acosh_2, 1.4) # acosh(2.1) x_atanh_1 = tf.divide(x, 1.1) x_atanh_2 = tf.atanh(x_atanh_1) # accept (-1, 1) x_out = tf.divide(x_atanh_2, 1.55) # atanhh(1.0/1.1) y = tf.identity(x_out, name='dnn_out') #please only preserve the x_out you want to test sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <[email protected]>
* dnn_backend_native_layer_mathunary: add acosh supportTing Fu2020-07-061-1/+1
| | | | Signed-off-by: Ting Fu <[email protected]>
* dnn_backend_native_layer_mathunary: add asinh supportTing Fu2020-07-061-1/+1
| | | | Signed-off-by: Ting Fu <[email protected]>
* dnn_backend_native_layer_mathunary: add tanh supportTing Fu2020-07-061-1/+1
| | | | Signed-off-by: Ting Fu <[email protected]>
* dnn_backend_native_layer_mathunary: add cosh supportTing Fu2020-07-061-1/+1
| | | | Signed-off-by: Ting Fu <[email protected]>
* dnn_backend_native_layer_mathunary: add sinh supportTing Fu2020-07-061-1/+1
| | | | Signed-off-by: Ting Fu <[email protected]>
* dnn_backend_native_layer_mathunary: add atan supportTing Fu2020-06-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It can be tested with the model generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.atan(x) x2 = tf.divide(x1, 3.1416/4) # pi/4 y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <[email protected]> Signed-off-by: Guo Yejun <[email protected]>
* dnn_backend_native_layer_mathunary: add acos supportTing Fu2020-06-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It can be tested with the model generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.acos(x) x2 = tf.divide(x1, 3.1416/2) # pi/2 y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <[email protected]> Signed-off-by: Guo Yejun <[email protected]>
* dnn_backend_native_layer_mathunary: add asin supportTing Fu2020-06-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It can be tested with the model generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.asin(x) x2 = tf.divide(x1, 3.1416/2) # pi/2 y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <[email protected]> Signed-off-by: Guo Yejun <[email protected]>
* dnn_backend_native_layer_mathunary: add tan supportTing Fu2020-06-111-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It can be tested with the model generated with below python scripy import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.multiply(x, 0.78) x2 = tf.tan(x1) y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <[email protected]> Signed-off-by: Guo Yejun <[email protected]>
* dnn_backend_native_layer_mathunary: add cos supportTing Fu2020-06-111-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It can be tested with the model generated with below python scripy import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.multiply(x, 1.5) x2 = tf.cos(x1) y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <[email protected]> Signed-off-by: Guo Yejun <[email protected]>
* dnn_backend_native_layer_mathunary: add sin supportTing Fu2020-06-111-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It can be tested with the model file generated with below python scripy: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.multiply(x, 3.14) x2 = tf.sin(x1) y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <[email protected]> Signed-off-by: Guo Yejun <[email protected]>
* dnn_backend_native_layer_mathunary: add abs supportTing Fu2020-05-281-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | more math unary operations will be added here It can be tested with the model file generated with below python scripy: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.subtract(x, 0.5) x2 = tf.abs(x1) y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <[email protected]> Signed-off-by: Guo, Yejun <[email protected]>
* dnn/native: add native support for minimumGuo, Yejun2020-05-081-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | it can be tested with model file generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.minimum(0.7, x) x2 = tf.maximum(x1, 0.4) y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Guo, Yejun <[email protected]>
* dnn/native: add native support for divideGuo, Yejun2020-04-221-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | it can be tested with model file generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') z1 = 2 / x z2 = 1 / z1 z3 = z2 / 0.25 + 0.3 z4 = z3 - x * 1.5 - 0.3 y = tf.identity(z4, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Guo, Yejun <[email protected]>
* dnn/native: add native support for 'mul'Guo, Yejun2020-04-221-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | it can be tested with model file generated from above python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') z1 = 0.5 + 0.3 * x z2 = z1 * 4 z3 = z2 - x - 2.0 y = tf.identity(z3, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Guo, Yejun <[email protected]>
* dnn/native: add native support for 'add'Guo, Yejun2020-04-221-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It can be tested with the model file generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') z1 = 0.039 + x z2 = x + 0.042 z3 = z1 + z2 z4 = z3 - 0.381 z5 = z4 - x y = tf.math.maximum(z5, 0.0, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Guo, Yejun <[email protected]>
* dnn_backend_native_layer_mathbinary: add sub supportGuo, Yejun2020-04-071-1/+1
| | | | | | more math binary operations will be added here Signed-off-by: Guo, Yejun <[email protected]>
* dnn: add tf.nn.conv2d support for native modelGuo, Yejun2019-10-301-2/+2
| | | | | | | | | | | | | Unlike other tf.*.conv2d layers, tf.nn.conv2d does not create many nodes (within a scope) in the graph, it just acts like other layers. tf.nn.conv2d only creates one node in the graph, and no internal nodes such as 'kernel' are created. The format of native model file is also changed, a flag named has_bias is added, so change the version number. Signed-off-by: Guo, Yejun <[email protected]> Signed-off-by: Pedro Arthur <[email protected]>
* libavfilter/dnn: add layer maximum for native mode.Guo, Yejun2019-09-201-1/+1
| | | | | | | | | The reason to add this layer is that it is used by srcnn in vf_sr. This layer is currently ignored in native mode. After this patch, we can add multiple outputs support for native mode. Signed-off-by: Guo, Yejun <[email protected]> Signed-off-by: Pedro Arthur <[email protected]>
* libavfilter/dnn: add header into native model fileGuo, Yejun2019-09-041-0/+26
Signed-off-by: Guo, Yejun <[email protected]> Signed-off-by: Pedro Arthur <[email protected]>