| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
| |
Deprecated in 8f1382f80e0d4184c54c14afdda6482f050fbba7.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
Signed-off-by: James Almer <jamrial@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Below are the example steps to do object detection:
1. download and install l_openvino_toolkit_p_2021.1.110.tgz from
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit/download.html
or, we can get source code (tag 2021.1), build and install.
2. export LD_LIBRARY_PATH with openvino settings, for example:
.../deployment_tools/inference_engine/lib/intel64/:.../deployment_tools/inference_engine/external/tbb/lib/
3. rebuild ffmpeg from source code with configure option:
--enable-libopenvino
--extra-cflags='-I.../deployment_tools/inference_engine/include/'
--extra-ldflags='-L.../deployment_tools/inference_engine/lib/intel64'
4. download model files and test image
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/face-detection-adas-0001.bin
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/face-detection-adas-0001.xml
wget
https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/face-detection-adas-0001.label
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/images/cici.jpg
5. run ffmpeg with:
./ffmpeg -i cici.jpg -vf dnn_detect=dnn_backend=openvino:model=face-detection-adas-0001.xml:input=data:output=detection_out:confidence=0.6:labels=face-detection-adas-0001.label,showinfo -f null -
We'll see the detect result as below:
[Parsed_showinfo_1 @ 0x560c21ecbe40] side data - detection bounding boxes:
[Parsed_showinfo_1 @ 0x560c21ecbe40] source: face-detection-adas-0001.xml
[Parsed_showinfo_1 @ 0x560c21ecbe40] index: 0, region: (1005, 813) -> (1086, 905), label: face, confidence: 10000/10000.
[Parsed_showinfo_1 @ 0x560c21ecbe40] index: 1, region: (888, 839) -> (967, 926), label: face, confidence: 6917/10000.
There are two faces detected with confidence 100% and 69.17%.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
|
| |
|
| |
|
|
|
|
|
|
|
| |
This is Visual Information Fidelity (VIF) filter and one of the component
filters of VMAF. It outputs the average VIF score over all frames.
Signed-off-by: Ashish Singh <ashk43712@gmail.com>
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
| |
Reviewed-by: Paul B Mahol <onemda@gmail.com>
Signed-off-by: Limin Wang <lance.lmwang@gmail.com>
|
| |
|
| |
|
| |
|
|
|
|
| |
Signed-off-by: Timo Rothenpieler <timo@rothenpieler.org>
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
| |
This commit adds a chromatic aberration filter for Vulkan that attempts to
emulate a lens chromatic aberration effect.
For a YUV frame it will instead shift the chroma channels, providing a
simple approximation.
|
|
|
|
|
|
| |
This commit adds a fast avgblur Vulkan filter.
This will reset Intel GPUs on Linux due to a known, two-year-old driver bug
(!834 on mesa's gitlab).
|
|
|
|
| |
This commit adds a basic, non-converting overlay filter for Vulkan.
|
|
|
|
| |
This commit adds a basic, non-converting Vulkan scaling filter.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It performs HDR(High Dynamic Range) to SDR(Standard Dynamic Range) conversion
with tone-mapping. It only supports HDR10 as input temporarily.
An example command to use this filter with vaapi codecs:
FFMPEG -hwaccel vaapi -vaapi_device /dev/dri/renderD128 -hwaccel_output_format vaapi \
-i INPUT -vf 'tonemap_vaapi=format=p010' -c:v hevc_vaapi -profile 2 OUTPUT
Signed-off-by: Xinpeng Sun <xinpeng.sun@intel.com>
Signed-off-by: Zachary Zhou <zachary.zhou@intel.com>
Signed-off-by: Ruiling Song <ruiling.song@intel.com>
|
|
|
|
|
| |
Signed-off-by: leozhang <leozhang@qiyi.com>
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
dnn networks
This filter accepts all the dnn networks which do image processing.
Currently, frame with formats rgb24 and bgr24 are supported. Other
formats such as gray and YUV will be supported next. The dnn network
can accept data in float32 or uint8 format. And the dnn network can
change frame size.
The following is a python script to halve the value of the first
channel of the pixel. It demos how to setup and execute dnn model
with python+tensorflow. It also generates .pb file which will be
used by ffmpeg.
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('in.bmp')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
filter_data = np.array([0.5, 0, 0, 0, 1., 0, 0, 0, 1.]).reshape(1,1,3,3).astype(np.float32)
filter = tf.Variable(filter_data)
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
y = tf.nn.conv2d(x, filter, strides=[1, 1, 1, 1], padding='VALID', name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
output = sess.run(y, feed_dict={x: in_data})
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'halve_first_channel.pb', as_text=False)
output = output * 255.0
output = output.astype(np.uint8)
imageio.imsave("out.bmp", np.squeeze(output))
To do the same thing with ffmpeg:
- generate halve_first_channel.pb with the above script
- generate halve_first_channel.model with tools/python/convert.py
- try with following commands
./ffmpeg -i input.jpg -vf dnn_processing=model=halve_first_channel.model:input=dnn_in:output=dnn_out:fmt=rgb24:dnn_backend=native -y out.native.png
./ffmpeg -i input.jpg -vf dnn_processing=model=halve_first_channel.pb:input=dnn_in:output=dnn_out:fmt=rgb24:dnn_backend=tensorflow -y out.tf.png
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
|
| |
|