diff options
author | Guo, Yejun <yejun.guo@intel.com> | 2020-04-10 21:35:11 +0800 |
---|---|---|
committer | Guo, Yejun <yejun.guo@intel.com> | 2020-04-22 13:14:30 +0800 |
commit | 6aa7e07e7caed7997e40cee8b203ec56b12d7300 (patch) | |
tree | f2d799c3b8433f5a852abb2fc3a99c979b05bc6c /tools/python/convert_from_tensorflow.py | |
parent | 36083450a4be9e3053f4254ca1f696b402dab8e0 (diff) | |
download | ffmpeg-6aa7e07e7caed7997e40cee8b203ec56b12d7300.tar.gz |
dnn/native: add native support for 'add'
It can be tested with the model file generated with below python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
z1 = 0.039 + x
z2 = x + 0.042
z3 = z1 + z2
z4 = z3 - 0.381
z5 = z4 - x
y = tf.math.maximum(z5, 0.0, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Diffstat (limited to 'tools/python/convert_from_tensorflow.py')
-rw-r--r-- | tools/python/convert_from_tensorflow.py | 15 |
1 files changed, 7 insertions, 8 deletions
diff --git a/tools/python/convert_from_tensorflow.py b/tools/python/convert_from_tensorflow.py index 2485f16cd6..9a495c0a9e 100644 --- a/tools/python/convert_from_tensorflow.py +++ b/tools/python/convert_from_tensorflow.py @@ -71,7 +71,7 @@ class TFConverter: self.conv2d_scope_names = set() self.conv2d_scopename_inputname_dict = {} self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5} - self.mathbin2code = {'Sub':0} + self.mathbin2code = {'Sub':0, 'Add':1} self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2} self.name_operand_dict = {} @@ -255,8 +255,7 @@ class TFConverter: np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) - def dump_sub_to_file(self, node, f): - assert(node.op == 'Sub') + def dump_mathbinary_to_file(self, node, f): self.layer_number = self.layer_number + 1 self.converted_nodes.add(node.name) i0_node = self.name_node_dict[node.input[0]] @@ -264,15 +263,13 @@ class TFConverter: np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f) if i0_node.op == 'Const': scalar = i0_node.attr['value'].tensor.float_val[0] - assert(i0_node.name.find('sub/x')) - np.array([1], dtype=np.uint32).tofile(f) + np.array([1], dtype=np.uint32).tofile(f) # broadcast: 1 np.array([scalar], dtype=np.float32).tofile(f) - np.array([0], dtype=np.uint32).tofile(f) + np.array([0], dtype=np.uint32).tofile(f) # broadcast: 0 input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT) np.array([input_operand_index], dtype=np.uint32).tofile(f) elif i1_node.op == 'Const': scalar = i1_node.attr['value'].tensor.float_val[0] - assert(i1_node.name.find('sub/y')) np.array([0], dtype=np.uint32).tofile(f) input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT) np.array([input_operand_index], dtype=np.uint32).tofile(f) @@ -309,7 +306,9 @@ class TFConverter: elif node.op == 'Maximum': self.dump_maximum_to_file(node, f) elif node.op == 'Sub': - self.dump_sub_to_file(node, f) + self.dump_mathbinary_to_file(node, f) + elif node.op == 'Add': + self.dump_mathbinary_to_file(node, f) def dump_operands_to_file(self, f): |