diff options
author | Sergey Lavrushkin <dualfal@gmail.com> | 2018-07-27 19:34:02 +0300 |
---|---|---|
committer | Pedro Arthur <bygrandao@gmail.com> | 2018-08-07 11:58:34 -0300 |
commit | 9d87897ba84a3b639a4c3afeb4ec6d21bc306a92 (patch) | |
tree | 468eb81a3f45374685ea5f388067d6f43a4d4f97 /libavfilter | |
parent | 4eb63efbdaea6d36ad94f1bb0dd129b7f7aaa899 (diff) | |
download | ffmpeg-9d87897ba84a3b639a4c3afeb4ec6d21bc306a92.tar.gz |
libavfilter: Code style fixes for pointers in DNN module and sr filter.
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
Diffstat (limited to 'libavfilter')
-rw-r--r-- | libavfilter/dnn_backend_native.c | 84 | ||||
-rw-r--r-- | libavfilter/dnn_backend_native.h | 8 | ||||
-rw-r--r-- | libavfilter/dnn_backend_tf.c | 108 | ||||
-rw-r--r-- | libavfilter/dnn_backend_tf.h | 8 | ||||
-rw-r--r-- | libavfilter/dnn_espcn.h | 6 | ||||
-rw-r--r-- | libavfilter/dnn_interface.c | 4 | ||||
-rw-r--r-- | libavfilter/dnn_interface.h | 16 | ||||
-rw-r--r-- | libavfilter/dnn_srcnn.h | 6 | ||||
-rw-r--r-- | libavfilter/vf_sr.c | 60 |
9 files changed, 150 insertions, 150 deletions
diff --git a/libavfilter/dnn_backend_native.c b/libavfilter/dnn_backend_native.c index 3e6b86280d..baefea7fcb 100644 --- a/libavfilter/dnn_backend_native.c +++ b/libavfilter/dnn_backend_native.c @@ -34,15 +34,15 @@ typedef enum {RELU, TANH, SIGMOID} ActivationFunc; typedef struct Layer{ LayerType type; - float* output; - void* params; + float *output; + void *params; } Layer; typedef struct ConvolutionalParams{ int32_t input_num, output_num, kernel_size; ActivationFunc activation; - float* kernel; - float* biases; + float *kernel; + float *biases; } ConvolutionalParams; typedef struct InputParams{ @@ -55,16 +55,16 @@ typedef struct DepthToSpaceParams{ // Represents simple feed-forward convolutional network. typedef struct ConvolutionalNetwork{ - Layer* layers; + Layer *layers; int32_t layers_num; } ConvolutionalNetwork; -static DNNReturnType set_input_output_native(void* model, DNNData* input, DNNData* output) +static DNNReturnType set_input_output_native(void *model, DNNData *input, DNNData *output) { - ConvolutionalNetwork* network = (ConvolutionalNetwork*)model; - InputParams* input_params; - ConvolutionalParams* conv_params; - DepthToSpaceParams* depth_to_space_params; + ConvolutionalNetwork *network = (ConvolutionalNetwork *)model; + InputParams *input_params; + ConvolutionalParams *conv_params; + DepthToSpaceParams *depth_to_space_params; int cur_width, cur_height, cur_channels; int32_t layer; @@ -72,7 +72,7 @@ static DNNReturnType set_input_output_native(void* model, DNNData* input, DNNDat return DNN_ERROR; } else{ - input_params = (InputParams*)network->layers[0].params; + input_params = (InputParams *)network->layers[0].params; input_params->width = cur_width = input->width; input_params->height = cur_height = input->height; input_params->channels = cur_channels = input->channels; @@ -88,14 +88,14 @@ static DNNReturnType set_input_output_native(void* model, DNNData* input, DNNDat for (layer = 1; layer < network->layers_num; ++layer){ switch (network->layers[layer].type){ case CONV: - conv_params = (ConvolutionalParams*)network->layers[layer].params; + conv_params = (ConvolutionalParams *)network->layers[layer].params; if (conv_params->input_num != cur_channels){ return DNN_ERROR; } cur_channels = conv_params->output_num; break; case DEPTH_TO_SPACE: - depth_to_space_params = (DepthToSpaceParams*)network->layers[layer].params; + depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params; if (cur_channels % (depth_to_space_params->block_size * depth_to_space_params->block_size) != 0){ return DNN_ERROR; } @@ -127,16 +127,16 @@ static DNNReturnType set_input_output_native(void* model, DNNData* input, DNNDat // layers_num,layer_type,layer_parameterss,layer_type,layer_parameters... // For CONV layer: activation_function, input_num, output_num, kernel_size, kernel, biases // For DEPTH_TO_SPACE layer: block_size -DNNModel* ff_dnn_load_model_native(const char* model_filename) +DNNModel *ff_dnn_load_model_native(const char *model_filename) { - DNNModel* model = NULL; - ConvolutionalNetwork* network = NULL; - AVIOContext* model_file_context; + DNNModel *model = NULL; + ConvolutionalNetwork *network = NULL; + AVIOContext *model_file_context; int file_size, dnn_size, kernel_size, i; int32_t layer; LayerType layer_type; - ConvolutionalParams* conv_params; - DepthToSpaceParams* depth_to_space_params; + ConvolutionalParams *conv_params; + DepthToSpaceParams *depth_to_space_params; model = av_malloc(sizeof(DNNModel)); if (!model){ @@ -155,7 +155,7 @@ DNNModel* ff_dnn_load_model_native(const char* model_filename) av_freep(&model); return NULL; } - model->model = (void*)network; + model->model = (void *)network; network->layers_num = 1 + (int32_t)avio_rl32(model_file_context); dnn_size = 4; @@ -251,10 +251,10 @@ DNNModel* ff_dnn_load_model_native(const char* model_filename) return model; } -static int set_up_conv_layer(Layer* layer, const float* kernel, const float* biases, ActivationFunc activation, +static int set_up_conv_layer(Layer *layer, const float *kernel, const float *biases, ActivationFunc activation, int32_t input_num, int32_t output_num, int32_t size) { - ConvolutionalParams* conv_params; + ConvolutionalParams *conv_params; int kernel_size; conv_params = av_malloc(sizeof(ConvolutionalParams)); @@ -282,11 +282,11 @@ static int set_up_conv_layer(Layer* layer, const float* kernel, const float* bia return DNN_SUCCESS; } -DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type) +DNNModel *ff_dnn_load_default_model_native(DNNDefaultModel model_type) { - DNNModel* model = NULL; - ConvolutionalNetwork* network = NULL; - DepthToSpaceParams* depth_to_space_params; + DNNModel *model = NULL; + ConvolutionalNetwork *network = NULL; + DepthToSpaceParams *depth_to_space_params; int32_t layer; model = av_malloc(sizeof(DNNModel)); @@ -299,7 +299,7 @@ DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type) av_freep(&model); return NULL; } - model->model = (void*)network; + model->model = (void *)network; switch (model_type){ case DNN_SRCNN: @@ -365,7 +365,7 @@ DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type) #define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x))) -static void convolve(const float* input, float* output, const ConvolutionalParams* conv_params, int width, int height) +static void convolve(const float *input, float *output, const ConvolutionalParams *conv_params, int width, int height) { int y, x, n_filter, ch, kernel_y, kernel_x; int radius = conv_params->kernel_size >> 1; @@ -403,7 +403,7 @@ static void convolve(const float* input, float* output, const ConvolutionalParam } } -static void depth_to_space(const float* input, float* output, int block_size, int width, int height, int channels) +static void depth_to_space(const float *input, float *output, int block_size, int width, int height, int channels) { int y, x, by, bx, ch; int new_channels = channels / (block_size * block_size); @@ -426,20 +426,20 @@ static void depth_to_space(const float* input, float* output, int block_size, in } } -DNNReturnType ff_dnn_execute_model_native(const DNNModel* model) +DNNReturnType ff_dnn_execute_model_native(const DNNModel *model) { - ConvolutionalNetwork* network = (ConvolutionalNetwork*)model->model; + ConvolutionalNetwork *network = (ConvolutionalNetwork *)model->model; int cur_width, cur_height, cur_channels; int32_t layer; - InputParams* input_params; - ConvolutionalParams* conv_params; - DepthToSpaceParams* depth_to_space_params; + InputParams *input_params; + ConvolutionalParams *conv_params; + DepthToSpaceParams *depth_to_space_params; if (network->layers_num <= 0 || network->layers[0].type != INPUT || !network->layers[0].output){ return DNN_ERROR; } else{ - input_params = (InputParams*)network->layers[0].params; + input_params = (InputParams *)network->layers[0].params; cur_width = input_params->width; cur_height = input_params->height; cur_channels = input_params->channels; @@ -451,12 +451,12 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel* model) } switch (network->layers[layer].type){ case CONV: - conv_params = (ConvolutionalParams*)network->layers[layer].params; + conv_params = (ConvolutionalParams *)network->layers[layer].params; convolve(network->layers[layer - 1].output, network->layers[layer].output, conv_params, cur_width, cur_height); cur_channels = conv_params->output_num; break; case DEPTH_TO_SPACE: - depth_to_space_params = (DepthToSpaceParams*)network->layers[layer].params; + depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params; depth_to_space(network->layers[layer - 1].output, network->layers[layer].output, depth_to_space_params->block_size, cur_width, cur_height, cur_channels); cur_height *= depth_to_space_params->block_size; @@ -471,19 +471,19 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel* model) return DNN_SUCCESS; } -void ff_dnn_free_model_native(DNNModel** model) +void ff_dnn_free_model_native(DNNModel **model) { - ConvolutionalNetwork* network; - ConvolutionalParams* conv_params; + ConvolutionalNetwork *network; + ConvolutionalParams *conv_params; int32_t layer; if (*model) { - network = (ConvolutionalNetwork*)(*model)->model; + network = (ConvolutionalNetwork *)(*model)->model; for (layer = 0; layer < network->layers_num; ++layer){ av_freep(&network->layers[layer].output); if (network->layers[layer].type == CONV){ - conv_params = (ConvolutionalParams*)network->layers[layer].params; + conv_params = (ConvolutionalParams *)network->layers[layer].params; av_freep(&conv_params->kernel); av_freep(&conv_params->biases); } diff --git a/libavfilter/dnn_backend_native.h b/libavfilter/dnn_backend_native.h index 599c1302e2..adbb7088b4 100644 --- a/libavfilter/dnn_backend_native.h +++ b/libavfilter/dnn_backend_native.h @@ -29,12 +29,12 @@ #include "dnn_interface.h" -DNNModel* ff_dnn_load_model_native(const char* model_filename); +DNNModel *ff_dnn_load_model_native(const char *model_filename); -DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type); +DNNModel *ff_dnn_load_default_model_native(DNNDefaultModel model_type); -DNNReturnType ff_dnn_execute_model_native(const DNNModel* model); +DNNReturnType ff_dnn_execute_model_native(const DNNModel *model); -void ff_dnn_free_model_native(DNNModel** model); +void ff_dnn_free_model_native(DNNModel **model); #endif diff --git a/libavfilter/dnn_backend_tf.c b/libavfilter/dnn_backend_tf.c index 51608c73d9..6528a2a390 100644 --- a/libavfilter/dnn_backend_tf.c +++ b/libavfilter/dnn_backend_tf.c @@ -31,24 +31,24 @@ #include <tensorflow/c/c_api.h> typedef struct TFModel{ - TF_Graph* graph; - TF_Session* session; - TF_Status* status; + TF_Graph *graph; + TF_Session *session; + TF_Status *status; TF_Output input, output; - TF_Tensor* input_tensor; - DNNData* output_data; + TF_Tensor *input_tensor; + DNNData *output_data; } TFModel; -static void free_buffer(void* data, size_t length) +static void free_buffer(void *data, size_t length) { av_freep(&data); } -static TF_Buffer* read_graph(const char* model_filename) +static TF_Buffer *read_graph(const char *model_filename) { - TF_Buffer* graph_buf; - unsigned char* graph_data = NULL; - AVIOContext* model_file_context; + TF_Buffer *graph_buf; + unsigned char *graph_data = NULL; + AVIOContext *model_file_context; long size, bytes_read; if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){ @@ -70,20 +70,20 @@ static TF_Buffer* read_graph(const char* model_filename) } graph_buf = TF_NewBuffer(); - graph_buf->data = (void*)graph_data; + graph_buf->data = (void *)graph_data; graph_buf->length = size; graph_buf->data_deallocator = free_buffer; return graph_buf; } -static DNNReturnType set_input_output_tf(void* model, DNNData* input, DNNData* output) +static DNNReturnType set_input_output_tf(void *model, DNNData *input, DNNData *output) { - TFModel* tf_model = (TFModel*)model; + TFModel *tf_model = (TFModel *)model; int64_t input_dims[] = {1, input->height, input->width, input->channels}; - TF_SessionOptions* sess_opts; - const TF_Operation* init_op = TF_GraphOperationByName(tf_model->graph, "init"); - TF_Tensor* output_tensor; + TF_SessionOptions *sess_opts; + const TF_Operation *init_op = TF_GraphOperationByName(tf_model->graph, "init"); + TF_Tensor *output_tensor; // Input operation should be named 'x' tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, "x"); @@ -99,7 +99,7 @@ static DNNReturnType set_input_output_tf(void* model, DNNData* input, DNNData* o if (!tf_model->input_tensor){ return DNN_ERROR; } - input->data = (float*)TF_TensorData(tf_model->input_tensor); + input->data = (float *)TF_TensorData(tf_model->input_tensor); // Output operation should be named 'y' tf_model->output.oper = TF_GraphOperationByName(tf_model->graph, "y"); @@ -156,12 +156,12 @@ static DNNReturnType set_input_output_tf(void* model, DNNData* input, DNNData* o return DNN_SUCCESS; } -DNNModel* ff_dnn_load_model_tf(const char* model_filename) +DNNModel *ff_dnn_load_model_tf(const char *model_filename) { - DNNModel* model = NULL; - TFModel* tf_model = NULL; - TF_Buffer* graph_def; - TF_ImportGraphDefOptions* graph_opts; + DNNModel *model = NULL; + TFModel *tf_model = NULL; + TF_Buffer *graph_def; + TF_ImportGraphDefOptions *graph_opts; model = av_malloc(sizeof(DNNModel)); if (!model){ @@ -197,25 +197,25 @@ DNNModel* ff_dnn_load_model_tf(const char* model_filename) return NULL; } - model->model = (void*)tf_model; + model->model = (void *)tf_model; model->set_input_output = &set_input_output_tf; return model; } -static TF_Operation* add_pad_op(TFModel* tf_model, TF_Operation* input_op, int32_t pad) +static TF_Operation *add_pad_op(TFModel *tf_model, TF_Operation *input_op, int32_t pad) { - TF_OperationDescription* op_desc; - TF_Operation* op; - TF_Tensor* tensor; + TF_OperationDescription *op_desc; + TF_Operation *op; + TF_Tensor *tensor; TF_Output input; - int32_t* pads; + int32_t *pads; int64_t pads_shape[] = {4, 2}; op_desc = TF_NewOperation(tf_model->graph, "Const", "pads"); TF_SetAttrType(op_desc, "dtype", TF_INT32); tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * sizeof(int32_t)); - pads = (int32_t*)TF_TensorData(tensor); + pads = (int32_t *)TF_TensorData(tensor); pads[0] = 0; pads[1] = 0; pads[2] = pad; pads[3] = pad; pads[4] = pad; pads[5] = pad; @@ -246,11 +246,11 @@ static TF_Operation* add_pad_op(TFModel* tf_model, TF_Operation* input_op, int32 return op; } -static TF_Operation* add_const_op(TFModel* tf_model, const float* values, const int64_t* dims, int dims_len, const char* name) +static TF_Operation *add_const_op(TFModel *tf_model, const float *values, const int64_t *dims, int dims_len, const char *name) { int dim; - TF_OperationDescription* op_desc; - TF_Tensor* tensor; + TF_OperationDescription *op_desc; + TF_Tensor *tensor; size_t len; op_desc = TF_NewOperation(tf_model->graph, "Const", name); @@ -269,18 +269,18 @@ static TF_Operation* add_const_op(TFModel* tf_model, const float* values, const return TF_FinishOperation(op_desc, tf_model->status); } -static TF_Operation* add_conv_layers(TFModel* tf_model, const float** consts, const int64_t** consts_dims, - const int* consts_dims_len, const char** activations, - TF_Operation* input_op, int layers_num) +static TF_Operation* add_conv_layers(TFModel *tf_model, const float **consts, const int64_t **consts_dims, + const int *consts_dims_len, const char **activations, + TF_Operation *input_op, int layers_num) { int i; - TF_OperationDescription* op_desc; - TF_Operation* op; - TF_Operation* transpose_op; + TF_OperationDescription *op_desc; + TF_Operation *op; + TF_Operation *transpose_op; TF_Output input; int64_t strides[] = {1, 1, 1, 1}; - int32_t* transpose_perm; - TF_Tensor* tensor; + int32_t *transpose_perm; + TF_Tensor *tensor; int64_t transpose_perm_shape[] = {4}; #define NAME_BUFF_SIZE 256 char name_buffer[NAME_BUFF_SIZE]; @@ -288,7 +288,7 @@ static TF_Operation* add_conv_layers(TFModel* tf_model, const float** consts, co op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm"); TF_SetAttrType(op_desc, "dtype", TF_INT32); tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 * sizeof(int32_t)); - transpose_perm = (int32_t*)TF_TensorData(tensor); + transpose_perm = (int32_t *)TF_TensorData(tensor); transpose_perm[0] = 1; transpose_perm[1] = 2; transpose_perm[2] = 3; @@ -369,13 +369,13 @@ static TF_Operation* add_conv_layers(TFModel* tf_model, const float** consts, co return input_op; } -DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type) +DNNModel *ff_dnn_load_default_model_tf(DNNDefaultModel model_type) { - DNNModel* model = NULL; - TFModel* tf_model = NULL; - TF_OperationDescription* op_desc; - TF_Operation* op; - TF_Operation* const_ops_buffer[6]; + DNNModel *model = NULL; + TFModel *tf_model = NULL; + TF_OperationDescription *op_desc; + TF_Operation *op; + TF_Operation *const_ops_buffer[6]; TF_Output input; int64_t input_shape[] = {1, -1, -1, 1}; @@ -461,16 +461,16 @@ DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type) CLEANUP_ON_ERROR(tf_model, model); } - model->model = (void*)tf_model; + model->model = (void *)tf_model; model->set_input_output = &set_input_output_tf; return model; } -DNNReturnType ff_dnn_execute_model_tf(const DNNModel* model) +DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model) { - TFModel* tf_model = (TFModel*)model->model; - TF_Tensor* output_tensor; + TFModel *tf_model = (TFModel *)model->model; + TF_Tensor *output_tensor; TF_SessionRun(tf_model->session, NULL, &tf_model->input, &tf_model->input_tensor, 1, @@ -490,12 +490,12 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel* model) } } -void ff_dnn_free_model_tf(DNNModel** model) +void ff_dnn_free_model_tf(DNNModel **model) { - TFModel* tf_model; + TFModel *tf_model; if (*model){ - tf_model = (TFModel*)(*model)->model; + tf_model = (TFModel *)(*model)->model; if (tf_model->graph){ TF_DeleteGraph(tf_model->graph); } diff --git a/libavfilter/dnn_backend_tf.h b/libavfilter/dnn_backend_tf.h index 08e4a568b3..357a82d948 100644 --- a/libavfilter/dnn_backend_tf.h +++ b/libavfilter/dnn_backend_tf.h @@ -29,12 +29,12 @@ #include "dnn_interface.h" -DNNModel* ff_dnn_load_model_tf(const char* model_filename); +DNNModel *ff_dnn_load_model_tf(const char *model_filename); -DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type); +DNNModel *ff_dnn_load_default_model_tf(DNNDefaultModel model_type); -DNNReturnType ff_dnn_execute_model_tf(const DNNModel* model); +DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model); -void ff_dnn_free_model_tf(DNNModel** model); +void ff_dnn_free_model_tf(DNNModel **model); #endif diff --git a/libavfilter/dnn_espcn.h b/libavfilter/dnn_espcn.h index 315ecf031d..a0dd61cd0d 100644 --- a/libavfilter/dnn_espcn.h +++ b/libavfilter/dnn_espcn.h @@ -5398,7 +5398,7 @@ static const long int espcn_conv3_bias_dims[] = { 4 }; -static const float* espcn_consts[] = { +static const float *espcn_consts[] = { espcn_conv1_kernel, espcn_conv1_bias, espcn_conv2_kernel, @@ -5407,7 +5407,7 @@ static const float* espcn_consts[] = { espcn_conv3_bias }; -static const long int* espcn_consts_dims[] = { +static const long int *espcn_consts_dims[] = { espcn_conv1_kernel_dims, espcn_conv1_bias_dims, espcn_conv2_kernel_dims, @@ -5429,7 +5429,7 @@ static const char espcn_tanh[] = "Tanh"; static const char espcn_sigmoid[] = "Sigmoid"; -static const char* espcn_activations[] = { +static const char *espcn_activations[] = { espcn_tanh, espcn_tanh, espcn_sigmoid diff --git a/libavfilter/dnn_interface.c b/libavfilter/dnn_interface.c index 87c90526be..ca7d6d1ea5 100644 --- a/libavfilter/dnn_interface.c +++ b/libavfilter/dnn_interface.c @@ -28,9 +28,9 @@ #include "dnn_backend_tf.h" #include "libavutil/mem.h" -DNNModule* ff_get_dnn_module(DNNBackendType backend_type) +DNNModule *ff_get_dnn_module(DNNBackendType backend_type) { - DNNModule* dnn_module; + DNNModule *dnn_module; dnn_module = av_malloc(sizeof(DNNModule)); if(!dnn_module){ diff --git a/libavfilter/dnn_interface.h b/libavfilter/dnn_interface.h index 6b820d1d5b..a69717ae62 100644 --- a/libavfilter/dnn_interface.h +++ b/libavfilter/dnn_interface.h @@ -33,31 +33,31 @@ typedef enum {DNN_NATIVE, DNN_TF} DNNBackendType; typedef enum {DNN_SRCNN, DNN_ESPCN} DNNDefaultModel; typedef struct DNNData{ - float* data; + float *data; int width, height, channels; } DNNData; typedef struct DNNModel{ // Stores model that can be different for different backends. - void* model; + void *model; // Sets model input and output, while allocating additional memory for intermediate calculations. // Should be called at least once before model execution. - DNNReturnType (*set_input_output)(void* model, DNNData* input, DNNData* output); + DNNReturnType (*set_input_output)(void *model, DNNData *input, DNNData *output); } DNNModel; // Stores pointers to functions for loading, executing, freeing DNN models for one of the backends. typedef struct DNNModule{ // Loads model and parameters from given file. Returns NULL if it is not possible. - DNNModel* (*load_model)(const char* model_filename); + DNNModel *(*load_model)(const char *model_filename); // Loads one of the default models - DNNModel* (*load_default_model)(DNNDefaultModel model_type); + DNNModel *(*load_default_model)(DNNDefaultModel model_type); // Executes model with specified input and output. Returns DNN_ERROR otherwise. - DNNReturnType (*execute_model)(const DNNModel* model); + DNNReturnType (*execute_model)(const DNNModel *model); // Frees memory allocated for model. - void (*free_model)(DNNModel** model); + void (*free_model)(DNNModel **model); } DNNModule; // Initializes DNNModule depending on chosen backend. -DNNModule* ff_get_dnn_module(DNNBackendType backend_type); +DNNModule *ff_get_dnn_module(DNNBackendType backend_type); #endif diff --git a/libavfilter/dnn_srcnn.h b/libavfilter/dnn_srcnn.h index 7ec11654b3..26143654b8 100644 --- a/libavfilter/dnn_srcnn.h +++ b/libavfilter/dnn_srcnn.h @@ -2110,7 +2110,7 @@ static const long int srcnn_conv3_bias_dims[] = { 1 }; -static const float* srcnn_consts[] = { +static const float *srcnn_consts[] = { srcnn_conv1_kernel, srcnn_conv1_bias, srcnn_conv2_kernel, @@ -2119,7 +2119,7 @@ static const float* srcnn_consts[] = { srcnn_conv3_bias }; -static const long int* srcnn_consts_dims[] = { +static const long int *srcnn_consts_dims[] = { srcnn_conv1_kernel_dims, srcnn_conv1_bias_dims, srcnn_conv2_kernel_dims, @@ -2139,7 +2139,7 @@ static const int srcnn_consts_dims_len[] = { static const char srcnn_relu[] = "Relu"; -static const char* srcnn_activations[] = { +static const char *srcnn_activations[] = { srcnn_relu, srcnn_relu, srcnn_relu diff --git a/libavfilter/vf_sr.c b/libavfilter/vf_sr.c index f3ca9a09a8..944a0e28e7 100644 --- a/libavfilter/vf_sr.c +++ b/libavfilter/vf_sr.c @@ -39,13 +39,13 @@ typedef struct SRContext { const AVClass *class; SRModel model_type; - char* model_filename; + char *model_filename; DNNBackendType backend_type; - DNNModule* dnn_module; - DNNModel* model; + DNNModule *dnn_module; + DNNModel *model; DNNData input, output; int scale_factor; - struct SwsContext* sws_context; + struct SwsContext *sws_context; int sws_slice_h; } SRContext; @@ -67,9 +67,9 @@ static const AVOption sr_options[] = { AVFILTER_DEFINE_CLASS(sr); -static av_cold int init(AVFilterContext* context) +static av_cold int init(AVFilterContext *context) { - SRContext* sr_context = context->priv; + SRContext *sr_context = context->priv; sr_context->dnn_module = ff_get_dnn_module(sr_context->backend_type); if (!sr_context->dnn_module){ @@ -98,12 +98,12 @@ static av_cold int init(AVFilterContext* context) return 0; } -static int query_formats(AVFilterContext* context) +static int query_formats(AVFilterContext *context) { const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE}; - AVFilterFormats* formats_list; + AVFilterFormats *formats_list; formats_list = ff_make_format_list(pixel_formats); if (!formats_list){ @@ -113,11 +113,11 @@ static int query_formats(AVFilterContext* context) return ff_set_common_formats(context, formats_list); } -static int config_props(AVFilterLink* inlink) +static int config_props(AVFilterLink *inlink) { - AVFilterContext* context = inlink->dst; - SRContext* sr_context = context->priv; - AVFilterLink* outlink = context->outputs[0]; + AVFilterContext *context = inlink->dst; + SRContext *sr_context = context->priv; + AVFilterLink *outlink = context->outputs[0]; DNNReturnType result; int sws_src_h, sws_src_w, sws_dst_h, sws_dst_w; @@ -202,18 +202,18 @@ static int config_props(AVFilterLink* inlink) } typedef struct ThreadData{ - uint8_t* data; + uint8_t *data; int data_linesize, height, width; } ThreadData; -static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb_jobs) +static int uint8_to_float(AVFilterContext *context, void *arg, int jobnr, int nb_jobs) { - SRContext* sr_context = context->priv; - const ThreadData* td = arg; + SRContext *sr_context = context->priv; + const ThreadData *td = arg; const int slice_start = (td->height * jobnr ) / nb_jobs; const int slice_end = (td->height * (jobnr + 1)) / nb_jobs; - const uint8_t* src = td->data + slice_start * td->data_linesize; - float* dst = sr_context->input.data + slice_start * td->width; + const uint8_t *src = td->data + slice_start * td->data_linesize; + float *dst = sr_context->input.data + slice_start * td->width; int y, x; for (y = slice_start; y < slice_end; ++y){ @@ -227,14 +227,14 @@ static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb return 0; } -static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb_jobs) +static int float_to_uint8(AVFilterContext *context, void *arg, int jobnr, int nb_jobs) { - SRContext* sr_context = context->priv; - const ThreadData* td = arg; + SRContext *sr_context = context->priv; + const ThreadData *td = arg; const int slice_start = (td->height * jobnr ) / nb_jobs; const int slice_end = (td->height * (jobnr + 1)) / nb_jobs; - const float* src = sr_context->output.data + slice_start * td->width; - uint8_t* dst = td->data + slice_start * td->data_linesize; + const float *src = sr_context->output.data + slice_start * td->width; + uint8_t *dst = td->data + slice_start * td->data_linesize; int y, x; for (y = slice_start; y < slice_end; ++y){ @@ -248,12 +248,12 @@ static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb return 0; } -static int filter_frame(AVFilterLink* inlink, AVFrame* in) +static int filter_frame(AVFilterLink *inlink, AVFrame *in) { - AVFilterContext* context = inlink->dst; - SRContext* sr_context = context->priv; - AVFilterLink* outlink = context->outputs[0]; - AVFrame* out = ff_get_video_buffer(outlink, outlink->w, outlink->h); + AVFilterContext *context = inlink->dst; + SRContext *sr_context = context->priv; + AVFilterLink *outlink = context->outputs[0]; + AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h); ThreadData td; int nb_threads; DNNReturnType dnn_result; @@ -307,9 +307,9 @@ static int filter_frame(AVFilterLink* inlink, AVFrame* in) return ff_filter_frame(outlink, out); } -static av_cold void uninit(AVFilterContext* context) +static av_cold void uninit(AVFilterContext *context) { - SRContext* sr_context = context->priv; + SRContext *sr_context = context->priv; if (sr_context->dnn_module){ (sr_context->dnn_module->free_model)(&sr_context->model); |