diff options
author | Rostislav Pehlivanov <atomnuker@gmail.com> | 2017-02-11 00:25:06 +0000 |
---|---|---|
committer | Rostislav Pehlivanov <atomnuker@gmail.com> | 2017-02-14 06:15:36 +0000 |
commit | e538108c219d7b3628a9ec33d85bf252ee70c957 (patch) | |
tree | 796c62422dbc5f3e555d84ce57557729c7a8c900 /libavcodec | |
parent | d2119f624d392f53f80c3d36ffaadca23aef8a10 (diff) | |
download | ffmpeg-e538108c219d7b3628a9ec33d85bf252ee70c957.tar.gz |
opus_celt: move quantization and band decoding to opus_pvq.c
A huge amount can be reused by the encoder, as the only thing
which needs to be done would be to add a 10 line celt_icwrsi,
a wrapper around it (celt_alg_quant) and templating the
ff_celt_decode_band to replace entropy decoding functions
with entropy encoding.
There is no performance loss but in fact a performance gain of
around 6% which is caused by the compiler being able to optimize
the decoding more efficiently.
Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
Diffstat (limited to 'libavcodec')
-rw-r--r-- | libavcodec/Makefile | 2 | ||||
-rw-r--r-- | libavcodec/opus.h | 10 | ||||
-rw-r--r-- | libavcodec/opus_celt.c | 828 | ||||
-rw-r--r-- | libavcodec/opus_celt.h | 133 | ||||
-rw-r--r-- | libavcodec/opus_pvq.c | 729 | ||||
-rw-r--r-- | libavcodec/opus_pvq.h | 35 |
6 files changed, 909 insertions, 828 deletions
diff --git a/libavcodec/Makefile b/libavcodec/Makefile index d5c36ffdbd..e1f83a0404 100644 --- a/libavcodec/Makefile +++ b/libavcodec/Makefile @@ -443,7 +443,7 @@ OBJS-$(CONFIG_NELLYMOSER_ENCODER) += nellymoserenc.o nellymoser.o OBJS-$(CONFIG_NUV_DECODER) += nuv.o rtjpeg.o OBJS-$(CONFIG_ON2AVC_DECODER) += on2avc.o on2avcdata.o OBJS-$(CONFIG_OPUS_DECODER) += opusdec.o opus.o opus_celt.o opus_rc.o \ - opus_silk.o opustab.o vorbis_data.o + opus_pvq.o opus_silk.o opustab.o vorbis_data.o OBJS-$(CONFIG_PAF_AUDIO_DECODER) += pafaudio.o OBJS-$(CONFIG_PAF_VIDEO_DECODER) += pafvideo.o OBJS-$(CONFIG_PAM_DECODER) += pnmdec.o pnm.o diff --git a/libavcodec/opus.h b/libavcodec/opus.h index 2c3d63a7a2..be042497ea 100644 --- a/libavcodec/opus.h +++ b/libavcodec/opus.h @@ -43,16 +43,6 @@ #define CELT_MAX_LOG_BLOCKS 3 #define CELT_MAX_FRAME_SIZE (CELT_SHORT_BLOCKSIZE * (1 << CELT_MAX_LOG_BLOCKS)) #define CELT_MAX_BANDS 21 -#define CELT_VECTORS 11 -#define CELT_ALLOC_STEPS 6 -#define CELT_FINE_OFFSET 21 -#define CELT_MAX_FINE_BITS 8 -#define CELT_NORM_SCALE 16384 -#define CELT_QTHETA_OFFSET 4 -#define CELT_QTHETA_OFFSET_TWOPHASE 16 -#define CELT_DEEMPH_COEFF 0.85000610f -#define CELT_POSTFILTER_MINPERIOD 15 -#define CELT_ENERGY_SILENCE (-28.0f) #define SILK_HISTORY 322 #define SILK_MAX_LPC 16 diff --git a/libavcodec/opus_celt.c b/libavcodec/opus_celt.c index a0f018e664..71ef8965e2 100644 --- a/libavcodec/opus_celt.c +++ b/libavcodec/opus_celt.c @@ -24,109 +24,9 @@ * Opus CELT decoder */ -#include <stdint.h> - -#include "libavutil/float_dsp.h" -#include "libavutil/libm.h" - -#include "mdct15.h" -#include "opus.h" +#include "opus_celt.h" #include "opustab.h" - -enum CeltSpread { - CELT_SPREAD_NONE, - CELT_SPREAD_LIGHT, - CELT_SPREAD_NORMAL, - CELT_SPREAD_AGGRESSIVE -}; - -typedef struct CeltFrame { - float energy[CELT_MAX_BANDS]; - float prev_energy[2][CELT_MAX_BANDS]; - - uint8_t collapse_masks[CELT_MAX_BANDS]; - - /* buffer for mdct output + postfilter */ - DECLARE_ALIGNED(32, float, buf)[2048]; - - /* postfilter parameters */ - int pf_period_new; - float pf_gains_new[3]; - int pf_period; - float pf_gains[3]; - int pf_period_old; - float pf_gains_old[3]; - - float deemph_coeff; -} CeltFrame; - -struct CeltContext { - // constant values that do not change during context lifetime - AVCodecContext *avctx; - MDCT15Context *imdct[4]; - AVFloatDSPContext *dsp; - int output_channels; - - // values that have inter-frame effect and must be reset on flush - CeltFrame frame[2]; - uint32_t seed; - int flushed; - - // values that only affect a single frame - int coded_channels; - int framebits; - int duration; - - /* number of iMDCT blocks in the frame */ - int blocks; - /* size of each block */ - int blocksize; - - int startband; - int endband; - int codedbands; - - int anticollapse_bit; - - int intensitystereo; - int dualstereo; - enum CeltSpread spread; - - int remaining; - int remaining2; - int fine_bits [CELT_MAX_BANDS]; - int fine_priority[CELT_MAX_BANDS]; - int pulses [CELT_MAX_BANDS]; - int tf_change [CELT_MAX_BANDS]; - - DECLARE_ALIGNED(32, float, coeffs)[2][CELT_MAX_FRAME_SIZE]; - DECLARE_ALIGNED(32, float, scratch)[22 * 8]; // MAX(ff_celt_freq_range) * 1<<CELT_MAX_LOG_BLOCKS -}; - -static inline int16_t celt_cos(int16_t x) -{ - x = (MUL16(x, x) + 4096) >> 13; - x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x))))); - return 1+x; -} - -static inline int celt_log2tan(int isin, int icos) -{ - int lc, ls; - lc = opus_ilog(icos); - ls = opus_ilog(isin); - icos <<= 15 - lc; - isin <<= 15 - ls; - return (ls << 11) - (lc << 11) + - ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) - - ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932); -} - -static inline uint32_t celt_rng(CeltContext *s) -{ - s->seed = 1664525 * s->seed + 1013904223; - return s->seed; -} +#include "opus_pvq.h" static void celt_decode_coarse_energy(CeltContext *s, OpusRangeCoder *rc) { @@ -579,711 +479,6 @@ static void celt_decode_allocation(CeltContext *s, OpusRangeCoder *rc) } } -static inline int celt_bits2pulses(const uint8_t *cache, int bits) -{ - // TODO: Find the size of cache and make it into an array in the parameters list - int i, low = 0, high; - - high = cache[0]; - bits--; - - for (i = 0; i < 6; i++) { - int center = (low + high + 1) >> 1; - if (cache[center] >= bits) - high = center; - else - low = center; - } - - return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high; -} - -static inline int celt_pulses2bits(const uint8_t *cache, int pulses) -{ - // TODO: Find the size of cache and make it into an array in the parameters list - return (pulses == 0) ? 0 : cache[pulses] + 1; -} - -static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X, - int N, float g) -{ - int i; - for (i = 0; i < N; i++) - X[i] = g * iy[i]; -} - -static void celt_exp_rotation1(float *X, unsigned int len, unsigned int stride, - float c, float s) -{ - float *Xptr; - int i; - - Xptr = X; - for (i = 0; i < len - stride; i++) { - float x1, x2; - x1 = Xptr[0]; - x2 = Xptr[stride]; - Xptr[stride] = c * x2 + s * x1; - *Xptr++ = c * x1 - s * x2; - } - - Xptr = &X[len - 2 * stride - 1]; - for (i = len - 2 * stride - 1; i >= 0; i--) { - float x1, x2; - x1 = Xptr[0]; - x2 = Xptr[stride]; - Xptr[stride] = c * x2 + s * x1; - *Xptr-- = c * x1 - s * x2; - } -} - -static inline void celt_exp_rotation(float *X, unsigned int len, - unsigned int stride, unsigned int K, - enum CeltSpread spread) -{ - unsigned int stride2 = 0; - float c, s; - float gain, theta; - int i; - - if (2*K >= len || spread == CELT_SPREAD_NONE) - return; - - gain = (float)len / (len + (20 - 5*spread) * K); - theta = M_PI * gain * gain / 4; - - c = cos(theta); - s = sin(theta); - - if (len >= stride << 3) { - stride2 = 1; - /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding. - It's basically incrementing long as (stride2+0.5)^2 < len/stride. */ - while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len) - stride2++; - } - - /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for - extract_collapse_mask().*/ - len /= stride; - for (i = 0; i < stride; i++) { - if (stride2) - celt_exp_rotation1(X + i * len, len, stride2, s, c); - celt_exp_rotation1(X + i * len, len, 1, c, s); - } -} - -static inline unsigned int celt_extract_collapse_mask(const int *iy, - unsigned int N, - unsigned int B) -{ - unsigned int collapse_mask; - int N0; - int i, j; - - if (B <= 1) - return 1; - - /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for - exp_rotation().*/ - N0 = N/B; - collapse_mask = 0; - for (i = 0; i < B; i++) - for (j = 0; j < N0; j++) - collapse_mask |= (iy[i*N0+j]!=0)<<i; - return collapse_mask; -} - -static inline void celt_renormalize_vector(float *X, int N, float gain) -{ - int i; - float g = 1e-15f; - for (i = 0; i < N; i++) - g += X[i] * X[i]; - g = gain / sqrtf(g); - - for (i = 0; i < N; i++) - X[i] *= g; -} - -static inline void celt_stereo_merge(float *X, float *Y, float mid, int N) -{ - int i; - float xp = 0, side = 0; - float E[2]; - float mid2; - float t, gain[2]; - - /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ - for (i = 0; i < N; i++) { - xp += X[i] * Y[i]; - side += Y[i] * Y[i]; - } - - /* Compensating for the mid normalization */ - xp *= mid; - mid2 = mid; - E[0] = mid2 * mid2 + side - 2 * xp; - E[1] = mid2 * mid2 + side + 2 * xp; - if (E[0] < 6e-4f || E[1] < 6e-4f) { - for (i = 0; i < N; i++) - Y[i] = X[i]; - return; - } - - t = E[0]; - gain[0] = 1.0f / sqrtf(t); - t = E[1]; - gain[1] = 1.0f / sqrtf(t); - - for (i = 0; i < N; i++) { - float value[2]; - /* Apply mid scaling (side is already scaled) */ - value[0] = mid * X[i]; - value[1] = Y[i]; - X[i] = gain[0] * (value[0] - value[1]); - Y[i] = gain[1] * (value[0] + value[1]); - } -} - -static void celt_interleave_hadamard(float *tmp, float *X, int N0, - int stride, int hadamard) -{ - int i, j; - int N = N0*stride; - - if (hadamard) { - const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2; - for (i = 0; i < stride; i++) - for (j = 0; j < N0; j++) - tmp[j*stride+i] = X[ordery[i]*N0+j]; - } else { - for (i = 0; i < stride; i++) - for (j = 0; j < N0; j++) - tmp[j*stride+i] = X[i*N0+j]; - } - - for (i = 0; i < N; i++) - X[i] = tmp[i]; -} - -static void celt_deinterleave_hadamard(float *tmp, float *X, int N0, - int stride, int hadamard) -{ - int i, j; - int N = N0*stride; - - if (hadamard) { - const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2; - for (i = 0; i < stride; i++) - for (j = 0; j < N0; j++) - tmp[ordery[i]*N0+j] = X[j*stride+i]; - } else { - for (i = 0; i < stride; i++) - for (j = 0; j < N0; j++) - tmp[i*N0+j] = X[j*stride+i]; - } - - for (i = 0; i < N; i++) - X[i] = tmp[i]; -} - -static void celt_haar1(float *X, int N0, int stride) -{ - int i, j; - N0 >>= 1; - for (i = 0; i < stride; i++) { - for (j = 0; j < N0; j++) { - float x0 = X[stride * (2 * j + 0) + i]; - float x1 = X[stride * (2 * j + 1) + i]; - X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2; - X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2; - } - } -} - -static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap, - int dualstereo) -{ - int qn, qb; - int N2 = 2 * N - 1; - if (dualstereo && N == 2) - N2--; - - /* The upper limit ensures that in a stereo split with itheta==16384, we'll - * always have enough bits left over to code at least one pulse in the - * side; otherwise it would collapse, since it doesn't get folded. */ - qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3); - qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1; - return qn; -} - -// this code was adapted from libopus -static inline uint64_t celt_cwrsi(unsigned int N, unsigned int K, unsigned int i, int *y) -{ - uint64_t norm = 0; - uint32_t p; - int s, val; - int k0; - - while (N > 2) { - uint32_t q; - - /*Lots of pulses case:*/ - if (K >= N) { - const uint32_t *row = ff_celt_pvq_u_row[N]; - - /* Are the pulses in this dimension negative? */ - p = row[K + 1]; - s = -(i >= p); - i -= p & s; - - /*Count how many pulses were placed in this dimension.*/ - k0 = K; - q = row[N]; - if (q > i) { - K = N; - do { - p = ff_celt_pvq_u_row[--K][N]; - } while (p > i); - } else - for (p = row[K]; p > i; p = row[K]) - K--; - - i -= p; - val = (k0 - K + s) ^ s; - norm += val * val; - *y++ = val; - } else { /*Lots of dimensions case:*/ - /*Are there any pulses in this dimension at all?*/ - p = ff_celt_pvq_u_row[K ][N]; - q = ff_celt_pvq_u_row[K + 1][N]; - - if (p <= i && i < q) { - i -= p; - *y++ = 0; - } else { - /*Are the pulses in this dimension negative?*/ - s = -(i >= q); - i -= q & s; - - /*Count how many pulses were placed in this dimension.*/ - k0 = K; - do p = ff_celt_pvq_u_row[--K][N]; - while (p > i); - - i -= p; - val = (k0 - K + s) ^ s; - norm += val * val; - *y++ = val; - } - } - N--; - } - - /* N == 2 */ - p = 2 * K + 1; - s = -(i >= p); - i -= p & s; - k0 = K; - K = (i + 1) / 2; - - if (K) - i -= 2 * K - 1; - - val = (k0 - K + s) ^ s; - norm += val * val; - *y++ = val; - - /* N==1 */ - s = -i; - val = (K + s) ^ s; - norm += val * val; - *y = val; - - return norm; -} - -static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, unsigned int N, unsigned int K) -{ - unsigned int idx; -#define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)]) -#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1)) - idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K)); - return celt_cwrsi(N, K, idx, y); -} - -/** Decode pulse vector and combine the result with the pitch vector to produce - the final normalised signal in the current band. */ -static inline unsigned int celt_alg_unquant(OpusRangeCoder *rc, float *X, - unsigned int N, unsigned int K, - enum CeltSpread spread, - unsigned int blocks, float gain) -{ - int y[176]; - - gain /= sqrtf(celt_decode_pulses(rc, y, N, K)); - celt_normalize_residual(y, X, N, gain); - celt_exp_rotation(X, N, blocks, K, spread); - return celt_extract_collapse_mask(y, N, blocks); -} - -static unsigned int celt_decode_band(CeltContext *s, OpusRangeCoder *rc, - const int band, float *X, float *Y, - int N, int b, unsigned int blocks, - float *lowband, int duration, - float *lowband_out, int level, - float gain, float *lowband_scratch, - int fill) -{ - const uint8_t *cache; - int dualstereo, split; - int imid = 0, iside = 0; - unsigned int N0 = N; - int N_B; - int N_B0; - int B0 = blocks; - int time_divide = 0; - int recombine = 0; - int inv = 0; - float mid = 0, side = 0; - int longblocks = (B0 == 1); - unsigned int cm = 0; - - N_B0 = N_B = N / blocks; - split = dualstereo = (Y != NULL); - - if (N == 1) { - /* special case for one sample */ - int i; - float *x = X; - for (i = 0; i <= dualstereo; i++) { - int sign = 0; - if (s->remaining2 >= 1<<3) { - sign = ff_opus_rc_get_raw(rc, 1); - s->remaining2 -= 1 << 3; - b -= 1 << 3; - } - x[0] = sign ? -1.0f : 1.0f; - x = Y; - } - if (lowband_out) - lowband_out[0] = X[0]; - return 1; - } - - if (!dualstereo && level == 0) { - int tf_change = s->tf_change[band]; - int k; - if (tf_change > 0) - recombine = tf_change; - /* Band recombining to increase frequency resolution */ - - if (lowband && - (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) { - int j; - for (j = 0; j < N; j++) - lowband_scratch[j] = lowband[j]; - lowband = lowband_scratch; - } - - for (k = 0; k < recombine; k++) { - if (lowband) - celt_haar1(lowband, N >> k, 1 << k); - fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2; - } - blocks >>= recombine; - N_B <<= recombine; - - /* Increasing the time resolution */ - while ((N_B & 1) == 0 && tf_change < 0) { - if (lowband) - celt_haar1(lowband, N_B, blocks); - fill |= fill << blocks; - blocks <<= 1; - N_B >>= 1; - time_divide++; - tf_change++; - } - B0 = blocks; - N_B0 = N_B; - - /* Reorganize the samples in time order instead of frequency order */ - if (B0 > 1 && lowband) - celt_deinterleave_hadamard(s->scratch, lowband, N_B >> recombine, - B0 << recombine, longblocks); - } - - /* If we need 1.5 more bit than we can produce, split the band in two. */ - cache = ff_celt_cache_bits + - ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band]; - if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) { - N >>= 1; - Y = X + N; - split = 1; - duration -= 1; - if (blocks == 1) - fill = (fill & 1) | (fill << 1); - blocks = (blocks + 1) >> 1; - } - - if (split) { - int qn; - int itheta = 0; - int mbits, sbits, delta; - int qalloc; - int pulse_cap; - int offset; - int orig_fill; - int tell; - - /* Decide on the resolution to give to the split parameter theta */ - pulse_cap = ff_celt_log_freq_range[band] + duration * 8; - offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE : - CELT_QTHETA_OFFSET); - qn = (dualstereo && band >= s->intensitystereo) ? 1 : - celt_compute_qn(N, b, offset, pulse_cap, dualstereo); - tell = opus_rc_tell_frac(rc); - if (qn != 1) { - /* Entropy coding of the angle. We use a uniform pdf for the - time split, a step for stereo, and a triangular one for the rest. */ - if (dualstereo && N > 2) - itheta = ff_opus_rc_dec_uint_step(rc, qn/2); - else if (dualstereo || B0 > 1) - itheta = ff_opus_rc_dec_uint(rc, qn+1); - else - itheta = ff_opus_rc_dec_uint_tri(rc, qn); - itheta = itheta * 16384 / qn; - /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. - Let's do that at higher complexity */ - } else if (dualstereo) { - inv = (b > 2 << 3 && s->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0; - itheta = 0; - } - qalloc = opus_rc_tell_frac(rc) - tell; - b -= qalloc; - - orig_fill = fill; - if (itheta == 0) { - imid = 32767; - iside = 0; - fill = av_mod_uintp2(fill, blocks); - delta = -16384; - } else if (itheta == 16384) { - imid = 0; - iside = 32767; - fill &= ((1 << blocks) - 1) << blocks; - delta = 16384; - } else { - imid = celt_cos(itheta); - iside = celt_cos(16384-itheta); - /* This is the mid vs side allocation that minimizes squared error - in that band. */ - delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid)); - } - - mid = imid / 32768.0f; - side = iside / 32768.0f; - - /* This is a special case for N=2 that only works for stereo and takes - advantage of the fact that mid and side are orthogonal to encode - the side with just one bit. */ - if (N == 2 && dualstereo) { - int c; - int sign = 0; - float tmp; - float *x2, *y2; - mbits = b; - /* Only need one bit for the side */ - sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0; - mbits -= sbits; - c = (itheta > 8192); - s->remaining2 -= qalloc+sbits; - - x2 = c ? Y : X; - y2 = c ? X : Y; - if (sbits) - sign = ff_opus_rc_get_raw(rc, 1); - sign = 1 - 2 * sign; - /* We use orig_fill here because we want to fold the side, but if - itheta==16384, we'll have cleared the low bits of fill. */ - cm = celt_decode_band(s, rc, band, x2, NULL, N, mbits, blocks, - lowband, duration, lowband_out, level, gain, - lowband_scratch, orig_fill); - /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), - and there's no need to worry about mixing with the other channel. */ - y2[0] = -sign * x2[1]; - y2[1] = sign * x2[0]; - X[0] *= mid; - X[1] *= mid; - Y[0] *= side; - Y[1] *= side; - tmp = X[0]; - X[0] = tmp - Y[0]; - Y[0] = tmp + Y[0]; - tmp = X[1]; - X[1] = tmp - Y[1]; - Y[1] = tmp + Y[1]; - } else { - /* "Normal" split code */ - float *next_lowband2 = NULL; - float *next_lowband_out1 = NULL; - int next_level = 0; - int rebalance; - - /* Give more bits to low-energy MDCTs than they would - * otherwise deserve */ - if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) { - if (itheta > 8192) - /* Rough approximation for pre-echo masking */ - delta -= delta >> (4 - duration); - else - /* Corresponds to a forward-masking slope of - * 1.5 dB per 10 ms */ - delta = FFMIN(0, delta + (N << 3 >> (5 - duration))); - } - mbits = av_clip((b - delta) / 2, 0, b); - sbits = b - mbits; - s->remaining2 -= qalloc; - - if (lowband && !dualstereo) - next_lowband2 = lowband + N; /* >32-bit split case */ - - /* Only stereo needs to pass on lowband_out. - * Otherwise, it's handled at the end */ - if (dualstereo) - next_lowband_out1 = lowband_out; - else - next_level = level + 1; - - rebalance = s->remaining2; - if (mbits >= sbits) { - /* In stereo mode, we do not apply a scaling to the mid - * because we need the normalized mid for folding later */ - cm = celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks, - lowband, duration, next_lowband_out1, - next_level, dualstereo ? 1.0f : (gain * mid), - lowband_scratch, fill); - - rebalance = mbits - (rebalance - s->remaining2); - if (rebalance > 3 << 3 && itheta != 0) - sbits += rebalance - (3 << 3); - - /* For a stereo split, the high bits of fill are always zero, - * so no folding will be done to the side. */ - cm |= celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks, - next_lowband2, duration, NULL, - next_level, gain * side, NULL, - fill >> blocks) << ((B0 >> 1) & (dualstereo - 1)); - } else { - /* For a stereo split, the high bits of fill are always zero, - * so no folding will be done to the side. */ - cm = celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks, - next_lowband2, duration, NULL, - next_level, gain * side, NULL, - fill >> blocks) << ((B0 >> 1) & (dualstereo - 1)); - - rebalance = sbits - (rebalance - s->remaining2); - if (rebalance > 3 << 3 && itheta != 16384) - mbits += rebalance - (3 << 3); - - /* In stereo mode, we do not apply a scaling to the mid because - * we need the normalized mid for folding later */ - cm |= celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks, - lowband, duration, next_lowband_out1, - next_level, dualstereo ? 1.0f : (gain * mid), - lowband_scratch, fill); - } - } - } else { - /* This is the basic no-split case */ - unsigned int q = celt_bits2pulses(cache, b); - unsigned int curr_bits = celt_pulses2bits(cache, q); - s->remaining2 -= curr_bits; - - /* Ensures we can never bust the budget */ - while (s->remaining2 < 0 && q > 0) { - s->remaining2 += curr_bits; - curr_bits = celt_pulses2bits(cache, --q); - s->remaining2 -= curr_bits; - } - - if (q != 0) { - /* Finally do the actual quantization */ - cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), - s->spread, blocks, gain); - } else { - /* If there's no pulse, fill the band anyway */ - int j; - unsigned int cm_mask = (1 << blocks) - 1; - fill &= cm_mask; - if (!fill) { - for (j = 0; j < N; j++) - X[j] = 0.0f; - } else { - if (!lowband) { - /* Noise */ - for (j = 0; j < N; j++) - X[j] = (((int32_t)celt_rng(s)) >> 20); - cm = cm_mask; - } else { - /* Folded spectrum */ - for (j = 0; j < N; j++) { - /* About 48 dB below the "normal" folding level */ - X[j] = lowband[j] + (((celt_rng(s)) & 0x8000) ? 1.0f / 256 : -1.0f / 256); - } - cm = fill; - } - celt_renormalize_vector(X, N, gain); - } - } - } - - /* This code is used by the decoder and by the resynthesis-enabled encoder */ - if (dualstereo) { - int j; - if (N != 2) - celt_stereo_merge(X, Y, mid, N); - if (inv) { - for (j = 0; j < N; j++) - Y[j] *= -1; - } - } else if (level == 0) { - int k; - - /* Undo the sample reorganization going from time order to frequency order */ - if (B0 > 1) - celt_interleave_hadamard(s->scratch, X, N_B>>recombine, - B0<<recombine, longblocks); - - /* Undo time-freq changes that we did earlier */ - N_B = N_B0; - blocks = B0; - for (k = 0; k < time_divide; k++) { - blocks >>= 1; - N_B <<= 1; - cm |= cm >> blocks; - celt_haar1(X, N_B, blocks); - } - - for (k = 0; k < recombine; k++) { - cm = ff_celt_bit_deinterleave[cm]; - celt_haar1(X, N0>>k, 1<<k); - } - blocks <<= recombine; - - /* Scale output for later folding */ - if (lowband_out) { - int j; - float n = sqrtf(N0); - for (j = 0; j < N0; j++) - lowband_out[j] = n * X[j]; - } - cm = av_mod_uintp2(cm, blocks); - } - return cm; -} - static void celt_denormalize(CeltContext *s, CeltFrame *frame, float *data) { int i, j; @@ -1562,18 +757,17 @@ static void celt_decode_bands(CeltContext *s, OpusRangeCoder *rc) } if (s->dualstereo) { - cm[0] = celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks, - effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration, - norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]); + cm[0] = ff_celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks, + effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration, + norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]); - cm[1] = celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks, - effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration, - norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]); + cm[1] = ff_celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks, + effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration, + norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]); } else { - cm[0] = celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks, - effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration, - norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]); - + cm[0] = ff_celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks, + effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration, + norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]); cm[1] = cm[0]; } diff --git a/libavcodec/opus_celt.h b/libavcodec/opus_celt.h new file mode 100644 index 0000000000..e9b5946642 --- /dev/null +++ b/libavcodec/opus_celt.h @@ -0,0 +1,133 @@ +/* + * Opus decoder/demuxer common functions + * Copyright (c) 2012 Andrew D'Addesio + * Copyright (c) 2013-2014 Mozilla Corporation + * Copyright (c) 2016 Rostislav Pehlivanov <atomnuker@gmail.com> + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +#ifndef AVCODEC_OPUS_CELT_H +#define AVCODEC_OPUS_CELT_H + +#include "opus.h" + +#include "mdct15.h" +#include "libavutil/float_dsp.h" +#include "libavutil/libm.h" + +#define CELT_VECTORS 11 +#define CELT_ALLOC_STEPS 6 +#define CELT_FINE_OFFSET 21 +#define CELT_MAX_FINE_BITS 8 +#define CELT_NORM_SCALE 16384 +#define CELT_QTHETA_OFFSET 4 +#define CELT_QTHETA_OFFSET_TWOPHASE 16 +#define CELT_DEEMPH_COEFF 0.85000610f +#define CELT_POSTFILTER_MINPERIOD 15 +#define CELT_ENERGY_SILENCE (-28.0f) + +enum CeltSpread { + CELT_SPREAD_NONE, + CELT_SPREAD_LIGHT, + CELT_SPREAD_NORMAL, + CELT_SPREAD_AGGRESSIVE +}; + +typedef struct CeltFrame { + float energy[CELT_MAX_BANDS]; + float prev_energy[2][CELT_MAX_BANDS]; + + uint8_t collapse_masks[CELT_MAX_BANDS]; + + /* buffer for mdct output + postfilter */ + DECLARE_ALIGNED(32, float, buf)[2048]; + + /* postfilter parameters */ + int pf_period_new; + float pf_gains_new[3]; + int pf_period; + float pf_gains[3]; + int pf_period_old; + float pf_gains_old[3]; + + float deemph_coeff; +} CeltFrame; + +struct CeltContext { + // constant values that do not change during context lifetime + AVCodecContext *avctx; + MDCT15Context *imdct[4]; + AVFloatDSPContext *dsp; + int output_channels; + + // values that have inter-frame effect and must be reset on flush + CeltFrame frame[2]; + uint32_t seed; + int flushed; + + // values that only affect a single frame + int coded_channels; + int framebits; + int duration; + + /* number of iMDCT blocks in the frame */ + int blocks; + /* size of each block */ + int blocksize; + + int startband; + int endband; + int codedbands; + + int anticollapse_bit; + + int intensitystereo; + int dualstereo; + enum CeltSpread spread; + + int remaining; + int remaining2; + int fine_bits [CELT_MAX_BANDS]; + int fine_priority[CELT_MAX_BANDS]; + int pulses [CELT_MAX_BANDS]; + int tf_change [CELT_MAX_BANDS]; + + DECLARE_ALIGNED(32, float, coeffs)[2][CELT_MAX_FRAME_SIZE]; + DECLARE_ALIGNED(32, float, scratch)[22 * 8]; // MAX(ff_celt_freq_range) * 1<<CELT_MAX_LOG_BLOCKS +}; + +/* LCG for noise generation */ +static av_always_inline uint32_t celt_rng(CeltContext *s) +{ + s->seed = 1664525 * s->seed + 1013904223; + return s->seed; +} + +static av_always_inline void celt_renormalize_vector(float *X, int N, float gain) +{ + int i; + float g = 1e-15f; + for (i = 0; i < N; i++) + g += X[i] * X[i]; + g = gain / sqrtf(g); + + for (i = 0; i < N; i++) + X[i] *= g; +} + +#endif /* AVCODEC_OPUS_CELT_H */ diff --git a/libavcodec/opus_pvq.c b/libavcodec/opus_pvq.c new file mode 100644 index 0000000000..b4e23c86b8 --- /dev/null +++ b/libavcodec/opus_pvq.c @@ -0,0 +1,729 @@ +/* + * Copyright (c) 2012 Andrew D'Addesio + * Copyright (c) 2013-2014 Mozilla Corporation + * Copyright (c) 2016 Rostislav Pehlivanov <atomnuker@gmail.com> + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +#include "opustab.h" +#include "opus_pvq.h" + +#define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)]) +#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1)) + +static inline int16_t celt_cos(int16_t x) +{ + x = (MUL16(x, x) + 4096) >> 13; + x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x))))); + return 1+x; +} + +static inline int celt_log2tan(int isin, int icos) +{ + int lc, ls; + lc = opus_ilog(icos); + ls = opus_ilog(isin); + icos <<= 15 - lc; + isin <<= 15 - ls; + return (ls << 11) - (lc << 11) + + ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) - + ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932); +} + +static inline int celt_bits2pulses(const uint8_t *cache, int bits) +{ + // TODO: Find the size of cache and make it into an array in the parameters list + int i, low = 0, high; + + high = cache[0]; + bits--; + + for (i = 0; i < 6; i++) { + int center = (low + high + 1) >> 1; + if (cache[center] >= bits) + high = center; + else + low = center; + } + + return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high; +} + +static inline int celt_pulses2bits(const uint8_t *cache, int pulses) +{ + // TODO: Find the size of cache and make it into an array in the parameters list + return (pulses == 0) ? 0 : cache[pulses] + 1; +} + +static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X, + int N, float g) +{ + int i; + for (i = 0; i < N; i++) + X[i] = g * iy[i]; +} + +static void celt_exp_rotation1(float *X, uint32_t len, uint32_t stride, + float c, float s) +{ + float *Xptr; + int i; + + Xptr = X; + for (i = 0; i < len - stride; i++) { + float x1, x2; + x1 = Xptr[0]; + x2 = Xptr[stride]; + Xptr[stride] = c * x2 + s * x1; + *Xptr++ = c * x1 - s * x2; + } + + Xptr = &X[len - 2 * stride - 1]; + for (i = len - 2 * stride - 1; i >= 0; i--) { + float x1, x2; + x1 = Xptr[0]; + x2 = Xptr[stride]; + Xptr[stride] = c * x2 + s * x1; + *Xptr-- = c * x1 - s * x2; + } +} + +static inline void celt_exp_rotation(float *X, uint32_t len, + uint32_t stride, uint32_t K, + enum CeltSpread spread) +{ + uint32_t stride2 = 0; + float c, s; + float gain, theta; + int i; + + if (2*K >= len || spread == CELT_SPREAD_NONE) + return; + + gain = (float)len / (len + (20 - 5*spread) * K); + theta = M_PI * gain * gain / 4; + + c = cosf(theta); + s = sinf(theta); + + if (len >= stride << 3) { + stride2 = 1; + /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding. + It's basically incrementing long as (stride2+0.5)^2 < len/stride. */ + while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len) + stride2++; + } + + /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for + extract_collapse_mask().*/ + len /= stride; + for (i = 0; i < stride; i++) { + if (stride2) + celt_exp_rotation1(X + i * len, len, stride2, s, c); + celt_exp_rotation1(X + i * len, len, 1, c, s); + } +} + +static inline uint32_t celt_extract_collapse_mask(const int *iy, uint32_t N, uint32_t B) +{ + uint32_t collapse_mask; + int N0; + int i, j; + + if (B <= 1) + return 1; + + /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for + exp_rotation().*/ + N0 = N/B; + collapse_mask = 0; + for (i = 0; i < B; i++) + for (j = 0; j < N0; j++) + collapse_mask |= (iy[i*N0+j]!=0)<<i; + return collapse_mask; +} + +static inline void celt_stereo_merge(float *X, float *Y, float mid, int N) +{ + int i; + float xp = 0, side = 0; + float E[2]; + float mid2; + float t, gain[2]; + + /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ + for (i = 0; i < N; i++) { + xp += X[i] * Y[i]; + side += Y[i] * Y[i]; + } + + /* Compensating for the mid normalization */ + xp *= mid; + mid2 = mid; + E[0] = mid2 * mid2 + side - 2 * xp; + E[1] = mid2 * mid2 + side + 2 * xp; + if (E[0] < 6e-4f || E[1] < 6e-4f) { + for (i = 0; i < N; i++) + Y[i] = X[i]; + return; + } + + t = E[0]; + gain[0] = 1.0f / sqrtf(t); + t = E[1]; + gain[1] = 1.0f / sqrtf(t); + + for (i = 0; i < N; i++) { + float value[2]; + /* Apply mid scaling (side is already scaled) */ + value[0] = mid * X[i]; + value[1] = Y[i]; + X[i] = gain[0] * (value[0] - value[1]); + Y[i] = gain[1] * (value[0] + value[1]); + } +} + +static void celt_interleave_hadamard(float *tmp, float *X, int N0, + int stride, int hadamard) +{ + int i, j; + int N = N0*stride; + + if (hadamard) { + const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2; + for (i = 0; i < stride; i++) + for (j = 0; j < N0; j++) + tmp[j*stride+i] = X[ordery[i]*N0+j]; + } else { + for (i = 0; i < stride; i++) + for (j = 0; j < N0; j++) + tmp[j*stride+i] = X[i*N0+j]; + } + + for (i = 0; i < N; i++) + X[i] = tmp[i]; +} + +static void celt_deinterleave_hadamard(float *tmp, float *X, int N0, + int stride, int hadamard) +{ + int i, j; + int N = N0*stride; + + if (hadamard) { + const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2; + for (i = 0; i < stride; i++) + for (j = 0; j < N0; j++) + tmp[ordery[i]*N0+j] = X[j*stride+i]; + } else { + for (i = 0; i < stride; i++) + for (j = 0; j < N0; j++) + tmp[i*N0+j] = X[j*stride+i]; + } + + for (i = 0; i < N; i++) + X[i] = tmp[i]; +} + +static void celt_haar1(float *X, int N0, int stride) +{ + int i, j; + N0 >>= 1; + for (i = 0; i < stride; i++) { + for (j = 0; j < N0; j++) { + float x0 = X[stride * (2 * j + 0) + i]; + float x1 = X[stride * (2 * j + 1) + i]; + X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2; + X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2; + } + } +} + +static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap, + int dualstereo) +{ + int qn, qb; + int N2 = 2 * N - 1; + if (dualstereo && N == 2) + N2--; + + /* The upper limit ensures that in a stereo split with itheta==16384, we'll + * always have enough bits left over to code at least one pulse in the + * side; otherwise it would collapse, since it doesn't get folded. */ + qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3); + qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1; + return qn; +} + +// this code was adapted from libopus +static inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y) +{ + uint64_t norm = 0; + uint32_t p; + int s, val; + int k0; + + while (N > 2) { + uint32_t q; + + /*Lots of pulses case:*/ + if (K >= N) { + const uint32_t *row = ff_celt_pvq_u_row[N]; + + /* Are the pulses in this dimension negative? */ + p = row[K + 1]; + s = -(i >= p); + i -= p & s; + + /*Count how many pulses were placed in this dimension.*/ + k0 = K; + q = row[N]; + if (q > i) { + K = N; + do { + p = ff_celt_pvq_u_row[--K][N]; + } while (p > i); + } else + for (p = row[K]; p > i; p = row[K]) + K--; + + i -= p; + val = (k0 - K + s) ^ s; + norm += val * val; + *y++ = val; + } else { /*Lots of dimensions case:*/ + /*Are there any pulses in this dimension at all?*/ + p = ff_celt_pvq_u_row[K ][N]; + q = ff_celt_pvq_u_row[K + 1][N]; + + if (p <= i && i < q) { + i -= p; + *y++ = 0; + } else { + /*Are the pulses in this dimension negative?*/ + s = -(i >= q); + i -= q & s; + + /*Count how many pulses were placed in this dimension.*/ + k0 = K; + do p = ff_celt_pvq_u_row[--K][N]; + while (p > i); + + i -= p; + val = (k0 - K + s) ^ s; + norm += val * val; + *y++ = val; + } + } + N--; + } + + /* N == 2 */ + p = 2 * K + 1; + s = -(i >= p); + i -= p & s; + k0 = K; + K = (i + 1) / 2; + + if (K) + i -= 2 * K - 1; + + val = (k0 - K + s) ^ s; + norm += val * val; + *y++ = val; + + /* N==1 */ + s = -i; + val = (K + s) ^ s; + norm += val * val; + *y = val; + + return norm; +} + +static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K) +{ + const uint32_t idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K)); + return celt_cwrsi(N, K, idx, y); +} + +/** Decode pulse vector and combine the result with the pitch vector to produce + the final normalised signal in the current band. */ +static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K, + enum CeltSpread spread, uint32_t blocks, float gain) +{ + int y[176]; + + gain /= sqrtf(celt_decode_pulses(rc, y, N, K)); + celt_normalize_residual(y, X, N, gain); + celt_exp_rotation(X, N, blocks, K, spread); + return celt_extract_collapse_mask(y, N, blocks); +} + +uint32_t ff_celt_decode_band(CeltContext *s, OpusRangeCoder *rc, const int band, + float *X, float *Y, int N, int b, uint32_t blocks, + float *lowband, int duration, float *lowband_out, int level, + float gain, float *lowband_scratch, int fill) +{ + const uint8_t *cache; + int dualstereo, split; + int imid = 0, iside = 0; + uint32_t N0 = N; + int N_B; + int N_B0; + int B0 = blocks; + int time_divide = 0; + int recombine = 0; + int inv = 0; + float mid = 0, side = 0; + int longblocks = (B0 == 1); + uint32_t cm = 0; + + N_B0 = N_B = N / blocks; + split = dualstereo = (Y != NULL); + + if (N == 1) { + /* special case for one sample */ + int i; + float *x = X; + for (i = 0; i <= dualstereo; i++) { + int sign = 0; + if (s->remaining2 >= 1<<3) { + sign = ff_opus_rc_get_raw(rc, 1); + s->remaining2 -= 1 << 3; + b -= 1 << 3; + } + x[0] = sign ? -1.0f : 1.0f; + x = Y; + } + if (lowband_out) + lowband_out[0] = X[0]; + return 1; + } + + if (!dualstereo && level == 0) { + int tf_change = s->tf_change[band]; + int k; + if (tf_change > 0) + recombine = tf_change; + /* Band recombining to increase frequency resolution */ + + if (lowband && + (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) { + int j; + for (j = 0; j < N; j++) + lowband_scratch[j] = lowband[j]; + lowband = lowband_scratch; + } + + for (k = 0; k < recombine; k++) { + if (lowband) + celt_haar1(lowband, N >> k, 1 << k); + fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2; + } + blocks >>= recombine; + N_B <<= recombine; + + /* Increasing the time resolution */ + while ((N_B & 1) == 0 && tf_change < 0) { + if (lowband) + celt_haar1(lowband, N_B, blocks); + fill |= fill << blocks; + blocks <<= 1; + N_B >>= 1; + time_divide++; + tf_change++; + } + B0 = blocks; + N_B0 = N_B; + + /* Reorganize the samples in time order instead of frequency order */ + if (B0 > 1 && lowband) + celt_deinterleave_hadamard(s->scratch, lowband, N_B >> recombine, + B0 << recombine, longblocks); + } + + /* If we need 1.5 more bit than we can produce, split the band in two. */ + cache = ff_celt_cache_bits + + ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band]; + if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) { + N >>= 1; + Y = X + N; + split = 1; + duration -= 1; + if (blocks == 1) + fill = (fill & 1) | (fill << 1); + blocks = (blocks + 1) >> 1; + } + + if (split) { + int qn; + int itheta = 0; + int mbits, sbits, delta; + int qalloc; + int pulse_cap; + int offset; + int orig_fill; + int tell; + + /* Decide on the resolution to give to the split parameter theta */ + pulse_cap = ff_celt_log_freq_range[band] + duration * 8; + offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE : + CELT_QTHETA_OFFSET); + qn = (dualstereo && band >= s->intensitystereo) ? 1 : + celt_compute_qn(N, b, offset, pulse_cap, dualstereo); + tell = opus_rc_tell_frac(rc); + if (qn != 1) { + /* Entropy coding of the angle. We use a uniform pdf for the + time split, a step for stereo, and a triangular one for the rest. */ + if (dualstereo && N > 2) + itheta = ff_opus_rc_dec_uint_step(rc, qn/2); + else if (dualstereo || B0 > 1) + itheta = ff_opus_rc_dec_uint(rc, qn+1); + else + itheta = ff_opus_rc_dec_uint_tri(rc, qn); + itheta = itheta * 16384 / qn; + /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. + Let's do that at higher complexity */ + } else if (dualstereo) { + inv = (b > 2 << 3 && s->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0; + itheta = 0; + } + qalloc = opus_rc_tell_frac(rc) - tell; + b -= qalloc; + + orig_fill = fill; + if (itheta == 0) { + imid = 32767; + iside = 0; + fill = av_mod_uintp2(fill, blocks); + delta = -16384; + } else if (itheta == 16384) { + imid = 0; + iside = 32767; + fill &= ((1 << blocks) - 1) << blocks; + delta = 16384; + } else { + imid = celt_cos(itheta); + iside = celt_cos(16384-itheta); + /* This is the mid vs side allocation that minimizes squared error + in that band. */ + delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid)); + } + + mid = imid / 32768.0f; + side = iside / 32768.0f; + + /* This is a special case for N=2 that only works for stereo and takes + advantage of the fact that mid and side are orthogonal to encode + the side with just one bit. */ + if (N == 2 && dualstereo) { + int c; + int sign = 0; + float tmp; + float *x2, *y2; + mbits = b; + /* Only need one bit for the side */ + sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0; + mbits -= sbits; + c = (itheta > 8192); + s->remaining2 -= qalloc+sbits; + + x2 = c ? Y : X; + y2 = c ? X : Y; + if (sbits) + sign = ff_opus_rc_get_raw(rc, 1); + sign = 1 - 2 * sign; + /* We use orig_fill here because we want to fold the side, but if + itheta==16384, we'll have cleared the low bits of fill. */ + cm = ff_celt_decode_band(s, rc, band, x2, NULL, N, mbits, blocks, + lowband, duration, lowband_out, level, gain, + lowband_scratch, orig_fill); + /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), + and there's no need to worry about mixing with the other channel. */ + y2[0] = -sign * x2[1]; + y2[1] = sign * x2[0]; + X[0] *= mid; + X[1] *= mid; + Y[0] *= side; + Y[1] *= side; + tmp = X[0]; + X[0] = tmp - Y[0]; + Y[0] = tmp + Y[0]; + tmp = X[1]; + X[1] = tmp - Y[1]; + Y[1] = tmp + Y[1]; + } else { + /* "Normal" split code */ + float *next_lowband2 = NULL; + float *next_lowband_out1 = NULL; + int next_level = 0; + int rebalance; + + /* Give more bits to low-energy MDCTs than they would + * otherwise deserve */ + if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) { + if (itheta > 8192) + /* Rough approximation for pre-echo masking */ + delta -= delta >> (4 - duration); + else + /* Corresponds to a forward-masking slope of + * 1.5 dB per 10 ms */ + delta = FFMIN(0, delta + (N << 3 >> (5 - duration))); + } + mbits = av_clip((b - delta) / 2, 0, b); + sbits = b - mbits; + s->remaining2 -= qalloc; + + if (lowband && !dualstereo) + next_lowband2 = lowband + N; /* >32-bit split case */ + + /* Only stereo needs to pass on lowband_out. + * Otherwise, it's handled at the end */ + if (dualstereo) + next_lowband_out1 = lowband_out; + else + next_level = level + 1; + + rebalance = s->remaining2; + if (mbits >= sbits) { + /* In stereo mode, we do not apply a scaling to the mid + * because we need the normalized mid for folding later */ + cm = ff_celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks, + lowband, duration, next_lowband_out1, + next_level, dualstereo ? 1.0f : (gain * mid), + lowband_scratch, fill); + + rebalance = mbits - (rebalance - s->remaining2); + if (rebalance > 3 << 3 && itheta != 0) + sbits += rebalance - (3 << 3); + + /* For a stereo split, the high bits of fill are always zero, + * so no folding will be done to the side. */ + cm |= ff_celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks, + next_lowband2, duration, NULL, + next_level, gain * side, NULL, + fill >> blocks) << ((B0 >> 1) & (dualstereo - 1)); + } else { + /* For a stereo split, the high bits of fill are always zero, + * so no folding will be done to the side. */ + cm = ff_celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks, + next_lowband2, duration, NULL, + next_level, gain * side, NULL, + fill >> blocks) << ((B0 >> 1) & (dualstereo - 1)); + + rebalance = sbits - (rebalance - s->remaining2); + if (rebalance > 3 << 3 && itheta != 16384) + mbits += rebalance - (3 << 3); + + /* In stereo mode, we do not apply a scaling to the mid because + * we need the normalized mid for folding later */ + cm |= ff_celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks, + lowband, duration, next_lowband_out1, + next_level, dualstereo ? 1.0f : (gain * mid), + lowband_scratch, fill); + } + } + } else { + /* This is the basic no-split case */ + uint32_t q = celt_bits2pulses(cache, b); + uint32_t curr_bits = celt_pulses2bits(cache, q); + s->remaining2 -= curr_bits; + + /* Ensures we can never bust the budget */ + while (s->remaining2 < 0 && q > 0) { + s->remaining2 += curr_bits; + curr_bits = celt_pulses2bits(cache, --q); + s->remaining2 -= curr_bits; + } + + if (q != 0) { + /* Finally do the actual quantization */ + cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), + s->spread, blocks, gain); + } else { + /* If there's no pulse, fill the band anyway */ + int j; + uint32_t cm_mask = (1 << blocks) - 1; + fill &= cm_mask; + if (!fill) { + for (j = 0; j < N; j++) + X[j] = 0.0f; + } else { + if (!lowband) { + /* Noise */ + for (j = 0; j < N; j++) + X[j] = (((int32_t)celt_rng(s)) >> 20); + cm = cm_mask; + } else { + /* Folded spectrum */ + for (j = 0; j < N; j++) { + /* About 48 dB below the "normal" folding level */ + X[j] = lowband[j] + (((celt_rng(s)) & 0x8000) ? 1.0f / 256 : -1.0f / 256); + } + cm = fill; + } + celt_renormalize_vector(X, N, gain); + } + } + } + + /* This code is used by the decoder and by the resynthesis-enabled encoder */ + if (dualstereo) { + int j; + if (N != 2) + celt_stereo_merge(X, Y, mid, N); + if (inv) { + for (j = 0; j < N; j++) + Y[j] *= -1; + } + } else if (level == 0) { + int k; + + /* Undo the sample reorganization going from time order to frequency order */ + if (B0 > 1) + celt_interleave_hadamard(s->scratch, X, N_B>>recombine, + B0<<recombine, longblocks); + + /* Undo time-freq changes that we did earlier */ + N_B = N_B0; + blocks = B0; + for (k = 0; k < time_divide; k++) { + blocks >>= 1; + N_B <<= 1; + cm |= cm >> blocks; + celt_haar1(X, N_B, blocks); + } + + for (k = 0; k < recombine; k++) { + cm = ff_celt_bit_deinterleave[cm]; + celt_haar1(X, N0>>k, 1<<k); + } + blocks <<= recombine; + + /* Scale output for later folding */ + if (lowband_out) { + int j; + float n = sqrtf(N0); + for (j = 0; j < N0; j++) + lowband_out[j] = n * X[j]; + } + cm = av_mod_uintp2(cm, blocks); + } + return cm; +} diff --git a/libavcodec/opus_pvq.h b/libavcodec/opus_pvq.h new file mode 100644 index 0000000000..1083f35db9 --- /dev/null +++ b/libavcodec/opus_pvq.h @@ -0,0 +1,35 @@ +/* + * Copyright (c) 2012 Andrew D'Addesio + * Copyright (c) 2013-2014 Mozilla Corporation + * Copyright (c) 2016 Rostislav Pehlivanov <atomnuker@gmail.com> + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +#ifndef AVCODEC_OPUS_PVQ_H +#define AVCODEC_OPUS_PVQ_H + +#include "opus.h" +#include "opus_celt.h" + +/* Decodes a band using PVQ */ +uint32_t ff_celt_decode_band(CeltContext *s, OpusRangeCoder *rc, const int band, + float *X, float *Y, int N, int b, uint32_t blocks, + float *lowband, int duration, float *lowband_out, int level, + float gain, float *lowband_scratch, int fill); + +#endif /* AVCODEC_OPUS_PVQ_H */ |