aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec
diff options
context:
space:
mode:
authorAnton Khirnov <anton@khirnov.net>2014-04-17 12:51:03 +0200
committerAnton Khirnov <anton@khirnov.net>2014-05-15 06:49:34 +0200
commitb70d7a4ac72d23f3448f3b08b770fdf5f57de222 (patch)
tree5227a8698a1499744632d0c029d91200f5007520 /libavcodec
parent7e90133f6420b1c53652f972b9561600822881ee (diff)
downloadffmpeg-b70d7a4ac72d23f3448f3b08b770fdf5f57de222.tar.gz
lavc: add a native Opus decoder.
Initial implementation by Andrew D'Addesio <modchipv12@gmail.com> during GSoC 2012. Completion by Anton Khirnov <anton@khirnov.net>, sponsored by the Mozilla Corporation. Further contributions by: Christophe Gisquet <christophe.gisquet@gmail.com> Janne Grunau <janne-libav@jannau.net> Luca Barbato <lu_zero@gentoo.org>
Diffstat (limited to 'libavcodec')
-rw-r--r--libavcodec/Makefile4
-rw-r--r--libavcodec/allcodecs.c2
-rw-r--r--libavcodec/opus.c428
-rw-r--r--libavcodec/opus.h429
-rw-r--r--libavcodec/opus_celt.c2220
-rw-r--r--libavcodec/opus_imdct.c268
-rw-r--r--libavcodec/opus_parser.c75
-rw-r--r--libavcodec/opus_silk.c1597
-rw-r--r--libavcodec/opusdec.c674
-rw-r--r--libavcodec/version.h4
10 files changed, 5699 insertions, 2 deletions
diff --git a/libavcodec/Makefile b/libavcodec/Makefile
index f226484607..60c3f326bd 100644
--- a/libavcodec/Makefile
+++ b/libavcodec/Makefile
@@ -279,6 +279,9 @@ OBJS-$(CONFIG_NELLYMOSER_DECODER) += nellymoserdec.o nellymoser.o
OBJS-$(CONFIG_NELLYMOSER_ENCODER) += nellymoserenc.o nellymoser.o
OBJS-$(CONFIG_NUV_DECODER) += nuv.o rtjpeg.o
OBJS-$(CONFIG_ON2AVC_DECODER) += on2avc.o on2avcdata.o
+OBJS-$(CONFIG_OPUS_DECODER) += opusdec.o opus.o opus_celt.o \
+ opus_imdct.o opus_silk.o \
+ vorbis_data.o
OBJS-$(CONFIG_PAF_VIDEO_DECODER) += paf.o
OBJS-$(CONFIG_PAF_AUDIO_DECODER) += paf.o
OBJS-$(CONFIG_PAM_DECODER) += pnmdec.o pnm.o
@@ -653,6 +656,7 @@ OBJS-$(CONFIG_MPEGAUDIO_PARSER) += mpegaudio_parser.o \
mpegaudiodecheader.o mpegaudiodata.o
OBJS-$(CONFIG_MPEGVIDEO_PARSER) += mpegvideo_parser.o \
mpeg12.o mpeg12data.o
+OBJS-$(CONFIG_OPUS_PARSER) += opus_parser.o opus.o vorbis_data.o
OBJS-$(CONFIG_PNG_PARSER) += png_parser.o
OBJS-$(CONFIG_PNM_PARSER) += pnm_parser.o pnm.o
OBJS-$(CONFIG_RV30_PARSER) += rv34_parser.o
diff --git a/libavcodec/allcodecs.c b/libavcodec/allcodecs.c
index 9f4fd2531e..bd74e0ba37 100644
--- a/libavcodec/allcodecs.c
+++ b/libavcodec/allcodecs.c
@@ -331,6 +331,7 @@ void avcodec_register_all(void)
REGISTER_DECODER(MPC8, mpc8);
REGISTER_ENCDEC (NELLYMOSER, nellymoser);
REGISTER_DECODER(ON2AVC, on2avc);
+ REGISTER_DECODER(OPUS, opus);
REGISTER_DECODER(PAF_AUDIO, paf_audio);
REGISTER_DECODER(QCELP, qcelp);
REGISTER_DECODER(QDM2, qdm2);
@@ -483,6 +484,7 @@ void avcodec_register_all(void)
REGISTER_PARSER(MPEG4VIDEO, mpeg4video);
REGISTER_PARSER(MPEGAUDIO, mpegaudio);
REGISTER_PARSER(MPEGVIDEO, mpegvideo);
+ REGISTER_PARSER(OPUS, opus);
REGISTER_PARSER(PNG, png);
REGISTER_PARSER(PNM, pnm);
REGISTER_PARSER(RV30, rv30);
diff --git a/libavcodec/opus.c b/libavcodec/opus.c
new file mode 100644
index 0000000000..91021ce65a
--- /dev/null
+++ b/libavcodec/opus.c
@@ -0,0 +1,428 @@
+/*
+ * Copyright (c) 2012 Andrew D'Addesio
+ * Copyright (c) 2013-2014 Mozilla Corporation
+ *
+ * This file is part of Libav.
+ *
+ * Libav is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * Libav is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with Libav; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * Opus decoder/parser shared code
+ */
+
+#include <stdint.h>
+
+#include "libavutil/error.h"
+
+#include "opus.h"
+#include "vorbis.h"
+
+static const uint16_t opus_frame_duration[32] = {
+ 480, 960, 1920, 2880,
+ 480, 960, 1920, 2880,
+ 480, 960, 1920, 2880,
+ 480, 960,
+ 480, 960,
+ 120, 240, 480, 960,
+ 120, 240, 480, 960,
+ 120, 240, 480, 960,
+ 120, 240, 480, 960,
+};
+
+/**
+ * Read a 1- or 2-byte frame length
+ */
+static inline int xiph_lacing_16bit(const uint8_t **ptr, const uint8_t *end)
+{
+ int val;
+
+ if (*ptr >= end)
+ return AVERROR_INVALIDDATA;
+ val = *(*ptr)++;
+ if (val >= 252) {
+ if (*ptr >= end)
+ return AVERROR_INVALIDDATA;
+ val += 4 * *(*ptr)++;
+ }
+ return val;
+}
+
+/**
+ * Read a multi-byte length (used for code 3 packet padding size)
+ */
+static inline int xiph_lacing_full(const uint8_t **ptr, const uint8_t *end)
+{
+ int val = 0;
+ int next;
+
+ while (1) {
+ if (*ptr >= end || val > INT_MAX - 254)
+ return AVERROR_INVALIDDATA;
+ next = *(*ptr)++;
+ val += next;
+ if (next < 255)
+ break;
+ else
+ val--;
+ }
+ return val;
+}
+
+/**
+ * Parse Opus packet info from raw packet data
+ */
+int ff_opus_parse_packet(OpusPacket *pkt, const uint8_t *buf, int buf_size,
+ int self_delimiting)
+{
+ const uint8_t *ptr = buf;
+ const uint8_t *end = buf + buf_size;
+ int padding = 0;
+ int frame_bytes, i;
+
+ if (buf_size < 1)
+ goto fail;
+
+ /* TOC byte */
+ i = *ptr++;
+ pkt->code = (i ) & 0x3;
+ pkt->stereo = (i >> 2) & 0x1;
+ pkt->config = (i >> 3) & 0x1F;
+
+ /* code 2 and code 3 packets have at least 1 byte after the TOC */
+ if (pkt->code >= 2 && buf_size < 2)
+ goto fail;
+
+ switch (pkt->code) {
+ case 0:
+ /* 1 frame */
+ pkt->frame_count = 1;
+ pkt->vbr = 0;
+
+ if (self_delimiting) {
+ int len = xiph_lacing_16bit(&ptr, end);
+ if (len < 0 || len > end - ptr)
+ goto fail;
+ end = ptr + len;
+ buf_size = end - buf;
+ }
+
+ frame_bytes = end - ptr;
+ if (frame_bytes > MAX_FRAME_SIZE)
+ goto fail;
+ pkt->frame_offset[0] = ptr - buf;
+ pkt->frame_size[0] = frame_bytes;
+ break;
+ case 1:
+ /* 2 frames, equal size */
+ pkt->frame_count = 2;
+ pkt->vbr = 0;
+
+ if (self_delimiting) {
+ int len = xiph_lacing_16bit(&ptr, end);
+ if (len < 0 || 2 * len > end - ptr)
+ goto fail;
+ end = ptr + 2 * len;
+ buf_size = end - buf;
+ }
+
+ frame_bytes = end - ptr;
+ if (frame_bytes & 1 || frame_bytes >> 1 > MAX_FRAME_SIZE)
+ goto fail;
+ pkt->frame_offset[0] = ptr - buf;
+ pkt->frame_size[0] = frame_bytes >> 1;
+ pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0];
+ pkt->frame_size[1] = frame_bytes >> 1;
+ break;
+ case 2:
+ /* 2 frames, different sizes */
+ pkt->frame_count = 2;
+ pkt->vbr = 1;
+
+ /* read 1st frame size */
+ frame_bytes = xiph_lacing_16bit(&ptr, end);
+ if (frame_bytes < 0)
+ goto fail;
+
+ if (self_delimiting) {
+ int len = xiph_lacing_16bit(&ptr, end);
+ if (len < 0 || len + frame_bytes > end - ptr)
+ goto fail;
+ end = ptr + frame_bytes + len;
+ buf_size = end - buf;
+ }
+
+ pkt->frame_offset[0] = ptr - buf;
+ pkt->frame_size[0] = frame_bytes;
+
+ /* calculate 2nd frame size */
+ frame_bytes = end - ptr - pkt->frame_size[0];
+ if (frame_bytes < 0 || frame_bytes > MAX_FRAME_SIZE)
+ goto fail;
+ pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0];
+ pkt->frame_size[1] = frame_bytes;
+ break;
+ case 3:
+ /* 1 to 48 frames, can be different sizes */
+ i = *ptr++;
+ pkt->frame_count = (i ) & 0x3F;
+ padding = (i >> 6) & 0x01;
+ pkt->vbr = (i >> 7) & 0x01;
+
+ if (pkt->frame_count == 0 || pkt->frame_count > MAX_FRAMES)
+ goto fail;
+
+ /* read padding size */
+ if (padding) {
+ padding = xiph_lacing_full(&ptr, end);
+ if (padding < 0)
+ goto fail;
+ }
+
+ /* read frame sizes */
+ if (pkt->vbr) {
+ /* for VBR, all frames except the final one have their size coded
+ in the bitstream. the last frame size is implicit. */
+ int total_bytes = 0;
+ for (i = 0; i < pkt->frame_count - 1; i++) {
+ frame_bytes = xiph_lacing_16bit(&ptr, end);
+ if (frame_bytes < 0)
+ goto fail;
+ pkt->frame_size[i] = frame_bytes;
+ total_bytes += frame_bytes;
+ }
+
+ if (self_delimiting) {
+ int len = xiph_lacing_16bit(&ptr, end);
+ if (len < 0 || len + total_bytes + padding > end - ptr)
+ goto fail;
+ end = ptr + total_bytes + len + padding;
+ buf_size = end - buf;
+ }
+
+ frame_bytes = end - ptr - padding;
+ if (total_bytes > frame_bytes)
+ goto fail;
+ pkt->frame_offset[0] = ptr - buf;
+ for (i = 1; i < pkt->frame_count; i++)
+ pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1];
+ pkt->frame_size[pkt->frame_count-1] = frame_bytes - total_bytes;
+ } else {
+ /* for CBR, the remaining packet bytes are divided evenly between
+ the frames */
+ if (self_delimiting) {
+ frame_bytes = xiph_lacing_16bit(&ptr, end);
+ if (frame_bytes < 0 || pkt->frame_count * frame_bytes + padding > end - ptr)
+ goto fail;
+ end = ptr + pkt->frame_count * frame_bytes + padding;
+ buf_size = end - buf;
+ } else {
+ frame_bytes = end - ptr - padding;
+ if (frame_bytes % pkt->frame_count ||
+ frame_bytes / pkt->frame_count > MAX_FRAME_SIZE)
+ goto fail;
+ frame_bytes /= pkt->frame_count;
+ }
+
+ pkt->frame_offset[0] = ptr - buf;
+ pkt->frame_size[0] = frame_bytes;
+ for (i = 1; i < pkt->frame_count; i++) {
+ pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1];
+ pkt->frame_size[i] = frame_bytes;
+ }
+ }
+ }
+
+ pkt->packet_size = buf_size;
+ pkt->data_size = pkt->packet_size - padding;
+
+ /* total packet duration cannot be larger than 120ms */
+ pkt->frame_duration = opus_frame_duration[pkt->config];
+ if (pkt->frame_duration * pkt->frame_count > MAX_PACKET_DUR)
+ goto fail;
+
+ /* set mode and bandwidth */
+ if (pkt->config < 12) {
+ pkt->mode = OPUS_MODE_SILK;
+ pkt->bandwidth = pkt->config >> 2;
+ } else if (pkt->config < 16) {
+ pkt->mode = OPUS_MODE_HYBRID;
+ pkt->bandwidth = OPUS_BANDWIDTH_SUPERWIDEBAND + (pkt->config >= 14);
+ } else {
+ pkt->mode = OPUS_MODE_CELT;
+ pkt->bandwidth = (pkt->config - 16) >> 2;
+ /* skip mediumband */
+ if (pkt->bandwidth)
+ pkt->bandwidth++;
+ }
+
+ return 0;
+
+fail:
+ memset(pkt, 0, sizeof(*pkt));
+ return AVERROR_INVALIDDATA;
+}
+
+static int channel_reorder_vorbis(int nb_channels, int channel_idx)
+{
+ return ff_vorbis_channel_layout_offsets[nb_channels - 1][channel_idx];
+}
+
+static int channel_reorder_unknown(int nb_channels, int channel_idx)
+{
+ return channel_idx;
+}
+
+av_cold int ff_opus_parse_extradata(AVCodecContext *avctx,
+ OpusContext *s)
+{
+ static const uint8_t default_channel_map[2] = { 0, 1 };
+ uint8_t default_extradata[19] = {
+ 'O', 'p', 'u', 's', 'H', 'e', 'a', 'd',
+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ };
+
+ int (*channel_reorder)(int, int) = channel_reorder_unknown;
+
+ const uint8_t *extradata, *channel_map;
+ int extradata_size;
+ int version, channels, map_type, streams, stereo_streams, i, j;
+ uint64_t layout;
+
+ if (!avctx->extradata) {
+ if (avctx->channels > 2) {
+ av_log(avctx, AV_LOG_ERROR,
+ "Multichannel configuration without extradata.\n");
+ return AVERROR(EINVAL);
+ }
+ default_extradata[9] = (avctx->channels == 1) ? 1 : 2;
+ extradata = default_extradata;
+ extradata_size = sizeof(default_extradata);
+ } else {
+ extradata = avctx->extradata;
+ extradata_size = avctx->extradata_size;
+ }
+
+ if (extradata_size < 19) {
+ av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
+ extradata_size);
+ return AVERROR_INVALIDDATA;
+ }
+
+ version = extradata[8];
+ if (version > 15) {
+ avpriv_request_sample(avctx, "Extradata version %d", version);
+ return AVERROR_PATCHWELCOME;
+ }
+
+ avctx->delay = AV_RL16(extradata + 10);
+
+ channels = extradata[9];
+ if (!channels) {
+ av_log(avctx, AV_LOG_ERROR, "Zero channel count specified in the extadata\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ s->gain_i = AV_RL16(extradata + 16);
+ if (s->gain_i)
+ s->gain = pow(10, s->gain_i / (20.0 * 256));
+
+ map_type = extradata[18];
+ if (!map_type) {
+ if (channels > 2) {
+ av_log(avctx, AV_LOG_ERROR,
+ "Channel mapping 0 is only specified for up to 2 channels\n");
+ return AVERROR_INVALIDDATA;
+ }
+ layout = (channels == 1) ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
+ streams = 1;
+ stereo_streams = channels - 1;
+ channel_map = default_channel_map;
+ } else if (map_type == 1 || map_type == 255) {
+ if (extradata_size < 21 + channels) {
+ av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
+ extradata_size);
+ return AVERROR_INVALIDDATA;
+ }
+
+ streams = extradata[19];
+ stereo_streams = extradata[20];
+ if (!streams || stereo_streams > streams ||
+ streams + stereo_streams > 255) {
+ av_log(avctx, AV_LOG_ERROR,
+ "Invalid stream/stereo stream count: %d/%d\n", streams, stereo_streams);
+ return AVERROR_INVALIDDATA;
+ }
+
+ if (map_type == 1) {
+ if (channels > 8) {
+ av_log(avctx, AV_LOG_ERROR,
+ "Channel mapping 1 is only specified for up to 8 channels\n");
+ return AVERROR_INVALIDDATA;
+ }
+ layout = ff_vorbis_channel_layouts[channels - 1];
+ channel_reorder = channel_reorder_vorbis;
+ } else
+ layout = 0;
+
+ channel_map = extradata + 21;
+ } else {
+ avpriv_request_sample(avctx, "Mapping type %d", map_type);
+ return AVERROR_PATCHWELCOME;
+ }
+
+ s->channel_maps = av_mallocz_array(channels, sizeof(*s->channel_maps));
+ if (!s->channel_maps)
+ return AVERROR(ENOMEM);
+
+ for (i = 0; i < channels; i++) {
+ ChannelMap *map = &s->channel_maps[i];
+ uint8_t idx = channel_map[channel_reorder(channels, i)];
+
+ if (idx == 255) {
+ map->silence = 1;
+ continue;
+ } else if (idx >= streams + stereo_streams) {
+ av_log(avctx, AV_LOG_ERROR,
+ "Invalid channel map for output channel %d: %d\n", i, idx);
+ return AVERROR_INVALIDDATA;
+ }
+
+ /* check that we din't see this index yet */
+ map->copy = 0;
+ for (j = 0; j < i; j++)
+ if (channel_map[channel_reorder(channels, j)] == idx) {
+ map->copy = 1;
+ map->copy_idx = j;
+ break;
+ }
+
+ if (idx < 2 * stereo_streams) {
+ map->stream_idx = idx / 2;
+ map->channel_idx = idx & 1;
+ } else {
+ map->stream_idx = idx - stereo_streams;
+ map->channel_idx = 0;
+ }
+ }
+
+ avctx->channels = channels;
+ avctx->channel_layout = layout;
+ s->nb_streams = streams;
+ s->nb_stereo_streams = stereo_streams;
+
+ return 0;
+}
diff --git a/libavcodec/opus.h b/libavcodec/opus.h
new file mode 100644
index 0000000000..ab2975fa22
--- /dev/null
+++ b/libavcodec/opus.h
@@ -0,0 +1,429 @@
+/*
+ * Opus decoder/demuxer common functions
+ * Copyright (c) 2012 Andrew D'Addesio
+ * Copyright (c) 2013-2014 Mozilla Corporation
+ *
+ * This file is part of Libav.
+ *
+ * Libav is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * Libav is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with Libav; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#ifndef AVCODEC_OPUS_H
+#define AVCODEC_OPUS_H
+
+#include <stdint.h>
+
+#include "libavutil/audio_fifo.h"
+#include "libavutil/float_dsp.h"
+#include "libavutil/frame.h"
+
+#include "libavresample/avresample.h"
+
+#include "avcodec.h"
+#include "get_bits.h"
+
+#define MAX_FRAME_SIZE 1275
+#define MAX_FRAMES 48
+#define MAX_PACKET_DUR 5760
+
+#define CELT_SHORT_BLOCKSIZE 120
+#define CELT_OVERLAP CELT_SHORT_BLOCKSIZE
+#define CELT_MAX_LOG_BLOCKS 3
+#define CELT_MAX_FRAME_SIZE (CELT_SHORT_BLOCKSIZE * (1 << CELT_MAX_LOG_BLOCKS))
+#define CELT_MAX_BANDS 21
+#define CELT_VECTORS 11
+#define CELT_ALLOC_STEPS 6
+#define CELT_FINE_OFFSET 21
+#define CELT_MAX_FINE_BITS 8
+#define CELT_NORM_SCALE 16384
+#define CELT_QTHETA_OFFSET 4
+#define CELT_QTHETA_OFFSET_TWOPHASE 16
+#define CELT_DEEMPH_COEFF 0.85000610f
+#define CELT_POSTFILTER_MINPERIOD 15
+#define CELT_ENERGY_SILENCE (-28.0f)
+
+#define SILK_HISTORY 322
+#define SILK_MAX_LPC 16
+
+#define ROUND_MULL(a,b,s) (((MUL64(a, b) >> (s - 1)) + 1) >> 1)
+#define ROUND_MUL16(a,b) ((MUL16(a, b) + 16384) >> 15)
+#define opus_ilog(i) (av_log2(i) + !!(i))
+
+enum OpusMode {
+ OPUS_MODE_SILK,
+ OPUS_MODE_HYBRID,
+ OPUS_MODE_CELT
+};
+
+enum OpusBandwidth {
+ OPUS_BANDWIDTH_NARROWBAND,
+ OPUS_BANDWIDTH_MEDIUMBAND,
+ OPUS_BANDWIDTH_WIDEBAND,
+ OPUS_BANDWIDTH_SUPERWIDEBAND,
+ OPUS_BANDWIDTH_FULLBAND
+};
+
+typedef struct RawBitsContext {
+ const uint8_t *position;
+ unsigned int bytes;
+ unsigned int cachelen;
+ unsigned int cacheval;
+} RawBitsContext;
+
+typedef struct OpusRangeCoder {
+ GetBitContext gb;
+ RawBitsContext rb;
+ unsigned int range;
+ unsigned int value;
+ unsigned int total_read_bits;
+} OpusRangeCoder;
+
+typedef struct SilkContext SilkContext;
+
+typedef struct CeltIMDCTContext CeltIMDCTContext;
+
+typedef struct CeltContext CeltContext;
+
+typedef struct OpusPacket {
+ int packet_size; /** packet size */
+ int data_size; /** size of the useful data -- packet size - padding */
+ int code; /** packet code: specifies the frame layout */
+ int stereo; /** whether this packet is mono or stereo */
+ int vbr; /** vbr flag */
+ int config; /** configuration: tells the audio mode,
+ ** bandwidth, and frame duration */
+ int frame_count; /** frame count */
+ int frame_offset[MAX_FRAMES]; /** frame offsets */
+ int frame_size[MAX_FRAMES]; /** frame sizes */
+ int frame_duration; /** frame duration, in samples @ 48kHz */
+ enum OpusMode mode; /** mode */
+ enum OpusBandwidth bandwidth; /** bandwidth */
+} OpusPacket;
+
+typedef struct OpusStreamContext {
+ AVCodecContext *avctx;
+ int output_channels;
+
+ OpusRangeCoder rc;
+ OpusRangeCoder redundancy_rc;
+ SilkContext *silk;
+ CeltContext *celt;
+ AVFloatDSPContext *fdsp;
+
+ float silk_buf[2][960];
+ float *silk_output[2];
+ DECLARE_ALIGNED(32, float, celt_buf)[2][960];
+ float *celt_output[2];
+
+ float redundancy_buf[2][960];
+ float *redundancy_output[2];
+
+ /* data buffers for the final output data */
+ float *out[2];
+ int out_size;
+
+ float *out_dummy;
+ int out_dummy_allocated_size;
+
+ AVAudioResampleContext *avr;
+ AVAudioFifo *celt_delay;
+ int silk_samplerate;
+ /* number of samples we still want to get from the resampler */
+ int delayed_samples;
+
+ OpusPacket packet;
+
+ int redundancy_idx;
+} OpusStreamContext;
+
+// a mapping between an opus stream and an output channel
+typedef struct ChannelMap {
+ int stream_idx;
+ int channel_idx;
+
+ // when a single decoded channel is mapped to multiple output channels, we
+ // write to the first output directly and copy from it to the others
+ // this field is set to 1 for those copied output channels
+ int copy;
+ // this is the index of the output channel to copy from
+ int copy_idx;
+
+ // this channel is silent
+ int silence;
+} ChannelMap;
+
+typedef struct OpusContext {
+ OpusStreamContext *streams;
+ int nb_streams;
+ int nb_stereo_streams;
+
+ AVFloatDSPContext fdsp;
+ int16_t gain_i;
+ float gain;
+
+ ChannelMap *channel_maps;
+} OpusContext;
+
+static av_always_inline void opus_rc_normalize(OpusRangeCoder *rc)
+{
+ while (rc->range <= 1<<23) {
+ rc->value = ((rc->value << 8) | (get_bits(&rc->gb, 8) ^ 0xFF)) & ((1u << 31) - 1);
+ rc->range <<= 8;
+ rc->total_read_bits += 8;
+ }
+}
+
+static av_always_inline void opus_rc_update(OpusRangeCoder *rc, unsigned int scale,
+ unsigned int low, unsigned int high,
+ unsigned int total)
+{
+ rc->value -= scale * (total - high);
+ rc->range = low ? scale * (high - low)
+ : rc->range - scale * (total - high);
+ opus_rc_normalize(rc);
+}
+
+static av_always_inline unsigned int opus_rc_getsymbol(OpusRangeCoder *rc, const uint16_t *cdf)
+{
+ unsigned int k, scale, total, symbol, low, high;
+
+ total = *cdf++;
+
+ scale = rc->range / total;
+ symbol = rc->value / scale + 1;
+ symbol = total - FFMIN(symbol, total);
+
+ for (k = 0; cdf[k] <= symbol; k++);
+ high = cdf[k];
+ low = k ? cdf[k-1] : 0;
+
+ opus_rc_update(rc, scale, low, high, total);
+
+ return k;
+}
+
+static av_always_inline unsigned int opus_rc_p2model(OpusRangeCoder *rc, unsigned int bits)
+{
+ unsigned int k, scale;
+ scale = rc->range >> bits; // in this case, scale = symbol
+
+ if (rc->value >= scale) {
+ rc->value -= scale;
+ rc->range -= scale;
+ k = 0;
+ } else {
+ rc->range = scale;
+ k = 1;
+ }
+ opus_rc_normalize(rc);
+ return k;
+}
+
+/**
+ * CELT: estimate bits of entropy that have thus far been consumed for the
+ * current CELT frame, to integer and fractional (1/8th bit) precision
+ */
+static av_always_inline unsigned int opus_rc_tell(const OpusRangeCoder *rc)
+{
+ return rc->total_read_bits - av_log2(rc->range) - 1;
+}
+
+static av_always_inline unsigned int opus_rc_tell_frac(const OpusRangeCoder *rc)
+{
+ unsigned int i, total_bits, rcbuffer, range;
+
+ total_bits = rc->total_read_bits << 3;
+ rcbuffer = av_log2(rc->range) + 1;
+ range = rc->range >> (rcbuffer-16);
+
+ for (i = 0; i < 3; i++) {
+ int bit;
+ range = range * range >> 15;
+ bit = range >> 16;
+ rcbuffer = rcbuffer << 1 | bit;
+ range >>= bit;
+ }
+
+ return total_bits - rcbuffer;
+}
+
+/**
+ * CELT: read 1-25 raw bits at the end of the frame, backwards byte-wise
+ */
+static av_always_inline unsigned int opus_getrawbits(OpusRangeCoder *rc, unsigned int count)
+{
+ unsigned int value = 0;
+
+ while (rc->rb.bytes && rc->rb.cachelen < count) {
+ rc->rb.cacheval |= *--rc->rb.position << rc->rb.cachelen;
+ rc->rb.cachelen += 8;
+ rc->rb.bytes--;
+ }
+
+ value = rc->rb.cacheval & ((1<<count)-1);
+ rc->rb.cacheval >>= count;
+ rc->rb.cachelen -= count;
+ rc->total_read_bits += count;
+
+ return value;
+}
+
+/**
+ * CELT: read a uniform distribution
+ */
+static av_always_inline unsigned int opus_rc_unimodel(OpusRangeCoder *rc, unsigned int size)
+{
+ unsigned int bits, k, scale, total;
+
+ bits = opus_ilog(size - 1);
+ total = (bits > 8) ? ((size - 1) >> (bits - 8)) + 1 : size;
+
+ scale = rc->range / total;
+ k = rc->value / scale + 1;
+ k = total - FFMIN(k, total);
+ opus_rc_update(rc, scale, k, k + 1, total);
+
+ if (bits > 8) {
+ k = k << (bits - 8) | opus_getrawbits(rc, bits - 8);
+ return FFMIN(k, size - 1);
+ } else
+ return k;
+}
+
+static av_always_inline int opus_rc_laplace(OpusRangeCoder *rc, unsigned int symbol, int decay)
+{
+ /* extends the range coder to model a Laplace distribution */
+ int value = 0;
+ unsigned int scale, low = 0, center;
+
+ scale = rc->range >> 15;
+ center = rc->value / scale + 1;
+ center = (1 << 15) - FFMIN(center, 1 << 15);
+
+ if (center >= symbol) {
+ value++;
+ low = symbol;
+ symbol = 1 + ((32768 - 32 - symbol) * (16384-decay) >> 15);
+
+ while (symbol > 1 && center >= low + 2 * symbol) {
+ value++;
+ symbol *= 2;
+ low += symbol;
+ symbol = (((symbol - 2) * decay) >> 15) + 1;
+ }
+
+ if (symbol <= 1) {
+ int distance = (center - low) >> 1;
+ value += distance;
+ low += 2 * distance;
+ }
+
+ if (center < low + symbol)
+ value *= -1;
+ else
+ low += symbol;
+ }
+
+ opus_rc_update(rc, scale, low, FFMIN(low + symbol, 32768), 32768);
+
+ return value;
+}
+
+static av_always_inline unsigned int opus_rc_stepmodel(OpusRangeCoder *rc, int k0)
+{
+ /* Use a probability of 3 up to itheta=8192 and then use 1 after */
+ unsigned int k, scale, symbol, total = (k0+1)*3 + k0;
+ scale = rc->range / total;
+ symbol = rc->value / scale + 1;
+ symbol = total - FFMIN(symbol, total);
+
+ k = (symbol < (k0+1)*3) ? symbol/3 : symbol - (k0+1)*2;
+
+ opus_rc_update(rc, scale, (k <= k0) ? 3*(k+0) : (k-1-k0) + 3*(k0+1),
+ (k <= k0) ? 3*(k+1) : (k-0-k0) + 3*(k0+1), total);
+ return k;
+}
+
+static av_always_inline unsigned int opus_rc_trimodel(OpusRangeCoder *rc, int qn)
+{
+ unsigned int k, scale, symbol, total, low, center;
+
+ total = ((qn>>1) + 1) * ((qn>>1) + 1);
+ scale = rc->range / total;
+ center = rc->value / scale + 1;
+ center = total - FFMIN(center, total);
+
+ if (center < total >> 1) {
+ k = (ff_sqrt(8 * center + 1) - 1) >> 1;
+ low = k * (k + 1) >> 1;
+ symbol = k + 1;
+ } else {
+ k = (2*(qn + 1) - ff_sqrt(8*(total - center - 1) + 1)) >> 1;
+ low = total - ((qn + 1 - k) * (qn + 2 - k) >> 1);
+ symbol = qn + 1 - k;
+ }
+
+ opus_rc_update(rc, scale, low, low + symbol, total);
+
+ return k;
+}
+
+int ff_opus_parse_packet(OpusPacket *pkt, const uint8_t *buf, int buf_size,
+ int self_delimited);
+
+int ff_opus_parse_extradata(AVCodecContext *avctx, OpusContext *s);
+
+int ff_silk_init(AVCodecContext *avctx, SilkContext **ps, int output_channels);
+void ff_silk_free(SilkContext **ps);
+void ff_silk_flush(SilkContext *s);
+
+/**
+ * Decode the LP layer of one Opus frame (which may correspond to several SILK
+ * frames).
+ */
+int ff_silk_decode_superframe(SilkContext *s, OpusRangeCoder *rc,
+ float *output[2],
+ enum OpusBandwidth bandwidth, int coded_channels,
+ int duration_ms);
+
+/**
+ * Init an iMDCT of the length 2 * 15 * (2^N)
+ */
+int ff_celt_imdct_init(CeltIMDCTContext **s, int N);
+
+/**
+ * Free an iMDCT.
+ */
+void ff_celt_imdct_uninit(CeltIMDCTContext **s);
+
+/**
+ * Calculate the middle half of the iMDCT
+ */
+void ff_celt_imdct_half(CeltIMDCTContext *s, float *dst, const float *src,
+ int src_stride, float scale);
+
+int ff_celt_init(AVCodecContext *avctx, CeltContext **s, int output_channels);
+
+void ff_celt_free(CeltContext **s);
+
+void ff_celt_flush(CeltContext *s);
+
+int ff_celt_decode_frame(CeltContext *s, OpusRangeCoder *rc,
+ float **output, int coded_channels, int frame_size,
+ int startband, int endband);
+
+extern const float ff_celt_window2[120];
+
+#endif /* AVCODEC_OPUS_H */
diff --git a/libavcodec/opus_celt.c b/libavcodec/opus_celt.c
new file mode 100644
index 0000000000..6757136a9c
--- /dev/null
+++ b/libavcodec/opus_celt.c
@@ -0,0 +1,2220 @@
+/*
+ * Copyright (c) 2012 Andrew D'Addesio
+ * Copyright (c) 2013-2014 Mozilla Corporation
+ *
+ * This file is part of Libav.
+ *
+ * Libav is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * Libav is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with Libav; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * Opus CELT decoder
+ */
+
+#include <stdint.h>
+
+#include "libavutil/float_dsp.h"
+
+#include "opus.h"
+
+enum CeltSpread {
+ CELT_SPREAD_NONE,
+ CELT_SPREAD_LIGHT,
+ CELT_SPREAD_NORMAL,
+ CELT_SPREAD_AGGRESSIVE
+};
+
+typedef struct CeltFrame {
+ float energy[CELT_MAX_BANDS];
+ float prev_energy[2][CELT_MAX_BANDS];
+
+ uint8_t collapse_masks[CELT_MAX_BANDS];
+
+ /* buffer for mdct output + postfilter */
+ DECLARE_ALIGNED(32, float, buf)[2048];
+
+ /* postfilter parameters */
+ int pf_period_new;
+ float pf_gains_new[3];
+ int pf_period;
+ float pf_gains[3];
+ int pf_period_old;
+ float pf_gains_old[3];
+
+ float deemph_coeff;
+} CeltFrame;
+
+struct CeltContext {
+ // constant values that do not change during context lifetime
+ AVCodecContext *avctx;
+ CeltIMDCTContext *imdct[4];
+ AVFloatDSPContext dsp;
+ int output_channels;
+
+ // values that have inter-frame effect and must be reset on flush
+ CeltFrame frame[2];
+ uint32_t seed;
+ int flushed;
+
+ // values that only affect a single frame
+ int coded_channels;
+ int framebits;
+ int duration;
+
+ /* number of iMDCT blocks in the frame */
+ int blocks;
+ /* size of each block */
+ int blocksize;
+
+ int startband;
+ int endband;
+ int codedbands;
+
+ int anticollapse_bit;
+
+ int intensitystereo;
+ int dualstereo;
+ enum CeltSpread spread;
+
+ int remaining;
+ int remaining2;
+ int fine_bits [CELT_MAX_BANDS];
+ int fine_priority[CELT_MAX_BANDS];
+ int pulses [CELT_MAX_BANDS];
+ int tf_change [CELT_MAX_BANDS];
+
+ DECLARE_ALIGNED(32, float, coeffs)[2][CELT_MAX_FRAME_SIZE];
+ DECLARE_ALIGNED(32, float, scratch)[22 * 8]; // MAX(celt_freq_range) * 1<<CELT_MAX_LOG_BLOCKS
+};
+
+static const uint16_t celt_model_tapset[] = { 4, 2, 3, 4 };
+
+static const uint16_t celt_model_spread[] = { 32, 7, 9, 30, 32 };
+
+static const uint16_t celt_model_alloc_trim[] = {
+ 128, 2, 4, 9, 19, 41, 87, 109, 119, 124, 126, 128
+};
+
+static const uint16_t celt_model_energy_small[] = { 4, 2, 3, 4 };
+
+static const uint8_t celt_freq_bands[] = { /* in steps of 200Hz */
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 34, 40, 48, 60, 78, 100
+};
+
+static const uint8_t celt_freq_range[] = {
+ 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 6, 6, 8, 12, 18, 22
+};
+
+static const uint8_t celt_log_freq_range[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 16, 16, 16, 21, 21, 24, 29, 34, 36
+};
+
+static const int8_t celt_tf_select[4][2][2][2] = {
+ { { { 0, -1 }, { 0, -1 } }, { { 0, -1 }, { 0, -1 } } },
+ { { { 0, -1 }, { 0, -2 } }, { { 1, 0 }, { 1, -1 } } },
+ { { { 0, -2 }, { 0, -3 } }, { { 2, 0 }, { 1, -1 } } },
+ { { { 0, -2 }, { 0, -3 } }, { { 3, 0 }, { 1, -1 } } }
+};
+
+static const float celt_mean_energy[] = {
+ 6.437500f, 6.250000f, 5.750000f, 5.312500f, 5.062500f,
+ 4.812500f, 4.500000f, 4.375000f, 4.875000f, 4.687500f,
+ 4.562500f, 4.437500f, 4.875000f, 4.625000f, 4.312500f,
+ 4.500000f, 4.375000f, 4.625000f, 4.750000f, 4.437500f,
+ 3.750000f, 3.750000f, 3.750000f, 3.750000f, 3.750000f
+};
+
+static const float celt_alpha_coef[] = {
+ 29440.0f/32768.0f, 26112.0f/32768.0f, 21248.0f/32768.0f, 16384.0f/32768.0f
+};
+
+static const float celt_beta_coef[] = { /* TODO: precompute 1 minus this if the code ends up neater */
+ 30147.0f/32768.0f, 22282.0f/32768.0f, 12124.0f/32768.0f, 6554.0f/32768.0f
+};
+
+static const uint8_t celt_coarse_energy_dist[4][2][42] = {
+ {
+ { // 120-sample inter
+ 72, 127, 65, 129, 66, 128, 65, 128, 64, 128, 62, 128, 64, 128,
+ 64, 128, 92, 78, 92, 79, 92, 78, 90, 79, 116, 41, 115, 40,
+ 114, 40, 132, 26, 132, 26, 145, 17, 161, 12, 176, 10, 177, 11
+ }, { // 120-sample intra
+ 24, 179, 48, 138, 54, 135, 54, 132, 53, 134, 56, 133, 55, 132,
+ 55, 132, 61, 114, 70, 96, 74, 88, 75, 88, 87, 74, 89, 66,
+ 91, 67, 100, 59, 108, 50, 120, 40, 122, 37, 97, 43, 78, 50
+ }
+ }, {
+ { // 240-sample inter
+ 83, 78, 84, 81, 88, 75, 86, 74, 87, 71, 90, 73, 93, 74,
+ 93, 74, 109, 40, 114, 36, 117, 34, 117, 34, 143, 17, 145, 18,
+ 146, 19, 162, 12, 165, 10, 178, 7, 189, 6, 190, 8, 177, 9
+ }, { // 240-sample intra
+ 23, 178, 54, 115, 63, 102, 66, 98, 69, 99, 74, 89, 71, 91,
+ 73, 91, 78, 89, 86, 80, 92, 66, 93, 64, 102, 59, 103, 60,
+ 104, 60, 117, 52, 123, 44, 138, 35, 133, 31, 97, 38, 77, 45
+ }
+ }, {
+ { // 480-sample inter
+ 61, 90, 93, 60, 105, 42, 107, 41, 110, 45, 116, 38, 113, 38,
+ 112, 38, 124, 26, 132, 27, 136, 19, 140, 20, 155, 14, 159, 16,
+ 158, 18, 170, 13, 177, 10, 187, 8, 192, 6, 175, 9, 159, 10
+ }, { // 480-sample intra
+ 21, 178, 59, 110, 71, 86, 75, 85, 84, 83, 91, 66, 88, 73,
+ 87, 72, 92, 75, 98, 72, 105, 58, 107, 54, 115, 52, 114, 55,
+ 112, 56, 129, 51, 132, 40, 150, 33, 140, 29, 98, 35, 77, 42
+ }
+ }, {
+ { // 960-sample inter
+ 42, 121, 96, 66, 108, 43, 111, 40, 117, 44, 123, 32, 120, 36,
+ 119, 33, 127, 33, 134, 34, 139, 21, 147, 23, 152, 20, 158, 25,
+ 154, 26, 166, 21, 173, 16, 184, 13, 184, 10, 150, 13, 139, 15
+ }, { // 960-sample intra
+ 22, 178, 63, 114, 74, 82, 84, 83, 92, 82, 103, 62, 96, 72,
+ 96, 67, 101, 73, 107, 72, 113, 55, 118, 52, 125, 52, 118, 52,
+ 117, 55, 135, 49, 137, 39, 157, 32, 145, 29, 97, 33, 77, 40
+ }
+ }
+};
+
+static const uint8_t celt_static_alloc[11][21] = { /* 1/32 bit/sample */
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+ { 90, 80, 75, 69, 63, 56, 49, 40, 34, 29, 20, 18, 10, 0, 0, 0, 0, 0, 0, 0, 0 },
+ { 110, 100, 90, 84, 78, 71, 65, 58, 51, 45, 39, 32, 26, 20, 12, 0, 0, 0, 0, 0, 0 },
+ { 118, 110, 103, 93, 86, 80, 75, 70, 65, 59, 53, 47, 40, 31, 23, 15, 4, 0, 0, 0, 0 },
+ { 126, 119, 112, 104, 95, 89, 83, 78, 72, 66, 60, 54, 47, 39, 32, 25, 17, 12, 1, 0, 0 },
+ { 134, 127, 120, 114, 103, 97, 91, 85, 78, 72, 66, 60, 54, 47, 41, 35, 29, 23, 16, 10, 1 },
+ { 144, 137, 130, 124, 113, 107, 101, 95, 88, 82, 76, 70, 64, 57, 51, 45, 39, 33, 26, 15, 1 },
+ { 152, 145, 138, 132, 123, 117, 111, 105, 98, 92, 86, 80, 74, 67, 61, 55, 49, 43, 36, 20, 1 },
+ { 162, 155, 148, 142, 133, 127, 121, 115, 108, 102, 96, 90, 84, 77, 71, 65, 59, 53, 46, 30, 1 },
+ { 172, 165, 158, 152, 143, 137, 131, 125, 118, 112, 106, 100, 94, 87, 81, 75, 69, 63, 56, 45, 20 },
+ { 200, 200, 200, 200, 200, 200, 200, 200, 198, 193, 188, 183, 178, 173, 168, 163, 158, 153, 148, 129, 104 }
+};
+
+static const uint8_t celt_static_caps[4][2][21] = {
+ { // 120-sample
+ {224, 224, 224, 224, 224, 224, 224, 224, 160, 160,
+ 160, 160, 185, 185, 185, 178, 178, 168, 134, 61, 37},
+ {224, 224, 224, 224, 224, 224, 224, 224, 240, 240,
+ 240, 240, 207, 207, 207, 198, 198, 183, 144, 66, 40},
+ }, { // 240-sample
+ {160, 160, 160, 160, 160, 160, 160, 160, 185, 185,
+ 185, 185, 193, 193, 193, 183, 183, 172, 138, 64, 38},
+ {240, 240, 240, 240, 240, 240, 240, 240, 207, 207,
+ 207, 207, 204, 204, 204, 193, 193, 180, 143, 66, 40},
+ }, { // 480-sample
+ {185, 185, 185, 185, 185, 185, 185, 185, 193, 193,
+ 193, 193, 193, 193, 193, 183, 183, 172, 138, 65, 39},
+ {207, 207, 207, 207, 207, 207, 207, 207, 204, 204,
+ 204, 204, 201, 201, 201, 188, 188, 176, 141, 66, 40},
+ }, { // 960-sample
+ {193, 193, 193, 193, 193, 193, 193, 193, 193, 193,
+ 193, 193, 194, 194, 194, 184, 184, 173, 139, 65, 39},
+ {204, 204, 204, 204, 204, 204, 204, 204, 201, 201,
+ 201, 201, 198, 198, 198, 187, 187, 175, 140, 66, 40}
+ }
+};
+
+static const uint8_t celt_cache_bits[392] = {
+ 40, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 40, 15, 23, 28,
+ 31, 34, 36, 38, 39, 41, 42, 43, 44, 45, 46, 47, 47, 49, 50,
+ 51, 52, 53, 54, 55, 55, 57, 58, 59, 60, 61, 62, 63, 63, 65,
+ 66, 67, 68, 69, 70, 71, 71, 40, 20, 33, 41, 48, 53, 57, 61,
+ 64, 66, 69, 71, 73, 75, 76, 78, 80, 82, 85, 87, 89, 91, 92,
+ 94, 96, 98, 101, 103, 105, 107, 108, 110, 112, 114, 117, 119, 121, 123,
+ 124, 126, 128, 40, 23, 39, 51, 60, 67, 73, 79, 83, 87, 91, 94,
+ 97, 100, 102, 105, 107, 111, 115, 118, 121, 124, 126, 129, 131, 135, 139,
+ 142, 145, 148, 150, 153, 155, 159, 163, 166, 169, 172, 174, 177, 179, 35,
+ 28, 49, 65, 78, 89, 99, 107, 114, 120, 126, 132, 136, 141, 145, 149,
+ 153, 159, 165, 171, 176, 180, 185, 189, 192, 199, 205, 211, 216, 220, 225,
+ 229, 232, 239, 245, 251, 21, 33, 58, 79, 97, 112, 125, 137, 148, 157,
+ 166, 174, 182, 189, 195, 201, 207, 217, 227, 235, 243, 251, 17, 35, 63,
+ 86, 106, 123, 139, 152, 165, 177, 187, 197, 206, 214, 222, 230, 237, 250,
+ 25, 31, 55, 75, 91, 105, 117, 128, 138, 146, 154, 161, 168, 174, 180,
+ 185, 190, 200, 208, 215, 222, 229, 235, 240, 245, 255, 16, 36, 65, 89,
+ 110, 128, 144, 159, 173, 185, 196, 207, 217, 226, 234, 242, 250, 11, 41,
+ 74, 103, 128, 151, 172, 191, 209, 225, 241, 255, 9, 43, 79, 110, 138,
+ 163, 186, 207, 227, 246, 12, 39, 71, 99, 123, 144, 164, 182, 198, 214,
+ 228, 241, 253, 9, 44, 81, 113, 142, 168, 192, 214, 235, 255, 7, 49,
+ 90, 127, 160, 191, 220, 247, 6, 51, 95, 134, 170, 203, 234, 7, 47,
+ 87, 123, 155, 184, 212, 237, 6, 52, 97, 137, 174, 208, 240, 5, 57,
+ 106, 151, 192, 231, 5, 59, 111, 158, 202, 243, 5, 55, 103, 147, 187,
+ 224, 5, 60, 113, 161, 206, 248, 4, 65, 122, 175, 224, 4, 67, 127,
+ 182, 234
+};
+
+static const int16_t celt_cache_index[105] = {
+ -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 41, 41, 41,
+ 82, 82, 123, 164, 200, 222, 0, 0, 0, 0, 0, 0, 0, 0, 41,
+ 41, 41, 41, 123, 123, 123, 164, 164, 240, 266, 283, 295, 41, 41, 41,
+ 41, 41, 41, 41, 41, 123, 123, 123, 123, 240, 240, 240, 266, 266, 305,
+ 318, 328, 336, 123, 123, 123, 123, 123, 123, 123, 123, 240, 240, 240, 240,
+ 305, 305, 305, 318, 318, 343, 351, 358, 364, 240, 240, 240, 240, 240, 240,
+ 240, 240, 305, 305, 305, 305, 343, 343, 343, 351, 351, 370, 376, 382, 387,
+};
+
+static const uint8_t celt_log2_frac[] = {
+ 0, 8, 13, 16, 19, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 32, 33, 34, 34, 35, 36, 36, 37, 37
+};
+
+static const uint8_t celt_bit_interleave[] = {
+ 0, 1, 1, 1, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3
+};
+
+static const uint8_t celt_bit_deinterleave[] = {
+ 0x00, 0x03, 0x0C, 0x0F, 0x30, 0x33, 0x3C, 0x3F,
+ 0xC0, 0xC3, 0xCC, 0xCF, 0xF0, 0xF3, 0xFC, 0xFF
+};
+
+static const uint8_t celt_hadamard_ordery[] = {
+ 1, 0,
+ 3, 0, 2, 1,
+ 7, 0, 4, 3, 6, 1, 5, 2,
+ 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5
+};
+
+static const uint16_t celt_qn_exp2[] = {
+ 16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048
+};
+
+static const uint32_t celt_pvq_u[1272] = {
+ /* N = 0, K = 0...176 */
+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ /* N = 1, K = 1...176 */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ /* N = 2, K = 2...176 */
+ 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
+ 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,
+ 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113,
+ 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143,
+ 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173,
+ 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203,
+ 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233,
+ 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263,
+ 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293,
+ 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323,
+ 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351,
+ /* N = 3, K = 3...176 */
+ 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613,
+ 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861,
+ 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785,
+ 3961, 4141, 4325, 4513, 4705, 4901, 5101, 5305, 5513, 5725, 5941, 6161, 6385,
+ 6613, 6845, 7081, 7321, 7565, 7813, 8065, 8321, 8581, 8845, 9113, 9385, 9661,
+ 9941, 10225, 10513, 10805, 11101, 11401, 11705, 12013, 12325, 12641, 12961,
+ 13285, 13613, 13945, 14281, 14621, 14965, 15313, 15665, 16021, 16381, 16745,
+ 17113, 17485, 17861, 18241, 18625, 19013, 19405, 19801, 20201, 20605, 21013,
+ 21425, 21841, 22261, 22685, 23113, 23545, 23981, 24421, 24865, 25313, 25765,
+ 26221, 26681, 27145, 27613, 28085, 28561, 29041, 29525, 30013, 30505, 31001,
+ 31501, 32005, 32513, 33025, 33541, 34061, 34585, 35113, 35645, 36181, 36721,
+ 37265, 37813, 38365, 38921, 39481, 40045, 40613, 41185, 41761, 42341, 42925,
+ 43513, 44105, 44701, 45301, 45905, 46513, 47125, 47741, 48361, 48985, 49613,
+ 50245, 50881, 51521, 52165, 52813, 53465, 54121, 54781, 55445, 56113, 56785,
+ 57461, 58141, 58825, 59513, 60205, 60901, 61601,
+ /* N = 4, K = 4...176 */
+ 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017,
+ 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775,
+ 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153,
+ 82239, 88641, 95367, 102425, 109823, 117569, 125671, 134137, 142975, 152193,
+ 161799, 171801, 182207, 193025, 204263, 215929, 228031, 240577, 253575,
+ 267033, 280959, 295361, 310247, 325625, 341503, 357889, 374791, 392217,
+ 410175, 428673, 447719, 467321, 487487, 508225, 529543, 551449, 573951,
+ 597057, 620775, 645113, 670079, 695681, 721927, 748825, 776383, 804609,
+ 833511, 863097, 893375, 924353, 956039, 988441, 1021567, 1055425, 1090023,
+ 1125369, 1161471, 1198337, 1235975, 1274393, 1313599, 1353601, 1394407,
+ 1436025, 1478463, 1521729, 1565831, 1610777, 1656575, 1703233, 1750759,
+ 1799161, 1848447, 1898625, 1949703, 2001689, 2054591, 2108417, 2163175,
+ 2218873, 2275519, 2333121, 2391687, 2451225, 2511743, 2573249, 2635751,
+ 2699257, 2763775, 2829313, 2895879, 2963481, 3032127, 3101825, 3172583,
+ 3244409, 3317311, 3391297, 3466375, 3542553, 3619839, 3698241, 3777767,
+ 3858425, 3940223, 4023169, 4107271, 4192537, 4278975, 4366593, 4455399,
+ 4545401, 4636607, 4729025, 4822663, 4917529, 5013631, 5110977, 5209575,
+ 5309433, 5410559, 5512961, 5616647, 5721625, 5827903, 5935489, 6044391,
+ 6154617, 6266175, 6379073, 6493319, 6608921, 6725887, 6844225, 6963943,
+ 7085049, 7207551,
+ /* N = 5, K = 5...176 */
+ 321, 681, 1289, 2241, 3649, 5641, 8361, 11969, 16641, 22569, 29961, 39041,
+ 50049, 63241, 78889, 97281, 118721, 143529, 172041, 204609, 241601, 283401,
+ 330409, 383041, 441729, 506921, 579081, 658689, 746241, 842249, 947241,
+ 1061761, 1186369, 1321641, 1468169, 1626561, 1797441, 1981449, 2179241,
+ 2391489, 2618881, 2862121, 3121929, 3399041, 3694209, 4008201, 4341801,
+ 4695809, 5071041, 5468329, 5888521, 6332481, 6801089, 7295241, 7815849,
+ 8363841, 8940161, 9545769, 10181641, 10848769, 11548161, 12280841, 13047849,
+ 13850241, 14689089, 15565481, 16480521, 17435329, 18431041, 19468809,
+ 20549801, 21675201, 22846209, 24064041, 25329929, 26645121, 28010881,
+ 29428489, 30899241, 32424449, 34005441, 35643561, 37340169, 39096641,
+ 40914369, 42794761, 44739241, 46749249, 48826241, 50971689, 53187081,
+ 55473921, 57833729, 60268041, 62778409, 65366401, 68033601, 70781609,
+ 73612041, 76526529, 79526721, 82614281, 85790889, 89058241, 92418049,
+ 95872041, 99421961, 103069569, 106816641, 110664969, 114616361, 118672641,
+ 122835649, 127107241, 131489289, 135983681, 140592321, 145317129, 150160041,
+ 155123009, 160208001, 165417001, 170752009, 176215041, 181808129, 187533321,
+ 193392681, 199388289, 205522241, 211796649, 218213641, 224775361, 231483969,
+ 238341641, 245350569, 252512961, 259831041, 267307049, 274943241, 282741889,
+ 290705281, 298835721, 307135529, 315607041, 324252609, 333074601, 342075401,
+ 351257409, 360623041, 370174729, 379914921, 389846081, 399970689, 410291241,
+ 420810249, 431530241, 442453761, 453583369, 464921641, 476471169, 488234561,
+ 500214441, 512413449, 524834241, 537479489, 550351881, 563454121, 576788929,
+ 590359041, 604167209, 618216201, 632508801,
+ /* N = 6, K = 6...96 (technically V(109,5) fits in 32 bits, but that can't be
+ achieved by splitting an Opus band) */
+ 1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047,
+ 335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409,
+ 2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793,
+ 11326283, 13115773, 15124775, 17372905, 19880915, 22670725, 25765455,
+ 29189457, 32968347, 37129037, 41699767, 46710137, 52191139, 58175189,
+ 64696159, 71789409, 79491819, 87841821, 96879431, 106646281, 117185651,
+ 128542501, 140763503, 153897073, 167993403, 183104493, 199284183, 216588185,
+ 235074115, 254801525, 275831935, 298228865, 322057867, 347386557, 374284647,
+ 402823977, 433078547, 465124549, 499040399, 534906769, 572806619, 612825229,
+ 655050231, 699571641, 746481891, 795875861, 847850911, 902506913, 959946283,
+ 1020274013, 1083597703, 1150027593, 1219676595, 1292660325, 1369097135,
+ 1449108145, 1532817275, 1620351277, 1711839767, 1807415257, 1907213187,
+ 2011371957, 2120032959,
+ /* N = 7, K = 7...54 (technically V(60,6) fits in 32 bits, but that can't be
+ achieved by splitting an Opus band) */
+ 8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777,
+ 1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233,
+ 19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013,
+ 88043969, 106114625, 127178701, 151620757, 179861305, 212358985, 249612805,
+ 292164445, 340600625, 395555537, 457713341, 527810725, 606639529, 695049433,
+ 793950709, 904317037, 1027188385, 1163673953, 1314955181, 1482288821,
+ 1667010073, 1870535785, 2094367717,
+ /* N = 8, K = 8...37 (technically V(40,7) fits in 32 bits, but that can't be
+ achieved by splitting an Opus band) */
+ 48639, 108545, 224143, 433905, 795455, 1392065, 2340495, 3800305, 5984767,
+ 9173505, 13726991, 20103025, 28875327, 40754369, 56610575, 77500017,
+ 104692735, 139703809, 184327311, 240673265, 311207743, 398796225, 506750351,
+ 638878193, 799538175, 993696769, 1226990095, 1505789553, 1837271615,
+ 2229491905,
+ /* N = 9, K = 9...28 (technically V(29,8) fits in 32 bits, but that can't be
+ achieved by splitting an Opus band) */
+ 265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777,
+ 39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145,
+ 628496897, 872893441, 1196924561, 1621925137, 2173806145,
+ /* N = 10, K = 10...24 */
+ 1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073,
+ 254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629,
+ 3375210671,
+ /* N = 11, K = 11...19 (technically V(20,10) fits in 32 bits, but that can't be
+ achieved by splitting an Opus band) */
+ 8097453, 18474633, 39753273, 81270333, 158819253, 298199265, 540279585,
+ 948062325, 1616336765,
+ /* N = 12, K = 12...18 */
+ 45046719, 103274625, 224298231, 464387817, 921406335, 1759885185,
+ 3248227095,
+ /* N = 13, K = 13...16 */
+ 251595969, 579168825, 1267854873, 2653649025,
+ /* N = 14, K = 14 */
+ 1409933619
+};
+
+DECLARE_ALIGNED(32, static const float, celt_window)[120] = {
+ 6.7286966e-05f, 0.00060551348f, 0.0016815970f, 0.0032947962f, 0.0054439943f,
+ 0.0081276923f, 0.011344001f, 0.015090633f, 0.019364886f, 0.024163635f,
+ 0.029483315f, 0.035319905f, 0.041668911f, 0.048525347f, 0.055883718f,
+ 0.063737999f, 0.072081616f, 0.080907428f, 0.090207705f, 0.099974111f,
+ 0.11019769f, 0.12086883f, 0.13197729f, 0.14351214f, 0.15546177f,
+ 0.16781389f, 0.18055550f, 0.19367290f, 0.20715171f, 0.22097682f,
+ 0.23513243f, 0.24960208f, 0.26436860f, 0.27941419f, 0.29472040f,
+ 0.31026818f, 0.32603788f, 0.34200931f, 0.35816177f, 0.37447407f,
+ 0.39092462f, 0.40749142f, 0.42415215f, 0.44088423f, 0.45766484f,
+ 0.47447104f, 0.49127978f, 0.50806798f, 0.52481261f, 0.54149077f,
+ 0.55807973f, 0.57455701f, 0.59090049f, 0.60708841f, 0.62309951f,
+ 0.63891306f, 0.65450896f, 0.66986776f, 0.68497077f, 0.69980010f,
+ 0.71433873f, 0.72857055f, 0.74248043f, 0.75605424f, 0.76927895f,
+ 0.78214257f, 0.79463430f, 0.80674445f, 0.81846456f, 0.82978733f,
+ 0.84070669f, 0.85121779f, 0.86131698f, 0.87100183f, 0.88027111f,
+ 0.88912479f, 0.89756398f, 0.90559094f, 0.91320904f, 0.92042270f,
+ 0.92723738f, 0.93365955f, 0.93969656f, 0.94535671f, 0.95064907f,
+ 0.95558353f, 0.96017067f, 0.96442171f, 0.96834849f, 0.97196334f,
+ 0.97527906f, 0.97830883f, 0.98106616f, 0.98356480f, 0.98581869f,
+ 0.98784191f, 0.98964856f, 0.99125274f, 0.99266849f, 0.99390969f,
+ 0.99499004f, 0.99592297f, 0.99672162f, 0.99739874f, 0.99796667f,
+ 0.99843728f, 0.99882195f, 0.99913147f, 0.99937606f, 0.99956527f,
+ 0.99970802f, 0.99981248f, 0.99988613f, 0.99993565f, 0.99996697f,
+ 0.99998518f, 0.99999457f, 0.99999859f, 0.99999982f, 1.0000000f,
+};
+
+/* square of the window, used for the postfilter */
+const float ff_celt_window2[120] = {
+ 4.5275357e-09f, 3.66647e-07f, 2.82777e-06f, 1.08557e-05f, 2.96371e-05f, 6.60594e-05f,
+ 0.000128686f, 0.000227727f, 0.000374999f, 0.000583881f, 0.000869266f, 0.0012475f,
+ 0.0017363f, 0.00235471f, 0.00312299f, 0.00406253f, 0.00519576f, 0.00654601f,
+ 0.00813743f, 0.00999482f, 0.0121435f, 0.0146093f, 0.017418f, 0.0205957f, 0.0241684f,
+ 0.0281615f, 0.0326003f, 0.0375092f, 0.0429118f, 0.0488308f, 0.0552873f, 0.0623012f,
+ 0.0698908f, 0.0780723f, 0.0868601f, 0.0962664f, 0.106301f, 0.11697f, 0.12828f,
+ 0.140231f, 0.152822f, 0.166049f, 0.179905f, 0.194379f, 0.209457f, 0.225123f, 0.241356f,
+ 0.258133f, 0.275428f, 0.293212f, 0.311453f, 0.330116f, 0.349163f, 0.368556f, 0.388253f,
+ 0.40821f, 0.428382f, 0.448723f, 0.469185f, 0.48972f, 0.51028f, 0.530815f, 0.551277f,
+ 0.571618f, 0.59179f, 0.611747f, 0.631444f, 0.650837f, 0.669884f, 0.688547f, 0.706788f,
+ 0.724572f, 0.741867f, 0.758644f, 0.774877f, 0.790543f, 0.805621f, 0.820095f, 0.833951f,
+ 0.847178f, 0.859769f, 0.87172f, 0.88303f, 0.893699f, 0.903734f, 0.91314f, 0.921928f,
+ 0.930109f, 0.937699f, 0.944713f, 0.951169f, 0.957088f, 0.962491f, 0.9674f, 0.971838f,
+ 0.975832f, 0.979404f, 0.982582f, 0.985391f, 0.987857f, 0.990005f, 0.991863f, 0.993454f,
+ 0.994804f, 0.995937f, 0.996877f, 0.997645f, 0.998264f, 0.998753f, 0.999131f, 0.999416f,
+ 0.999625f, 0.999772f, 0.999871f, 0.999934f, 0.99997f, 0.999989f, 0.999997f, 0.99999964f, 1.0f,
+};
+
+static const uint32_t * const celt_pvq_u_row[15] = {
+ celt_pvq_u + 0, celt_pvq_u + 176, celt_pvq_u + 351,
+ celt_pvq_u + 525, celt_pvq_u + 698, celt_pvq_u + 870,
+ celt_pvq_u + 1041, celt_pvq_u + 1131, celt_pvq_u + 1178,
+ celt_pvq_u + 1207, celt_pvq_u + 1226, celt_pvq_u + 1240,
+ celt_pvq_u + 1248, celt_pvq_u + 1254, celt_pvq_u + 1257
+};
+
+static inline int16_t celt_cos(int16_t x)
+{
+ x = (MUL16(x, x) + 4096) >> 13;
+ x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
+ return 1+x;
+}
+
+static inline int celt_log2tan(int isin, int icos)
+{
+ int lc, ls;
+ lc = opus_ilog(icos);
+ ls = opus_ilog(isin);
+ icos <<= 15 - lc;
+ isin <<= 15 - ls;
+ return (ls << 11) - (lc << 11) +
+ ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
+ ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
+}
+
+static inline uint32_t celt_rng(CeltContext *s)
+{
+ s->seed = 1664525 * s->seed + 1013904223;
+ return s->seed;
+}
+
+static void celt_decode_coarse_energy(CeltContext *s, OpusRangeCoder *rc)
+{
+ int i, j;
+ float prev[2] = {0};
+ float alpha, beta;
+ const uint8_t *model;
+
+ /* use the 2D z-transform to apply prediction in both */
+ /* the time domain (alpha) and the frequency domain (beta) */
+
+ if (opus_rc_tell(rc)+3 <= s->framebits && opus_rc_p2model(rc, 3)) {
+ /* intra frame */
+ alpha = 0;
+ beta = 1.0f - 4915.0f/32768.0f;
+ model = celt_coarse_energy_dist[s->duration][1];
+ } else {
+ alpha = celt_alpha_coef[s->duration];
+ beta = 1.0f - celt_beta_coef[s->duration];
+ model = celt_coarse_energy_dist[s->duration][0];
+ }
+
+ for (i = 0; i < CELT_MAX_BANDS; i++) {
+ for (j = 0; j < s->coded_channels; j++) {
+ CeltFrame *frame = &s->frame[j];
+ float value;
+ int available;
+
+ if (i < s->startband || i >= s->endband) {
+ frame->energy[i] = 0.0;
+ continue;
+ }
+
+ available = s->framebits - opus_rc_tell(rc);
+ if (available >= 15) {
+ /* decode using a Laplace distribution */
+ int k = FFMIN(i, 20) << 1;
+ value = opus_rc_laplace(rc, model[k] << 7, model[k+1] << 6);
+ } else if (available >= 2) {
+ int x = opus_rc_getsymbol(rc, celt_model_energy_small);
+ value = (x>>1) ^ -(x&1);
+ } else if (available >= 1) {
+ value = -(float)opus_rc_p2model(rc, 1);
+ } else value = -1;
+
+ frame->energy[i] = FFMAX(-9.0f, frame->energy[i]) * alpha + prev[j] + value;
+ prev[j] += beta * value;
+ }
+ }
+}
+
+static void celt_decode_fine_energy(CeltContext *s, OpusRangeCoder *rc)
+{
+ int i;
+ for (i = s->startband; i < s->endband; i++) {
+ int j;
+ if (!s->fine_bits[i])
+ continue;
+
+ for (j = 0; j < s->coded_channels; j++) {
+ CeltFrame *frame = &s->frame[j];
+ int q2;
+ float offset;
+ q2 = opus_getrawbits(rc, s->fine_bits[i]);
+ offset = (q2 + 0.5f) * (1 << (14 - s->fine_bits[i])) / 16384.0f - 0.5f;
+ frame->energy[i] += offset;
+ }
+ }
+}
+
+static void celt_decode_final_energy(CeltContext *s, OpusRangeCoder *rc,
+ int bits_left)
+{
+ int priority, i, j;
+
+ for (priority = 0; priority < 2; priority++) {
+ for (i = s->startband; i < s->endband && bits_left >= s->coded_channels; i++) {
+ if (s->fine_priority[i] != priority || s->fine_bits[i] >= CELT_MAX_FINE_BITS)
+ continue;
+
+ for (j = 0; j < s->coded_channels; j++) {
+ int q2;
+ float offset;
+ q2 = opus_getrawbits(rc, 1);
+ offset = (q2 - 0.5f) * (1 << (14 - s->fine_bits[i] - 1)) / 16384.0f;
+ s->frame[j].energy[i] += offset;
+ bits_left--;
+ }
+ }
+ }
+}
+
+static void celt_decode_tf_changes(CeltContext *s, OpusRangeCoder *rc,
+ int transient)
+{
+ int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit;
+ int consumed, bits = transient ? 2 : 4;
+
+ consumed = opus_rc_tell(rc);
+ tf_select_bit = (s->duration != 0 && consumed+bits+1 <= s->framebits);
+
+ for (i = s->startband; i < s->endband; i++) {
+ if (consumed+bits+tf_select_bit <= s->framebits) {
+ diff ^= opus_rc_p2model(rc, bits);
+ consumed = opus_rc_tell(rc);
+ tf_changed |= diff;
+ }
+ s->tf_change[i] = diff;
+ bits = transient ? 4 : 5;
+ }
+
+ if (tf_select_bit && celt_tf_select[s->duration][transient][0][tf_changed] !=
+ celt_tf_select[s->duration][transient][1][tf_changed])
+ tf_select = opus_rc_p2model(rc, 1);
+
+ for (i = s->startband; i < s->endband; i++) {
+ s->tf_change[i] = celt_tf_select[s->duration][transient][tf_select][s->tf_change[i]];
+ }
+}
+
+static void celt_decode_allocation(CeltContext *s, OpusRangeCoder *rc)
+{
+ // approx. maximum bit allocation for each band before boost/trim
+ int cap[CELT_MAX_BANDS];
+ int boost[CELT_MAX_BANDS];
+ int threshold[CELT_MAX_BANDS];
+ int bits1[CELT_MAX_BANDS];
+ int bits2[CELT_MAX_BANDS];
+ int trim_offset[CELT_MAX_BANDS];
+
+ int skip_startband = s->startband;
+ int dynalloc = 6;
+ int alloctrim = 5;
+ int extrabits = 0;
+
+ int skip_bit = 0;
+ int intensitystereo_bit = 0;
+ int dualstereo_bit = 0;
+
+ int remaining, bandbits;
+ int low, high, total, done;
+ int totalbits;
+ int consumed;
+ int i, j;
+
+ consumed = opus_rc_tell(rc);
+
+ /* obtain spread flag */
+ s->spread = CELT_SPREAD_NORMAL;
+ if (consumed + 4 <= s->framebits)
+ s->spread = opus_rc_getsymbol(rc, celt_model_spread);
+
+ /* generate static allocation caps */
+ for (i = 0; i < CELT_MAX_BANDS; i++) {
+ cap[i] = (celt_static_caps[s->duration][s->coded_channels - 1][i] + 64)
+ * celt_freq_range[i] << (s->coded_channels - 1) << s->duration >> 2;
+ }
+
+ /* obtain band boost */
+ totalbits = s->framebits << 3; // convert to 1/8 bits
+ consumed = opus_rc_tell_frac(rc);
+ for (i = s->startband; i < s->endband; i++) {
+ int quanta, band_dynalloc;
+
+ boost[i] = 0;
+
+ quanta = celt_freq_range[i] << (s->coded_channels - 1) << s->duration;
+ quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
+ band_dynalloc = dynalloc;
+ while (consumed + (band_dynalloc<<3) < totalbits && boost[i] < cap[i]) {
+ int add = opus_rc_p2model(rc, band_dynalloc);
+ consumed = opus_rc_tell_frac(rc);
+ if (!add)
+ break;
+
+ boost[i] += quanta;
+ totalbits -= quanta;
+ band_dynalloc = 1;
+ }
+ /* dynalloc is more likely to occur if it's already been used for earlier bands */
+ if (boost[i])
+ dynalloc = FFMAX(2, dynalloc - 1);
+ }
+
+ /* obtain allocation trim */
+ if (consumed + (6 << 3) <= totalbits)
+ alloctrim = opus_rc_getsymbol(rc, celt_model_alloc_trim);
+
+ /* anti-collapse bit reservation */
+ totalbits = (s->framebits << 3) - opus_rc_tell_frac(rc) - 1;
+ s->anticollapse_bit = 0;
+ if (s->blocks > 1 && s->duration >= 2 &&
+ totalbits >= ((s->duration + 2) << 3))
+ s->anticollapse_bit = 1 << 3;
+ totalbits -= s->anticollapse_bit;
+
+ /* band skip bit reservation */
+ if (totalbits >= 1 << 3)
+ skip_bit = 1 << 3;
+ totalbits -= skip_bit;
+
+ /* intensity/dual stereo bit reservation */
+ if (s->coded_channels == 2) {
+ intensitystereo_bit = celt_log2_frac[s->endband - s->startband];
+ if (intensitystereo_bit <= totalbits) {
+ totalbits -= intensitystereo_bit;
+ if (totalbits >= 1 << 3) {
+ dualstereo_bit = 1 << 3;
+ totalbits -= 1 << 3;
+ }
+ } else
+ intensitystereo_bit = 0;
+ }
+
+ for (i = s->startband; i < s->endband; i++) {
+ int trim = alloctrim - 5 - s->duration;
+ int band = celt_freq_range[i] * (s->endband - i - 1);
+ int duration = s->duration + 3;
+ int scale = duration + s->coded_channels - 1;
+
+ /* PVQ minimum allocation threshold, below this value the band is
+ * skipped */
+ threshold[i] = FFMAX(3 * celt_freq_range[i] << duration >> 4,
+ s->coded_channels << 3);
+
+ trim_offset[i] = trim * (band << scale) >> 6;
+
+ if (celt_freq_range[i] << s->duration == 1)
+ trim_offset[i] -= s->coded_channels << 3;
+ }
+
+ /* bisection */
+ low = 1;
+ high = CELT_VECTORS - 1;
+ while (low <= high) {
+ int center = (low + high) >> 1;
+ done = total = 0;
+
+ for (i = s->endband - 1; i >= s->startband; i--) {
+ bandbits = celt_freq_range[i] * celt_static_alloc[center][i]
+ << (s->coded_channels - 1) << s->duration >> 2;
+
+ if (bandbits)
+ bandbits = FFMAX(0, bandbits + trim_offset[i]);
+ bandbits += boost[i];
+
+ if (bandbits >= threshold[i] || done) {
+ done = 1;
+ total += FFMIN(bandbits, cap[i]);
+ } else if (bandbits >= s->coded_channels << 3)
+ total += s->coded_channels << 3;
+ }
+
+ if (total > totalbits)
+ high = center - 1;
+ else
+ low = center + 1;
+ }
+ high = low--;
+
+ for (i = s->startband; i < s->endband; i++) {
+ bits1[i] = celt_freq_range[i] * celt_static_alloc[low][i]
+ << (s->coded_channels - 1) << s->duration >> 2;
+ bits2[i] = high >= CELT_VECTORS ? cap[i] :
+ celt_freq_range[i] * celt_static_alloc[high][i]
+ << (s->coded_channels - 1) << s->duration >> 2;
+
+ if (bits1[i])
+ bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]);
+ if (bits2[i])
+ bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]);
+ if (low)
+ bits1[i] += boost[i];
+ bits2[i] += boost[i];
+
+ if (boost[i])
+ skip_startband = i;
+ bits2[i] = FFMAX(0, bits2[i] - bits1[i]);
+ }
+
+ /* bisection */
+ low = 0;
+ high = 1 << CELT_ALLOC_STEPS;
+ for (i = 0; i < CELT_ALLOC_STEPS; i++) {
+ int center = (low + high) >> 1;
+ done = total = 0;
+
+ for (j = s->endband - 1; j >= s->startband; j--) {
+ bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
+
+ if (bandbits >= threshold[j] || done) {
+ done = 1;
+ total += FFMIN(bandbits, cap[j]);
+ } else if (bandbits >= s->coded_channels << 3)
+ total += s->coded_channels << 3;
+ }
+ if (total > totalbits)
+ high = center;
+ else
+ low = center;
+ }
+
+ done = total = 0;
+ for (i = s->endband - 1; i >= s->startband; i--) {
+ bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
+
+ if (bandbits >= threshold[i] || done)
+ done = 1;
+ else
+ bandbits = (bandbits >= s->coded_channels << 3) ?
+ s->coded_channels << 3 : 0;
+
+ bandbits = FFMIN(bandbits, cap[i]);
+ s->pulses[i] = bandbits;
+ total += bandbits;
+ }
+
+ /* band skipping */
+ for (s->codedbands = s->endband; ; s->codedbands--) {
+ int allocation;
+ j = s->codedbands - 1;
+
+ if (j == skip_startband) {
+ /* all remaining bands are not skipped */
+ totalbits += skip_bit;
+ break;
+ }
+
+ /* determine the number of bits available for coding "do not skip" markers */
+ remaining = totalbits - total;
+ bandbits = remaining / (celt_freq_bands[j+1] - celt_freq_bands[s->startband]);
+ remaining -= bandbits * (celt_freq_bands[j+1] - celt_freq_bands[s->startband]);
+ allocation = s->pulses[j] + bandbits * celt_freq_range[j]
+ + FFMAX(0, remaining - (celt_freq_bands[j] - celt_freq_bands[s->startband]));
+
+ /* a "do not skip" marker is only coded if the allocation is
+ above the chosen threshold */
+ if (allocation >= FFMAX(threshold[j], (s->coded_channels + 1) <<3 )) {
+ if (opus_rc_p2model(rc, 1))
+ break;
+
+ total += 1 << 3;
+ allocation -= 1 << 3;
+ }
+
+ /* the band is skipped, so reclaim its bits */
+ total -= s->pulses[j];
+ if (intensitystereo_bit) {
+ total -= intensitystereo_bit;
+ intensitystereo_bit = celt_log2_frac[j - s->startband];
+ total += intensitystereo_bit;
+ }
+
+ total += s->pulses[j] = (allocation >= s->coded_channels << 3) ?
+ s->coded_channels << 3 : 0;
+ }
+
+ /* obtain stereo flags */
+ s->intensitystereo = 0;
+ s->dualstereo = 0;
+ if (intensitystereo_bit)
+ s->intensitystereo = s->startband +
+ opus_rc_unimodel(rc, s->codedbands + 1 - s->startband);
+ if (s->intensitystereo <= s->startband)
+ totalbits += dualstereo_bit; /* no intensity stereo means no dual stereo */
+ else if (dualstereo_bit)
+ s->dualstereo = opus_rc_p2model(rc, 1);
+
+ /* supply the remaining bits in this frame to lower bands */
+ remaining = totalbits - total;
+ bandbits = remaining / (celt_freq_bands[s->codedbands] - celt_freq_bands[s->startband]);
+ remaining -= bandbits * (celt_freq_bands[s->codedbands] - celt_freq_bands[s->startband]);
+ for (i = s->startband; i < s->codedbands; i++) {
+ int bits = FFMIN(remaining, celt_freq_range[i]);
+
+ s->pulses[i] += bits + bandbits * celt_freq_range[i];
+ remaining -= bits;
+ }
+
+ for (i = s->startband; i < s->codedbands; i++) {
+ int N = celt_freq_range[i] << s->duration;
+ int prev_extra = extrabits;
+ s->pulses[i] += extrabits;
+
+ if (N > 1) {
+ int dof; // degrees of freedom
+ int temp; // dof * channels * log(dof)
+ int offset; // fine energy quantization offset, i.e.
+ // extra bits assigned over the standard
+ // totalbits/dof
+ int fine_bits, max_bits;
+
+ extrabits = FFMAX(0, s->pulses[i] - cap[i]);
+ s->pulses[i] -= extrabits;
+
+ /* intensity stereo makes use of an extra degree of freedom */
+ dof = N * s->coded_channels
+ + (s->coded_channels == 2 && N > 2 && !s->dualstereo && i < s->intensitystereo);
+ temp = dof * (celt_log_freq_range[i] + (s->duration<<3));
+ offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
+ if (N == 2) /* dof=2 is the only case that doesn't fit the model */
+ offset += dof<<1;
+
+ /* grant an additional bias for the first and second pulses */
+ if (s->pulses[i] + offset < 2 * (dof << 3))
+ offset += temp >> 2;
+ else if (s->pulses[i] + offset < 3 * (dof << 3))
+ offset += temp >> 3;
+
+ fine_bits = (s->pulses[i] + offset + (dof << 2)) / (dof << 3);
+ max_bits = FFMIN((s->pulses[i]>>3) >> (s->coded_channels - 1),
+ CELT_MAX_FINE_BITS);
+
+ max_bits = FFMAX(max_bits, 0);
+
+ s->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
+
+ /* if fine_bits was rounded down or capped,
+ give priority for the final fine energy pass */
+ s->fine_priority[i] = (s->fine_bits[i] * (dof<<3) >= s->pulses[i] + offset);
+
+ /* the remaining bits are assigned to PVQ */
+ s->pulses[i] -= s->fine_bits[i] << (s->coded_channels - 1) << 3;
+ } else {
+ /* all bits go to fine energy except for the sign bit */
+ extrabits = FFMAX(0, s->pulses[i] - (s->coded_channels << 3));
+ s->pulses[i] -= extrabits;
+ s->fine_bits[i] = 0;
+ s->fine_priority[i] = 1;
+ }
+
+ /* hand back a limited number of extra fine energy bits to this band */
+ if (extrabits > 0) {
+ int fineextra = FFMIN(extrabits >> (s->coded_channels + 2),
+ CELT_MAX_FINE_BITS - s->fine_bits[i]);
+ s->fine_bits[i] += fineextra;
+
+ fineextra <<= s->coded_channels + 2;
+ s->fine_priority[i] = (fineextra >= extrabits - prev_extra);
+ extrabits -= fineextra;
+ }
+ }
+ s->remaining = extrabits;
+
+ /* skipped bands dedicate all of their bits for fine energy */
+ for (; i < s->endband; i++) {
+ s->fine_bits[i] = s->pulses[i] >> (s->coded_channels - 1) >> 3;
+ s->pulses[i] = 0;
+ s->fine_priority[i] = s->fine_bits[i] < 1;
+ }
+}
+
+static inline int celt_bits2pulses(const uint8_t *cache, int bits)
+{
+ // TODO: Find the size of cache and make it into an array in the parameters list
+ int i, low = 0, high;
+
+ high = cache[0];
+ bits--;
+
+ for (i = 0; i < 6; i++) {
+ int center = (low + high + 1) >> 1;
+ if (cache[center] >= bits)
+ high = center;
+ else
+ low = center;
+ }
+
+ return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
+}
+
+static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
+{
+ // TODO: Find the size of cache and make it into an array in the parameters list
+ return (pulses == 0) ? 0 : cache[pulses] + 1;
+}
+
+static inline void celt_normalize_residual(const int * restrict iy, float * restrict X,
+ int N, float g)
+{
+ int i;
+ for (i = 0; i < N; i++)
+ X[i] = g * iy[i];
+}
+
+static void celt_exp_rotation1(float *X, unsigned int len, unsigned int stride,
+ float c, float s)
+{
+ float *Xptr;
+ int i;
+
+ Xptr = X;
+ for (i = 0; i < len - stride; i++) {
+ float x1, x2;
+ x1 = Xptr[0];
+ x2 = Xptr[stride];
+ Xptr[stride] = c * x2 + s * x1;
+ *Xptr++ = c * x1 - s * x2;
+ }
+
+ Xptr = &X[len - 2 * stride - 1];
+ for (i = len - 2 * stride - 1; i >= 0; i--) {
+ float x1, x2;
+ x1 = Xptr[0];
+ x2 = Xptr[stride];
+ Xptr[stride] = c * x2 + s * x1;
+ *Xptr-- = c * x1 - s * x2;
+ }
+}
+
+static inline void celt_exp_rotation(float *X, unsigned int len,
+ unsigned int stride, unsigned int K,
+ enum CeltSpread spread)
+{
+ unsigned int stride2 = 0;
+ float c, s;
+ float gain, theta;
+ int i;
+
+ if (2*K >= len || spread == CELT_SPREAD_NONE)
+ return;
+
+ gain = (float)len / (len + (20 - 5*spread) * K);
+ theta = M_PI * gain * gain / 4;
+
+ c = cos(theta);
+ s = sin(theta);
+
+ if (len >= stride << 3) {
+ stride2 = 1;
+ /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
+ It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
+ while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
+ stride2++;
+ }
+
+ /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
+ extract_collapse_mask().*/
+ len /= stride;
+ for (i = 0; i < stride; i++) {
+ if (stride2)
+ celt_exp_rotation1(X + i * len, len, stride2, s, c);
+ celt_exp_rotation1(X + i * len, len, 1, c, s);
+ }
+}
+
+static inline unsigned int celt_extract_collapse_mask(const int *iy,
+ unsigned int N,
+ unsigned int B)
+{
+ unsigned int collapse_mask;
+ int N0;
+ int i, j;
+
+ if (B <= 1)
+ return 1;
+
+ /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
+ exp_rotation().*/
+ N0 = N/B;
+ collapse_mask = 0;
+ for (i = 0; i < B; i++)
+ for (j = 0; j < N0; j++)
+ collapse_mask |= (iy[i*N0+j]!=0)<<i;
+ return collapse_mask;
+}
+
+static inline void celt_renormalize_vector(float *X, int N, float gain)
+{
+ int i;
+ float g = 1e-15f;
+ for (i = 0; i < N; i++)
+ g += X[i] * X[i];
+ g = gain / sqrtf(g);
+
+ for (i = 0; i < N; i++)
+ X[i] *= g;
+}
+
+static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
+{
+ int i;
+ float xp = 0, side = 0;
+ float E[2];
+ float mid2;
+ float t, gain[2];
+
+ /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
+ for (i = 0; i < N; i++) {
+ xp += X[i] * Y[i];
+ side += Y[i] * Y[i];
+ }
+
+ /* Compensating for the mid normalization */
+ xp *= mid;
+ mid2 = mid;
+ E[0] = mid2 * mid2 + side - 2 * xp;
+ E[1] = mid2 * mid2 + side + 2 * xp;
+ if (E[0] < 6e-4f || E[1] < 6e-4f) {
+ for (i = 0; i < N; i++)
+ Y[i] = X[i];
+ return;
+ }
+
+ t = E[0];
+ gain[0] = 1.0f / sqrtf(t);
+ t = E[1];
+ gain[1] = 1.0f / sqrtf(t);
+
+ for (i = 0; i < N; i++) {
+ float value[2];
+ /* Apply mid scaling (side is already scaled) */
+ value[0] = mid * X[i];
+ value[1] = Y[i];
+ X[i] = gain[0] * (value[0] - value[1]);
+ Y[i] = gain[1] * (value[0] + value[1]);
+ }
+}
+
+static void celt_interleave_hadamard(float *tmp, float *X, int N0,
+ int stride, int hadamard)
+{
+ int i, j;
+ int N = N0*stride;
+
+ if (hadamard) {
+ const uint8_t *ordery = celt_hadamard_ordery + stride - 2;
+ for (i = 0; i < stride; i++)
+ for (j = 0; j < N0; j++)
+ tmp[j*stride+i] = X[ordery[i]*N0+j];
+ } else {
+ for (i = 0; i < stride; i++)
+ for (j = 0; j < N0; j++)
+ tmp[j*stride+i] = X[i*N0+j];
+ }
+
+ for (i = 0; i < N; i++)
+ X[i] = tmp[i];
+}
+
+static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
+ int stride, int hadamard)
+{
+ int i, j;
+ int N = N0*stride;
+
+ if (hadamard) {
+ const uint8_t *ordery = celt_hadamard_ordery + stride - 2;
+ for (i = 0; i < stride; i++)
+ for (j = 0; j < N0; j++)
+ tmp[ordery[i]*N0+j] = X[j*stride+i];
+ } else {
+ for (i = 0; i < stride; i++)
+ for (j = 0; j < N0; j++)
+ tmp[i*N0+j] = X[j*stride+i];
+ }
+
+ for (i = 0; i < N; i++)
+ X[i] = tmp[i];
+}
+
+static void celt_haar1(float *X, int N0, int stride)
+{
+ int i, j;
+ N0 >>= 1;
+ for (i = 0; i < stride; i++) {
+ for (j = 0; j < N0; j++) {
+ float x0 = X[stride * (2 * j + 0) + i];
+ float x1 = X[stride * (2 * j + 1) + i];
+ X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
+ X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
+ }
+ }
+}
+
+static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
+ int dualstereo)
+{
+ int qn, qb;
+ int N2 = 2 * N - 1;
+ if (dualstereo && N == 2)
+ N2--;
+
+ /* The upper limit ensures that in a stereo split with itheta==16384, we'll
+ * always have enough bits left over to code at least one pulse in the
+ * side; otherwise it would collapse, since it doesn't get folded. */
+ qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
+ qn = (qb < (1 << 3 >> 1)) ? 1 : ((celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
+ return qn;
+}
+
+// this code was adapted from libopus
+static inline uint64_t celt_cwrsi(unsigned int N, unsigned int K, unsigned int i, int *y)
+{
+ uint64_t norm = 0;
+ uint32_t p;
+ int s, val;
+ int k0;
+
+ while (N > 2) {
+ uint32_t q;
+
+ /*Lots of pulses case:*/
+ if (K >= N) {
+ const uint32_t *row = celt_pvq_u_row[N];
+
+ /* Are the pulses in this dimension negative? */
+ p = row[K + 1];
+ s = -(i >= p);
+ i -= p & s;
+
+ /*Count how many pulses were placed in this dimension.*/
+ k0 = K;
+ q = row[N];
+ if (q > i) {
+ K = N;
+ do {
+ p = celt_pvq_u_row[--K][N];
+ } while (p > i);
+ } else
+ for (p = row[K]; p > i; p = row[K])
+ K--;
+
+ i -= p;
+ val = (k0 - K + s) ^ s;
+ norm += val * val;
+ *y++ = val;
+ } else { /*Lots of dimensions case:*/
+ /*Are there any pulses in this dimension at all?*/
+ p = celt_pvq_u_row[K ][N];
+ q = celt_pvq_u_row[K + 1][N];
+
+ if (p <= i && i < q) {
+ i -= p;
+ *y++ = 0;
+ } else {
+ /*Are the pulses in this dimension negative?*/
+ s = -(i >= q);
+ i -= q & s;
+
+ /*Count how many pulses were placed in this dimension.*/
+ k0 = K;
+ do p = celt_pvq_u_row[--K][N];
+ while (p > i);
+
+ i -= p;
+ val = (k0 - K + s) ^ s;
+ norm += val * val;
+ *y++ = val;
+ }
+ }
+ N--;
+ }
+
+ /* N == 2 */
+ p = 2 * K + 1;
+ s = -(i >= p);
+ i -= p & s;
+ k0 = K;
+ K = (i + 1) / 2;
+
+ if (K)
+ i -= 2 * K - 1;
+
+ val = (k0 - K + s) ^ s;
+ norm += val * val;
+ *y++ = val;
+
+ /* N==1 */
+ s = -i;
+ val = (K + s) ^ s;
+ norm += val * val;
+ *y = val;
+
+ return norm;
+}
+
+static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, unsigned int N, unsigned int K)
+{
+ unsigned int idx;
+#define CELT_PVQ_U(n, k) (celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
+#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, k + 1))
+ idx = opus_rc_unimodel(rc, CELT_PVQ_V(N, K));
+ return celt_cwrsi(N, K, idx, y);
+}
+
+/** Decode pulse vector and combine the result with the pitch vector to produce
+ the final normalised signal in the current band. */
+static inline unsigned int celt_alg_unquant(OpusRangeCoder *rc, float *X,
+ unsigned int N, unsigned int K,
+ enum CeltSpread spread,
+ unsigned int blocks, float gain)
+{
+ int y[176];
+
+ gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
+ celt_normalize_residual(y, X, N, gain);
+ celt_exp_rotation(X, N, blocks, K, spread);
+ return celt_extract_collapse_mask(y, N, blocks);
+}
+
+static unsigned int celt_decode_band(CeltContext *s, OpusRangeCoder *rc,
+ const int band, float *X, float *Y,
+ int N, int b, unsigned int blocks,
+ float *lowband, int duration,
+ float *lowband_out, int level,
+ float gain, float *lowband_scratch,
+ int fill)
+{
+ const uint8_t *cache;
+ int dualstereo, split;
+ int imid = 0, iside = 0;
+ unsigned int N0 = N;
+ int N_B;
+ int N_B0;
+ int B0 = blocks;
+ int time_divide = 0;
+ int recombine = 0;
+ int inv = 0;
+ float mid = 0, side = 0;
+ int longblocks = (B0 == 1);
+ unsigned int cm = 0;
+
+ N_B0 = N_B = N / blocks;
+ split = dualstereo = (Y != NULL);
+
+ if (N == 1) {
+ /* special case for one sample */
+ int i;
+ float *x = X;
+ for (i = 0; i <= dualstereo; i++) {
+ int sign = 0;
+ if (s->remaining2 >= 1<<3) {
+ sign = opus_getrawbits(rc, 1);
+ s->remaining2 -= 1 << 3;
+ b -= 1 << 3;
+ }
+ x[0] = sign ? -1.0f : 1.0f;
+ x = Y;
+ }
+ if (lowband_out)
+ lowband_out[0] = X[0];
+ return 1;
+ }
+
+ if (!dualstereo && level == 0) {
+ int tf_change = s->tf_change[band];
+ int k;
+ if (tf_change > 0)
+ recombine = tf_change;
+ /* Band recombining to increase frequency resolution */
+
+ if (lowband &&
+ (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
+ int j;
+ for (j = 0; j < N; j++)
+ lowband_scratch[j] = lowband[j];
+ lowband = lowband_scratch;
+ }
+
+ for (k = 0; k < recombine; k++) {
+ if (lowband)
+ celt_haar1(lowband, N >> k, 1 << k);
+ fill = celt_bit_interleave[fill & 0xF] | celt_bit_interleave[fill >> 4] << 2;
+ }
+ blocks >>= recombine;
+ N_B <<= recombine;
+
+ /* Increasing the time resolution */
+ while ((N_B & 1) == 0 && tf_change < 0) {
+ if (lowband)
+ celt_haar1(lowband, N_B, blocks);
+ fill |= fill << blocks;
+ blocks <<= 1;
+ N_B >>= 1;
+ time_divide++;
+ tf_change++;
+ }
+ B0 = blocks;
+ N_B0 = N_B;
+
+ /* Reorganize the samples in time order instead of frequency order */
+ if (B0 > 1 && lowband)
+ celt_deinterleave_hadamard(s->scratch, lowband, N_B >> recombine,
+ B0 << recombine, longblocks);
+ }
+
+ /* If we need 1.5 more bit than we can produce, split the band in two. */
+ cache = celt_cache_bits +
+ celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
+ if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
+ N >>= 1;
+ Y = X + N;
+ split = 1;
+ duration -= 1;
+ if (blocks == 1)
+ fill = (fill & 1) | (fill << 1);
+ blocks = (blocks + 1) >> 1;
+ }
+
+ if (split) {
+ int qn;
+ int itheta = 0;
+ int mbits, sbits, delta;
+ int qalloc;
+ int pulse_cap;
+ int offset;
+ int orig_fill;
+ int tell;
+
+ /* Decide on the resolution to give to the split parameter theta */
+ pulse_cap = celt_log_freq_range[band] + duration * 8;
+ offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
+ CELT_QTHETA_OFFSET);
+ qn = (dualstereo && band >= s->intensitystereo) ? 1 :
+ celt_compute_qn(N, b, offset, pulse_cap, dualstereo);
+ tell = opus_rc_tell_frac(rc);
+ if (qn != 1) {
+ /* Entropy coding of the angle. We use a uniform pdf for the
+ time split, a step for stereo, and a triangular one for the rest. */
+ if (dualstereo && N > 2)
+ itheta = opus_rc_stepmodel(rc, qn/2);
+ else if (dualstereo || B0 > 1)
+ itheta = opus_rc_unimodel(rc, qn+1);
+ else
+ itheta = opus_rc_trimodel(rc, qn);
+ itheta = itheta * 16384 / qn;
+ /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
+ Let's do that at higher complexity */
+ } else if (dualstereo) {
+ inv = (b > 2 << 3 && s->remaining2 > 2 << 3) ? opus_rc_p2model(rc, 2) : 0;
+ itheta = 0;
+ }
+ qalloc = opus_rc_tell_frac(rc) - tell;
+ b -= qalloc;
+
+ orig_fill = fill;
+ if (itheta == 0) {
+ imid = 32767;
+ iside = 0;
+ fill &= (1 << blocks) - 1;
+ delta = -16384;
+ } else if (itheta == 16384) {
+ imid = 0;
+ iside = 32767;
+ fill &= ((1 << blocks) - 1) << blocks;
+ delta = 16384;
+ } else {
+ imid = celt_cos(itheta);
+ iside = celt_cos(16384-itheta);
+ /* This is the mid vs side allocation that minimizes squared error
+ in that band. */
+ delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
+ }
+
+ mid = imid / 32768.0f;
+ side = iside / 32768.0f;
+
+ /* This is a special case for N=2 that only works for stereo and takes
+ advantage of the fact that mid and side are orthogonal to encode
+ the side with just one bit. */
+ if (N == 2 && dualstereo) {
+ int c;
+ int sign = 0;
+ float tmp;
+ float *x2, *y2;
+ mbits = b;
+ /* Only need one bit for the side */
+ sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
+ mbits -= sbits;
+ c = (itheta > 8192);
+ s->remaining2 -= qalloc+sbits;
+
+ x2 = c ? Y : X;
+ y2 = c ? X : Y;
+ if (sbits)
+ sign = opus_getrawbits(rc, 1);
+ sign = 1 - 2 * sign;
+ /* We use orig_fill here because we want to fold the side, but if
+ itheta==16384, we'll have cleared the low bits of fill. */
+ cm = celt_decode_band(s, rc, band, x2, NULL, N, mbits, blocks,
+ lowband, duration, lowband_out, level, gain,
+ lowband_scratch, orig_fill);
+ /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
+ and there's no need to worry about mixing with the other channel. */
+ y2[0] = -sign * x2[1];
+ y2[1] = sign * x2[0];
+ X[0] *= mid;
+ X[1] *= mid;
+ Y[0] *= side;
+ Y[1] *= side;
+ tmp = X[0];
+ X[0] = tmp - Y[0];
+ Y[0] = tmp + Y[0];
+ tmp = X[1];
+ X[1] = tmp - Y[1];
+ Y[1] = tmp + Y[1];
+ } else {
+ /* "Normal" split code */
+ float *next_lowband2 = NULL;
+ float *next_lowband_out1 = NULL;
+ int next_level = 0;
+ int rebalance;
+
+ /* Give more bits to low-energy MDCTs than they would
+ * otherwise deserve */
+ if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) {
+ if (itheta > 8192)
+ /* Rough approximation for pre-echo masking */
+ delta -= delta >> (4 - duration);
+ else
+ /* Corresponds to a forward-masking slope of
+ * 1.5 dB per 10 ms */
+ delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
+ }
+ mbits = av_clip((b - delta) / 2, 0, b);
+ sbits = b - mbits;
+ s->remaining2 -= qalloc;
+
+ if (lowband && !dualstereo)
+ next_lowband2 = lowband + N; /* >32-bit split case */
+
+ /* Only stereo needs to pass on lowband_out.
+ * Otherwise, it's handled at the end */
+ if (dualstereo)
+ next_lowband_out1 = lowband_out;
+ else
+ next_level = level + 1;
+
+ rebalance = s->remaining2;
+ if (mbits >= sbits) {
+ /* In stereo mode, we do not apply a scaling to the mid
+ * because we need the normalized mid for folding later */
+ cm = celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
+ lowband, duration, next_lowband_out1,
+ next_level, dualstereo ? 1.0f : (gain * mid),
+ lowband_scratch, fill);
+
+ rebalance = mbits - (rebalance - s->remaining2);
+ if (rebalance > 3 << 3 && itheta != 0)
+ sbits += rebalance - (3 << 3);
+
+ /* For a stereo split, the high bits of fill are always zero,
+ * so no folding will be done to the side. */
+ cm |= celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
+ next_lowband2, duration, NULL,
+ next_level, gain * side, NULL,
+ fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
+ } else {
+ /* For a stereo split, the high bits of fill are always zero,
+ * so no folding will be done to the side. */
+ cm = celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
+ next_lowband2, duration, NULL,
+ next_level, gain * side, NULL,
+ fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
+
+ rebalance = sbits - (rebalance - s->remaining2);
+ if (rebalance > 3 << 3 && itheta != 16384)
+ mbits += rebalance - (3 << 3);
+
+ /* In stereo mode, we do not apply a scaling to the mid because
+ * we need the normalized mid for folding later */
+ cm |= celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
+ lowband, duration, next_lowband_out1,
+ next_level, dualstereo ? 1.0f : (gain * mid),
+ lowband_scratch, fill);
+ }
+ }
+ } else {
+ /* This is the basic no-split case */
+ unsigned int q = celt_bits2pulses(cache, b);
+ unsigned int curr_bits = celt_pulses2bits(cache, q);
+ s->remaining2 -= curr_bits;
+
+ /* Ensures we can never bust the budget */
+ while (s->remaining2 < 0 && q > 0) {
+ s->remaining2 += curr_bits;
+ curr_bits = celt_pulses2bits(cache, --q);
+ s->remaining2 -= curr_bits;
+ }
+
+ if (q != 0) {
+ /* Finally do the actual quantization */
+ cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
+ s->spread, blocks, gain);
+ } else {
+ /* If there's no pulse, fill the band anyway */
+ int j;
+ unsigned int cm_mask = (1 << blocks) - 1;
+ fill &= cm_mask;
+ if (!fill) {
+ for (j = 0; j < N; j++)
+ X[j] = 0.0f;
+ } else {
+ if (lowband == NULL) {
+ /* Noise */
+ for (j = 0; j < N; j++)
+ X[j] = (((int32_t)celt_rng(s)) >> 20);
+ cm = cm_mask;
+ } else {
+ /* Folded spectrum */
+ for (j = 0; j < N; j++) {
+ /* About 48 dB below the "normal" folding level */
+ X[j] = lowband[j] + (((celt_rng(s)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
+ }
+ cm = fill;
+ }
+ celt_renormalize_vector(X, N, gain);
+ }
+ }
+ }
+
+ /* This code is used by the decoder and by the resynthesis-enabled encoder */
+ if (dualstereo) {
+ int j;
+ if (N != 2)
+ celt_stereo_merge(X, Y, mid, N);
+ if (inv) {
+ for (j = 0; j < N; j++)
+ Y[j] *= -1;
+ }
+ } else if (level == 0) {
+ int k;
+
+ /* Undo the sample reorganization going from time order to frequency order */
+ if (B0 > 1)
+ celt_interleave_hadamard(s->scratch, X, N_B>>recombine,
+ B0<<recombine, longblocks);
+
+ /* Undo time-freq changes that we did earlier */
+ N_B = N_B0;
+ blocks = B0;
+ for (k = 0; k < time_divide; k++) {
+ blocks >>= 1;
+ N_B <<= 1;
+ cm |= cm >> blocks;
+ celt_haar1(X, N_B, blocks);
+ }
+
+ for (k = 0; k < recombine; k++) {
+ cm = celt_bit_deinterleave[cm];
+ celt_haar1(X, N0>>k, 1<<k);
+ }
+ blocks <<= recombine;
+
+ /* Scale output for later folding */
+ if (lowband_out) {
+ int j;
+ float n = sqrtf(N0);
+ for (j = 0; j < N0; j++)
+ lowband_out[j] = n * X[j];
+ }
+ cm &= (1 << blocks) - 1;
+ }
+ return cm;
+}
+
+static void celt_denormalize(CeltContext *s, CeltFrame *frame, float *data)
+{
+ int i, j;
+
+ for (i = s->startband; i < s->endband; i++) {
+ float *dst = data + (celt_freq_bands[i] << s->duration);
+ float norm = pow(2, frame->energy[i] + celt_mean_energy[i]);
+
+ for (j = 0; j < celt_freq_range[i] << s->duration; j++)
+ dst[j] *= norm;
+ }
+}
+
+static void celt_postfilter_apply_transition(CeltFrame *frame, float *data)
+{
+ const int T0 = frame->pf_period_old;
+ const int T1 = frame->pf_period;
+
+ float g00, g01, g02;
+ float g10, g11, g12;
+
+ float x0, x1, x2, x3, x4;
+
+ int i;
+
+ if (frame->pf_gains[0] == 0.0 &&
+ frame->pf_gains_old[0] == 0.0)
+ return;
+
+ g00 = frame->pf_gains_old[0];
+ g01 = frame->pf_gains_old[1];
+ g02 = frame->pf_gains_old[2];
+ g10 = frame->pf_gains[0];
+ g11 = frame->pf_gains[1];
+ g12 = frame->pf_gains[2];
+
+ x1 = data[-T1 + 1];
+ x2 = data[-T1];
+ x3 = data[-T1 - 1];
+ x4 = data[-T1 - 2];
+
+ for (i = 0; i < CELT_OVERLAP; i++) {
+ float w = ff_celt_window2[i];
+ x0 = data[i - T1 + 2];
+
+ data[i] += (1.0 - w) * g00 * data[i - T0] +
+ (1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) +
+ (1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) +
+ w * g10 * x2 +
+ w * g11 * (x1 + x3) +
+ w * g12 * (x0 + x4);
+ x4 = x3;
+ x3 = x2;
+ x2 = x1;
+ x1 = x0;
+ }
+}
+
+static void celt_postfilter_apply(CeltFrame *frame,
+ float *data, int len)
+{
+ const int T = frame->pf_period;
+ float g0, g1, g2;
+ float x0, x1, x2, x3, x4;
+ int i;
+
+ if (frame->pf_gains[0] == 0.0 || len <= 0)
+ return;
+
+ g0 = frame->pf_gains[0];
+ g1 = frame->pf_gains[1];
+ g2 = frame->pf_gains[2];
+
+ x4 = data[-T - 2];
+ x3 = data[-T - 1];
+ x2 = data[-T];
+ x1 = data[-T + 1];
+
+ for (i = 0; i < len; i++) {
+ x0 = data[i - T + 2];
+ data[i] += g0 * x2 +
+ g1 * (x1 + x3) +
+ g2 * (x0 + x4);
+ x4 = x3;
+ x3 = x2;
+ x2 = x1;
+ x1 = x0;
+ }
+}
+
+static void celt_postfilter(CeltContext *s, CeltFrame *frame)
+{
+ int len = s->blocksize * s->blocks;
+
+ celt_postfilter_apply_transition(frame, frame->buf + 1024);
+
+ frame->pf_period_old = frame->pf_period;
+ memcpy(frame->pf_gains_old, frame->pf_gains, sizeof(frame->pf_gains));
+
+ frame->pf_period = frame->pf_period_new;
+ memcpy(frame->pf_gains, frame->pf_gains_new, sizeof(frame->pf_gains));
+
+ if (len > CELT_OVERLAP) {
+ celt_postfilter_apply_transition(frame, frame->buf + 1024 + CELT_OVERLAP);
+ celt_postfilter_apply(frame, frame->buf + 1024 + 2 * CELT_OVERLAP,
+ len - 2 * CELT_OVERLAP);
+
+ frame->pf_period_old = frame->pf_period;
+ memcpy(frame->pf_gains_old, frame->pf_gains, sizeof(frame->pf_gains));
+ }
+
+ memmove(frame->buf, frame->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float));
+}
+
+static int parse_postfilter(CeltContext *s, OpusRangeCoder *rc, int consumed)
+{
+ static const float postfilter_taps[3][3] = {
+ { 0.3066406250f, 0.2170410156f, 0.1296386719f },
+ { 0.4638671875f, 0.2680664062f, 0.0 },
+ { 0.7998046875f, 0.1000976562f, 0.0 }
+ };
+ int i;
+
+ memset(s->frame[0].pf_gains_new, 0, sizeof(s->frame[0].pf_gains_new));
+ memset(s->frame[1].pf_gains_new, 0, sizeof(s->frame[1].pf_gains_new));
+
+ if (s->startband == 0 && consumed + 16 <= s->framebits) {
+ int has_postfilter = opus_rc_p2model(rc, 1);
+ if (has_postfilter) {
+ float gain;
+ int tapset, octave, period;
+
+ octave = opus_rc_unimodel(rc, 6);
+ period = (16 << octave) + opus_getrawbits(rc, 4 + octave) - 1;
+ gain = 0.09375f * (opus_getrawbits(rc, 3) + 1);
+ tapset = (opus_rc_tell(rc) + 2 <= s->framebits) ?
+ opus_rc_getsymbol(rc, celt_model_tapset) : 0;
+
+ for (i = 0; i < 2; i++) {
+ CeltFrame *frame = &s->frame[i];
+
+ frame->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
+ frame->pf_gains_new[0] = gain * postfilter_taps[tapset][0];
+ frame->pf_gains_new[1] = gain * postfilter_taps[tapset][1];
+ frame->pf_gains_new[2] = gain * postfilter_taps[tapset][2];
+ }
+ }
+
+ consumed = opus_rc_tell(rc);
+ }
+
+ return consumed;
+}
+
+static void process_anticollapse(CeltContext *s, CeltFrame *frame, float *X)
+{
+ int i, j, k;
+
+ for (i = s->startband; i < s->endband; i++) {
+ int renormalize = 0;
+ float *xptr;
+ float prev[2];
+ float Ediff, r;
+ float thresh, sqrt_1;
+ int depth;
+
+ /* depth in 1/8 bits */
+ depth = (1 + s->pulses[i]) / (celt_freq_range[i] << s->duration);
+ thresh = pow(2, -1.0 - 0.125f * depth);
+ sqrt_1 = 1.0f / sqrtf(celt_freq_range[i] << s->duration);
+
+ xptr = X + (celt_freq_bands[i] << s->duration);
+
+ prev[0] = frame->prev_energy[0][i];
+ prev[1] = frame->prev_energy[1][i];
+ if (s->coded_channels == 1) {
+ CeltFrame *frame1 = &s->frame[1];
+
+ prev[0] = FFMAX(prev[0], frame1->prev_energy[0][i]);
+ prev[1] = FFMAX(prev[1], frame1->prev_energy[1][i]);
+ }
+ Ediff = frame->energy[i] - FFMIN(prev[0], prev[1]);
+ Ediff = FFMAX(0, Ediff);
+
+ /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
+ short blocks don't have the same energy as long */
+ r = pow(2, 1 - Ediff);
+ if (s->duration == 3)
+ r *= M_SQRT2;
+ r = FFMIN(thresh, r) * sqrt_1;
+ for (k = 0; k < 1 << s->duration; k++) {
+ /* Detect collapse */
+ if (!(frame->collapse_masks[i] & 1 << k)) {
+ /* Fill with noise */
+ for (j = 0; j < celt_freq_range[i]; j++)
+ xptr[(j << s->duration) + k] = (celt_rng(s) & 0x8000) ? r : -r;
+ renormalize = 1;
+ }
+ }
+
+ /* We just added some energy, so we need to renormalize */
+ if (renormalize)
+ celt_renormalize_vector(xptr, celt_freq_range[i] << s->duration, 1.0f);
+ }
+}
+
+static void celt_decode_bands(CeltContext *s, OpusRangeCoder *rc)
+{
+ float lowband_scratch[8 * 22];
+ float norm[2 * 8 * 100];
+
+ int totalbits = (s->framebits << 3) - s->anticollapse_bit;
+
+ int update_lowband = 1;
+ int lowband_offset = 0;
+
+ int i, j;
+
+ memset(s->coeffs, 0, sizeof(s->coeffs));
+
+ for (i = s->startband; i < s->endband; i++) {
+ int band_offset = celt_freq_bands[i] << s->duration;
+ int band_size = celt_freq_range[i] << s->duration;
+ float *X = s->coeffs[0] + band_offset;
+ float *Y = (s->coded_channels == 2) ? s->coeffs[1] + band_offset : NULL;
+
+ int consumed = opus_rc_tell_frac(rc);
+ float *norm2 = norm + 8 * 100;
+ int effective_lowband = -1;
+ unsigned int cm[2];
+ int b;
+
+ /* Compute how many bits we want to allocate to this band */
+ if (i != s->startband)
+ s->remaining -= consumed;
+ s->remaining2 = totalbits - consumed - 1;
+ if (i <= s->codedbands - 1) {
+ int curr_balance = s->remaining / FFMIN(3, s->codedbands-i);
+ b = av_clip(FFMIN(s->remaining2 + 1, s->pulses[i] + curr_balance), 0, 16383);
+ } else
+ b = 0;
+
+ if (celt_freq_bands[i] - celt_freq_range[i] >= celt_freq_bands[s->startband] &&
+ (update_lowband || lowband_offset == 0))
+ lowband_offset = i;
+
+ /* Get a conservative estimate of the collapse_mask's for the bands we're
+ going to be folding from. */
+ if (lowband_offset != 0 && (s->spread != CELT_SPREAD_AGGRESSIVE ||
+ s->blocks > 1 || s->tf_change[i] < 0)) {
+ int foldstart, foldend;
+
+ /* This ensures we never repeat spectral content within one band */
+ effective_lowband = FFMAX(celt_freq_bands[s->startband],
+ celt_freq_bands[lowband_offset] - celt_freq_range[i]);
+ foldstart = lowband_offset;
+ while (celt_freq_bands[--foldstart] > effective_lowband);
+ foldend = lowband_offset - 1;
+ while (celt_freq_bands[++foldend] < effective_lowband + celt_freq_range[i]);
+
+ cm[0] = cm[1] = 0;
+ for (j = foldstart; j < foldend; j++) {
+ cm[0] |= s->frame[0].collapse_masks[j];
+ cm[1] |= s->frame[s->coded_channels - 1].collapse_masks[j];
+ }
+ } else
+ /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost
+ always) be non-zero.*/
+ cm[0] = cm[1] = (1 << s->blocks) - 1;
+
+ if (s->dualstereo && i == s->intensitystereo) {
+ /* Switch off dual stereo to do intensity */
+ s->dualstereo = 0;
+ for (j = celt_freq_bands[s->startband] << s->duration; j < band_offset; j++)
+ norm[j] = (norm[j] + norm2[j]) / 2;
+ }
+
+ if (s->dualstereo) {
+ cm[0] = celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks,
+ effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
+ norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
+
+ cm[1] = celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks,
+ effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration,
+ norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
+ } else {
+ cm[0] = celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks,
+ effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
+ norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
+
+ cm[1] = cm[0];
+ }
+
+ s->frame[0].collapse_masks[i] = (uint8_t)cm[0];
+ s->frame[s->coded_channels - 1].collapse_masks[i] = (uint8_t)cm[1];
+ s->remaining += s->pulses[i] + consumed;
+
+ /* Update the folding position only as long as we have 1 bit/sample depth */
+ update_lowband = (b > band_size << 3);
+ }
+}
+
+int ff_celt_decode_frame(CeltContext *s, OpusRangeCoder *rc,
+ float **output, int coded_channels, int frame_size,
+ int startband, int endband)
+{
+ int i, j;
+
+ int consumed; // bits of entropy consumed thus far for this frame
+ int silence = 0;
+ int transient = 0;
+ int anticollapse = 0;
+ CeltIMDCTContext *imdct;
+ float imdct_scale = 1.0;
+
+ if (coded_channels != 1 && coded_channels != 2) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n",
+ coded_channels);
+ return AVERROR_INVALIDDATA;
+ }
+ if (startband < 0 || startband > endband || endband > CELT_MAX_BANDS) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n",
+ startband, endband);
+ return AVERROR_INVALIDDATA;
+ }
+
+ s->flushed = 0;
+ s->coded_channels = coded_channels;
+ s->startband = startband;
+ s->endband = endband;
+ s->framebits = rc->rb.bytes * 8;
+
+ s->duration = av_log2(frame_size / CELT_SHORT_BLOCKSIZE);
+ if (s->duration > CELT_MAX_LOG_BLOCKS ||
+ frame_size != CELT_SHORT_BLOCKSIZE * (1 << s->duration)) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n",
+ frame_size);
+ return AVERROR_INVALIDDATA;
+ }
+
+ if (!s->output_channels)
+ s->output_channels = coded_channels;
+
+ memset(s->frame[0].collapse_masks, 0, sizeof(s->frame[0].collapse_masks));
+ memset(s->frame[1].collapse_masks, 0, sizeof(s->frame[1].collapse_masks));
+
+ consumed = opus_rc_tell(rc);
+
+ /* obtain silence flag */
+ if (consumed >= s->framebits)
+ silence = 1;
+ else if (consumed == 1)
+ silence = opus_rc_p2model(rc, 15);
+
+
+ if (silence) {
+ consumed = s->framebits;
+ rc->total_read_bits += s->framebits - opus_rc_tell(rc);
+ }
+
+ /* obtain post-filter options */
+ consumed = parse_postfilter(s, rc, consumed);
+
+ /* obtain transient flag */
+ if (s->duration != 0 && consumed+3 <= s->framebits)
+ transient = opus_rc_p2model(rc, 3);
+
+ s->blocks = transient ? 1 << s->duration : 1;
+ s->blocksize = frame_size / s->blocks;
+
+ imdct = s->imdct[transient ? 0 : s->duration];
+
+ if (coded_channels == 1) {
+ for (i = 0; i < CELT_MAX_BANDS; i++)
+ s->frame[0].energy[i] = FFMAX(s->frame[0].energy[i], s->frame[1].energy[i]);
+ }
+
+ celt_decode_coarse_energy(s, rc);
+ celt_decode_tf_changes (s, rc, transient);
+ celt_decode_allocation (s, rc);
+ celt_decode_fine_energy (s, rc);
+ celt_decode_bands (s, rc);
+
+ if (s->anticollapse_bit)
+ anticollapse = opus_getrawbits(rc, 1);
+
+ celt_decode_final_energy(s, rc, s->framebits - opus_rc_tell(rc));
+
+ /* apply anti-collapse processing and denormalization to
+ * each coded channel */
+ for (i = 0; i < s->coded_channels; i++) {
+ CeltFrame *frame = &s->frame[i];
+
+ if (anticollapse)
+ process_anticollapse(s, frame, s->coeffs[i]);
+
+ celt_denormalize(s, frame, s->coeffs[i]);
+ }
+
+ /* stereo -> mono downmix */
+ if (s->output_channels < s->coded_channels) {
+ s->dsp.vector_fmac_scalar(s->coeffs[0], s->coeffs[1], 1.0, FFALIGN(frame_size, 16));
+ imdct_scale = 0.5;
+ } else if (s->output_channels > s->coded_channels)
+ memcpy(s->coeffs[1], s->coeffs[0], frame_size * sizeof(float));
+
+ if (silence) {
+ for (i = 0; i < 2; i++) {
+ CeltFrame *frame = &s->frame[i];
+
+ for (j = 0; j < FF_ARRAY_ELEMS(frame->energy); j++)
+ frame->energy[j] = CELT_ENERGY_SILENCE;
+ }
+ memset(s->coeffs, 0, sizeof(s->coeffs));
+ }
+
+ /* transform and output for each output channel */
+ for (i = 0; i < s->output_channels; i++) {
+ CeltFrame *frame = &s->frame[i];
+ float m = frame->deemph_coeff;
+
+ /* iMDCT and overlap-add */
+ for (j = 0; j < s->blocks; j++) {
+ float *dst = frame->buf + 1024 + j * s->blocksize;
+
+ ff_celt_imdct_half(imdct, dst + CELT_OVERLAP / 2, s->coeffs[i] + j,
+ s->blocks, imdct_scale);
+ s->dsp.vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2,
+ celt_window, CELT_OVERLAP / 2);
+ }
+
+ /* postfilter */
+ celt_postfilter(s, frame);
+
+ /* deemphasis and output scaling */
+ for (j = 0; j < frame_size; j++) {
+ float tmp = frame->buf[1024 - frame_size + j] + m;
+ m = tmp * CELT_DEEMPH_COEFF;
+ output[i][j] = tmp / 32768.;
+ }
+ frame->deemph_coeff = m;
+ }
+
+ if (coded_channels == 1)
+ memcpy(s->frame[1].energy, s->frame[0].energy, sizeof(s->frame[0].energy));
+
+ for (i = 0; i < 2; i++ ) {
+ CeltFrame *frame = &s->frame[i];
+
+ if (!transient) {
+ memcpy(frame->prev_energy[1], frame->prev_energy[0], sizeof(frame->prev_energy[0]));
+ memcpy(frame->prev_energy[0], frame->energy, sizeof(frame->prev_energy[0]));
+ } else {
+ for (j = 0; j < CELT_MAX_BANDS; j++)
+ frame->prev_energy[0][j] = FFMIN(frame->prev_energy[0][j], frame->energy[j]);
+ }
+
+ for (j = 0; j < s->startband; j++) {
+ frame->prev_energy[0][j] = CELT_ENERGY_SILENCE;
+ frame->energy[j] = 0.0;
+ }
+ for (j = s->endband; j < CELT_MAX_BANDS; j++) {
+ frame->prev_energy[0][j] = CELT_ENERGY_SILENCE;
+ frame->energy[j] = 0.0;
+ }
+ }
+
+ s->seed = rc->range;
+
+ return 0;
+}
+
+void ff_celt_flush(CeltContext *s)
+{
+ int i, j;
+
+ if (s->flushed)
+ return;
+
+ for (i = 0; i < 2; i++) {
+ CeltFrame *frame = &s->frame[i];
+
+ for (j = 0; j < CELT_MAX_BANDS; j++)
+ frame->prev_energy[0][j] = frame->prev_energy[1][j] = CELT_ENERGY_SILENCE;
+
+ memset(frame->energy, 0, sizeof(frame->energy));
+ memset(frame->buf, 0, sizeof(frame->buf));
+
+ memset(frame->pf_gains, 0, sizeof(frame->pf_gains));
+ memset(frame->pf_gains_old, 0, sizeof(frame->pf_gains_old));
+ memset(frame->pf_gains_new, 0, sizeof(frame->pf_gains_new));
+
+ frame->deemph_coeff = 0.0;
+ }
+ s->seed = 0;
+
+ s->flushed = 1;
+}
+
+void ff_celt_free(CeltContext **ps)
+{
+ CeltContext *s = *ps;
+ int i;
+
+ if (!s)
+ return;
+
+ for (i = 0; i < FF_ARRAY_ELEMS(s->imdct); i++)
+ ff_celt_imdct_uninit(&s->imdct[i]);
+
+ av_freep(ps);
+}
+
+int ff_celt_init(AVCodecContext *avctx, CeltContext **ps, int output_channels)
+{
+ CeltContext *s;
+ int i, ret;
+
+ if (output_channels != 1 && output_channels != 2) {
+ av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n",
+ output_channels);
+ return AVERROR(EINVAL);
+ }
+
+ s = av_mallocz(sizeof(*s));
+ if (!s)
+ return AVERROR(ENOMEM);
+
+ s->avctx = avctx;
+ s->output_channels = output_channels;
+
+ for (i = 0; i < FF_ARRAY_ELEMS(s->imdct); i++) {
+ ret = ff_celt_imdct_init(&s->imdct[i], i + 3);
+ if (ret < 0)
+ goto fail;
+ }
+
+ avpriv_float_dsp_init(&s->dsp, avctx->flags & CODEC_FLAG_BITEXACT);
+
+ ff_celt_flush(s);
+
+ *ps = s;
+
+ return 0;
+fail:
+ ff_celt_free(&s);
+ return ret;
+}
diff --git a/libavcodec/opus_imdct.c b/libavcodec/opus_imdct.c
new file mode 100644
index 0000000000..7bbaa35227
--- /dev/null
+++ b/libavcodec/opus_imdct.c
@@ -0,0 +1,268 @@
+/*
+ * Copyright (c) 2013-2014 Mozilla Corporation
+ *
+ * This file is part of Libav.
+ *
+ * Libav is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * Libav is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with Libav; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * Celt non-power of 2 iMDCT
+ */
+
+#include <float.h>
+#include <math.h>
+
+#include "libavutil/attributes.h"
+#include "libavutil/common.h"
+
+#include "fft.h"
+#include "opus.h"
+
+// complex c = a * b
+#define CMUL3(cre, cim, are, aim, bre, bim) \
+do { \
+ cre = are * bre - aim * bim; \
+ cim = are * bim + aim * bre; \
+} while (0)
+
+#define CMUL(c, a, b) CMUL3((c).re, (c).im, (a).re, (a).im, (b).re, (b).im)
+
+// complex c = a * b
+// d = a * conjugate(b)
+#define CMUL2(c, d, a, b) \
+do { \
+ float are = (a).re; \
+ float aim = (a).im; \
+ float bre = (b).re; \
+ float bim = (b).im; \
+ float rr = are * bre; \
+ float ri = are * bim; \
+ float ir = aim * bre; \
+ float ii = aim * bim; \
+ (c).re = rr - ii; \
+ (c).im = ri + ir; \
+ (d).re = rr + ii; \
+ (d).im = -ri + ir; \
+} while (0)
+
+struct CeltIMDCTContext {
+ int fft_n;
+ int len2;
+ int len4;
+
+ FFTComplex *tmp;
+
+ FFTComplex *twiddle_exptab;
+
+ FFTComplex *exptab[6];
+};
+
+av_cold void ff_celt_imdct_uninit(CeltIMDCTContext **ps)
+{
+ CeltIMDCTContext *s = *ps;
+ int i;
+
+ if (!s)
+ return;
+
+ for (i = 0; i < FF_ARRAY_ELEMS(s->exptab); i++)
+ av_freep(&s->exptab[i]);
+
+ av_freep(&s->twiddle_exptab);
+
+ av_freep(&s->tmp);
+
+ av_freep(ps);
+}
+
+av_cold int ff_celt_imdct_init(CeltIMDCTContext **ps, int N)
+{
+ CeltIMDCTContext *s;
+ int len2 = 15 * (1 << N);
+ int len = 2 * len2;
+ int i, j;
+
+ if (len2 > CELT_MAX_FRAME_SIZE)
+ return AVERROR(EINVAL);
+
+ s = av_mallocz(sizeof(*s));
+ if (!s)
+ return AVERROR(ENOMEM);
+
+ s->fft_n = N - 1;
+ s->len4 = len2 / 2;
+ s->len2 = len2;
+
+ s->tmp = av_malloc(len * 2 * sizeof(*s->tmp));
+ if (!s->tmp)
+ goto fail;
+
+ s->twiddle_exptab = av_malloc(s->len4 * sizeof(*s->twiddle_exptab));
+ if (!s->twiddle_exptab)
+ goto fail;
+
+ for (i = 0; i < s->len4; i++) {
+ s->twiddle_exptab[i].re = cos(2 * M_PI * (i + 0.125 + s->len4) / len);
+ s->twiddle_exptab[i].im = sin(2 * M_PI * (i + 0.125 + s->len4) / len);
+ }
+
+ for (i = 0; i < FF_ARRAY_ELEMS(s->exptab); i++) {
+ int N = 15 * (1 << i);
+ s->exptab[i] = av_malloc(sizeof(*s->exptab[i]) * FFMAX(N, 19));
+ if (!s->exptab[i])
+ goto fail;
+
+ for (j = 0; j < N; j++) {
+ s->exptab[i][j].re = cos(2 * M_PI * j / N);
+ s->exptab[i][j].im = sin(2 * M_PI * j / N);
+ }
+ }
+
+ // wrap around to simplify fft15
+ for (j = 15; j < 19; j++)
+ s->exptab[0][j] = s->exptab[0][j - 15];
+
+ *ps = s;
+
+ return 0;
+fail:
+ ff_celt_imdct_uninit(&s);
+ return AVERROR(ENOMEM);
+}
+
+static void fft5(FFTComplex *out, const FFTComplex *in, int stride)
+{
+ // [0] = exp(2 * i * pi / 5), [1] = exp(2 * i * pi * 2 / 5)
+ static const FFTComplex fact[] = { { 0.30901699437494745, 0.95105651629515353 },
+ { -0.80901699437494734, 0.58778525229247325 } };
+
+ FFTComplex z[4][4];
+
+ CMUL2(z[0][0], z[0][3], in[1 * stride], fact[0]);
+ CMUL2(z[0][1], z[0][2], in[1 * stride], fact[1]);
+ CMUL2(z[1][0], z[1][3], in[2 * stride], fact[0]);
+ CMUL2(z[1][1], z[1][2], in[2 * stride], fact[1]);
+ CMUL2(z[2][0], z[2][3], in[3 * stride], fact[0]);
+ CMUL2(z[2][1], z[2][2], in[3 * stride], fact[1]);
+ CMUL2(z[3][0], z[3][3], in[4 * stride], fact[0]);
+ CMUL2(z[3][1], z[3][2], in[4 * stride], fact[1]);
+
+ out[0].re = in[0].re + in[stride].re + in[2 * stride].re + in[3 * stride].re + in[4 * stride].re;
+ out[0].im = in[0].im + in[stride].im + in[2 * stride].im + in[3 * stride].im + in[4 * stride].im;
+
+ out[1].re = in[0].re + z[0][0].re + z[1][1].re + z[2][2].re + z[3][3].re;
+ out[1].im = in[0].im + z[0][0].im + z[1][1].im + z[2][2].im + z[3][3].im;
+
+ out[2].re = in[0].re + z[0][1].re + z[1][3].re + z[2][0].re + z[3][2].re;
+ out[2].im = in[0].im + z[0][1].im + z[1][3].im + z[2][0].im + z[3][2].im;
+
+ out[3].re = in[0].re + z[0][2].re + z[1][0].re + z[2][3].re + z[3][1].re;
+ out[3].im = in[0].im + z[0][2].im + z[1][0].im + z[2][3].im + z[3][1].im;
+
+ out[4].re = in[0].re + z[0][3].re + z[1][2].re + z[2][1].re + z[3][0].re;
+ out[4].im = in[0].im + z[0][3].im + z[1][2].im + z[2][1].im + z[3][0].im;
+}
+
+static void fft15(CeltIMDCTContext *s, FFTComplex *out, const FFTComplex *in, int stride)
+{
+ const FFTComplex *exptab = s->exptab[0];
+ FFTComplex tmp[5];
+ FFTComplex tmp1[5];
+ FFTComplex tmp2[5];
+ int k;
+
+ fft5(tmp, in, stride * 3);
+ fft5(tmp1, in + stride, stride * 3);
+ fft5(tmp2, in + 2 * stride, stride * 3);
+
+ for (k = 0; k < 5; k++) {
+ FFTComplex t1, t2;
+
+ CMUL(t1, tmp1[k], exptab[k]);
+ CMUL(t2, tmp2[k], exptab[2 * k]);
+ out[k].re = tmp[k].re + t1.re + t2.re;
+ out[k].im = tmp[k].im + t1.im + t2.im;
+
+ CMUL(t1, tmp1[k], exptab[k + 5]);
+ CMUL(t2, tmp2[k], exptab[2 * (k + 5)]);
+ out[k + 5].re = tmp[k].re + t1.re + t2.re;
+ out[k + 5].im = tmp[k].im + t1.im + t2.im;
+
+ CMUL(t1, tmp1[k], exptab[k + 10]);
+ CMUL(t2, tmp2[k], exptab[2 * k + 5]);
+ out[k + 10].re = tmp[k].re + t1.re + t2.re;
+ out[k + 10].im = tmp[k].im + t1.im + t2.im;
+ }
+}
+
+/*
+ * FFT of the length 15 * (2^N)
+ */
+static void fft_calc(CeltIMDCTContext *s, FFTComplex *out, const FFTComplex *in, int N, int stride)
+{
+ if (N) {
+ const FFTComplex *exptab = s->exptab[N];
+ const int len2 = 15 * (1 << (N - 1));
+ int k;
+
+ fft_calc(s, out, in, N - 1, stride * 2);
+ fft_calc(s, out + len2, in + stride, N - 1, stride * 2);
+
+ for (k = 0; k < len2; k++) {
+ FFTComplex t;
+
+ CMUL(t, out[len2 + k], exptab[k]);
+
+ out[len2 + k].re = out[k].re - t.re;
+ out[len2 + k].im = out[k].im - t.im;
+
+ out[k].re += t.re;
+ out[k].im += t.im;
+ }
+ } else
+ fft15(s, out, in, stride);
+}
+
+void ff_celt_imdct_half(CeltIMDCTContext *s, float *dst, const float *src,
+ int stride, float scale)
+{
+ FFTComplex *z = (FFTComplex *)dst;
+ const int len8 = s->len4 / 2;
+ const float *in1 = src;
+ const float *in2 = src + (s->len2 - 1) * stride;
+ int i;
+
+ for (i = 0; i < s->len4; i++) {
+ FFTComplex tmp = { *in2, *in1 };
+ CMUL(s->tmp[i], tmp, s->twiddle_exptab[i]);
+ in1 += 2 * stride;
+ in2 -= 2 * stride;
+ }
+
+ fft_calc(s, z, s->tmp, s->fft_n, 1);
+
+ for (i = 0; i < len8; i++) {
+ float r0, i0, r1, i1;
+
+ CMUL3(r0, i1, z[len8 - i - 1].im, z[len8 - i - 1].re, s->twiddle_exptab[len8 - i - 1].im, s->twiddle_exptab[len8 - i - 1].re);
+ CMUL3(r1, i0, z[len8 + i].im, z[len8 + i].re, s->twiddle_exptab[len8 + i].im, s->twiddle_exptab[len8 + i].re);
+ z[len8 - i - 1].re = scale * r0;
+ z[len8 - i - 1].im = scale * i0;
+ z[len8 + i].re = scale * r1;
+ z[len8 + i].im = scale * i1;
+ }
+}
diff --git a/libavcodec/opus_parser.c b/libavcodec/opus_parser.c
new file mode 100644
index 0000000000..8a2bc22043
--- /dev/null
+++ b/libavcodec/opus_parser.c
@@ -0,0 +1,75 @@
+/*
+ * Copyright (c) 2013-2014 Mozilla Corporation
+ *
+ * This file is part of Libav.
+ *
+ * Libav is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * Libav is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with Libav; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * Opus parser
+ *
+ * Determines the duration for each packet.
+ */
+
+#include "avcodec.h"
+#include "opus.h"
+
+typedef struct OpusParseContext {
+ OpusContext ctx;
+ OpusPacket pkt;
+ int extradata_parsed;
+} OpusParseContext;
+
+static int opus_parse(AVCodecParserContext *ctx, AVCodecContext *avctx,
+ const uint8_t **poutbuf, int *poutbuf_size,
+ const uint8_t *buf, int buf_size)
+{
+ OpusParseContext *s = ctx->priv_data;
+ int ret;
+
+ if (!buf_size)
+ return 0;
+
+ if (avctx->extradata && !s->extradata_parsed) {
+ ret = ff_opus_parse_extradata(avctx, &s->ctx);
+ if (ret < 0) {
+ av_log(avctx, AV_LOG_ERROR, "Error parsing Ogg extradata.\n");
+ goto fail;
+ }
+ av_freep(&s->ctx.channel_maps);
+ s->extradata_parsed = 1;
+ }
+
+ ret = ff_opus_parse_packet(&s->pkt, buf, buf_size, s->ctx.nb_streams > 1);
+ if (ret < 0) {
+ av_log(avctx, AV_LOG_ERROR, "Error parsing Opus packet header.\n");
+ goto fail;
+ }
+
+ ctx->duration = s->pkt.frame_count * s->pkt.frame_duration;
+
+fail:
+ *poutbuf = buf;
+ *poutbuf_size = buf_size;
+ return buf_size;
+}
+
+AVCodecParser ff_opus_parser = {
+ .codec_ids = { AV_CODEC_ID_OPUS },
+ .priv_data_size = sizeof(OpusParseContext),
+ .parser_parse = opus_parse,
+};
diff --git a/libavcodec/opus_silk.c b/libavcodec/opus_silk.c
new file mode 100644
index 0000000000..3552484542
--- /dev/null
+++ b/libavcodec/opus_silk.c
@@ -0,0 +1,1597 @@
+/*
+ * Copyright (c) 2012 Andrew D'Addesio
+ * Copyright (c) 2013-2014 Mozilla Corporation
+ *
+ * This file is part of Libav.
+ *
+ * Libav is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * Libav is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with Libav; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * Opus SILK decoder
+ */
+
+#include <stdint.h>
+
+#include "opus.h"
+
+typedef struct SilkFrame {
+ int coded;
+ int log_gain;
+ int16_t nlsf[16];
+ float lpc[16];
+
+ float output [2 * SILK_HISTORY];
+ float lpc_history[2 * SILK_HISTORY];
+ int primarylag;
+
+ int prev_voiced;
+} SilkFrame;
+
+struct SilkContext {
+ AVCodecContext *avctx;
+ int output_channels;
+
+ int midonly;
+ int subframes;
+ int sflength;
+ int flength;
+ int nlsf_interp_factor;
+
+ enum OpusBandwidth bandwidth;
+ int wb;
+
+ SilkFrame frame[2];
+ float prev_stereo_weights[2];
+ float stereo_weights[2];
+
+ int prev_coded_channels;
+};
+
+static const uint16_t silk_model_stereo_s1[] = {
+ 256, 7, 9, 10, 11, 12, 22, 46, 54, 55, 56, 59, 82, 174, 197, 200,
+ 201, 202, 210, 234, 244, 245, 246, 247, 249, 256
+};
+
+static const uint16_t silk_model_stereo_s2[] = {256, 85, 171, 256};
+
+static const uint16_t silk_model_stereo_s3[] = {256, 51, 102, 154, 205, 256};
+
+static const uint16_t silk_model_mid_only[] = {256, 192, 256};
+
+static const uint16_t silk_model_frame_type_inactive[] = {256, 26, 256};
+
+static const uint16_t silk_model_frame_type_active[] = {256, 24, 98, 246, 256};
+
+static const uint16_t silk_model_gain_highbits[3][9] = {
+ {256, 32, 144, 212, 241, 253, 254, 255, 256},
+ {256, 2, 19, 64, 124, 186, 233, 252, 256},
+ {256, 1, 4, 30, 101, 195, 245, 254, 256}
+};
+
+static const uint16_t silk_model_gain_lowbits[] = {256, 32, 64, 96, 128, 160, 192, 224, 256};
+
+static const uint16_t silk_model_gain_delta[] = {
+ 256, 6, 11, 22, 53, 185, 206, 214, 218, 221, 223, 225, 227, 228, 229, 230,
+ 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246,
+ 247, 248, 249, 250, 251, 252, 253, 254, 255, 256
+};
+static const uint16_t silk_model_lsf_s1[2][2][33] = {
+ {
+ { // NB or MB, unvoiced
+ 256, 44, 78, 108, 127, 148, 160, 171, 174, 177, 179, 195, 197, 199, 200, 205,
+ 207, 208, 211, 214, 215, 216, 218, 220, 222, 225, 226, 235, 244, 246, 253, 255, 256
+ }, { // NB or MB, voiced
+ 256, 1, 11, 12, 20, 23, 31, 39, 53, 66, 80, 81, 95, 107, 120, 131,
+ 142, 154, 165, 175, 185, 196, 204, 213, 221, 228, 236, 237, 238, 244, 245, 251, 256
+ }
+ }, {
+ { // WB, unvoiced
+ 256, 31, 52, 55, 72, 73, 81, 98, 102, 103, 121, 137, 141, 143, 146, 147,
+ 157, 158, 161, 177, 188, 204, 206, 208, 211, 213, 224, 225, 229, 238, 246, 253, 256
+ }, { // WB, voiced
+ 256, 1, 5, 21, 26, 44, 55, 60, 74, 89, 90, 93, 105, 118, 132, 146,
+ 152, 166, 178, 180, 186, 187, 199, 211, 222, 232, 235, 245, 250, 251, 252, 253, 256
+ }
+ }
+};
+
+static const uint16_t silk_model_lsf_s2[32][10] = {
+ // NB, MB
+ { 256, 1, 2, 3, 18, 242, 253, 254, 255, 256 },
+ { 256, 1, 2, 4, 38, 221, 253, 254, 255, 256 },
+ { 256, 1, 2, 6, 48, 197, 252, 254, 255, 256 },
+ { 256, 1, 2, 10, 62, 185, 246, 254, 255, 256 },
+ { 256, 1, 4, 20, 73, 174, 248, 254, 255, 256 },
+ { 256, 1, 4, 21, 76, 166, 239, 254, 255, 256 },
+ { 256, 1, 8, 32, 85, 159, 226, 252, 255, 256 },
+ { 256, 1, 2, 20, 83, 161, 219, 249, 255, 256 },
+
+ // WB
+ { 256, 1, 2, 3, 12, 244, 253, 254, 255, 256 },
+ { 256, 1, 2, 4, 32, 218, 253, 254, 255, 256 },
+ { 256, 1, 2, 5, 47, 199, 252, 254, 255, 256 },
+ { 256, 1, 2, 12, 61, 187, 252, 254, 255, 256 },
+ { 256, 1, 5, 24, 72, 172, 249, 254, 255, 256 },
+ { 256, 1, 2, 16, 70, 170, 242, 254, 255, 256 },
+ { 256, 1, 2, 17, 78, 165, 226, 251, 255, 256 },
+ { 256, 1, 8, 29, 79, 156, 237, 254, 255, 256 }
+};
+
+static const uint16_t silk_model_lsf_s2_ext[] = { 256, 156, 216, 240, 249, 253, 255, 256 };
+
+static const uint16_t silk_model_lsf_interpolation_offset[] = { 256, 13, 35, 64, 75, 256 };
+
+static const uint16_t silk_model_pitch_highbits[] = {
+ 256, 3, 6, 12, 23, 44, 74, 106, 125, 136, 146, 158, 171, 184, 196, 207,
+ 216, 224, 231, 237, 241, 243, 245, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256
+};
+
+static const uint16_t silk_model_pitch_lowbits_nb[]= { 256, 64, 128, 192, 256 };
+
+static const uint16_t silk_model_pitch_lowbits_mb[]= { 256, 43, 85, 128, 171, 213, 256 };
+
+static const uint16_t silk_model_pitch_lowbits_wb[]= { 256, 32, 64, 96, 128, 160, 192, 224, 256 };
+
+static const uint16_t silk_model_pitch_delta[] = {
+ 256, 46, 48, 50, 53, 57, 63, 73, 88, 114, 152, 182, 204, 219, 229, 236,
+ 242, 246, 250, 252, 254, 256
+};
+
+static const uint16_t silk_model_pitch_contour_nb10ms[] = { 256, 143, 193, 256 };
+
+static const uint16_t silk_model_pitch_contour_nb20ms[] = {
+ 256, 68, 80, 101, 118, 137, 159, 189, 213, 230, 246, 256
+};
+
+static const uint16_t silk_model_pitch_contour_mbwb10ms[] = {
+ 256, 91, 137, 176, 195, 209, 221, 229, 236, 242, 247, 252, 256
+};
+
+static const uint16_t silk_model_pitch_contour_mbwb20ms[] = {
+ 256, 33, 55, 73, 89, 104, 118, 132, 145, 158, 168, 177, 186, 194, 200, 206,
+ 212, 217, 221, 225, 229, 232, 235, 238, 240, 242, 244, 246, 248, 250, 252, 253,
+ 254, 255, 256
+};
+
+static const uint16_t silk_model_ltp_filter[] = { 256, 77, 157, 256 };
+
+static const uint16_t silk_model_ltp_filter0_sel[] = {
+ 256, 185, 200, 213, 226, 235, 244, 250, 256
+};
+
+static const uint16_t silk_model_ltp_filter1_sel[] = {
+ 256, 57, 91, 112, 132, 147, 160, 172, 185, 195, 205, 214, 224, 233, 241, 248, 256
+};
+
+static const uint16_t silk_model_ltp_filter2_sel[] = {
+ 256, 15, 31, 45, 57, 69, 81, 92, 103, 114, 124, 133, 142, 151, 160, 168,
+ 176, 184, 192, 199, 206, 212, 218, 223, 227, 232, 236, 240, 244, 247, 251, 254, 256
+};
+
+static const uint16_t silk_model_ltp_scale_index[] = { 256, 128, 192, 256 };
+
+static const uint16_t silk_model_lcg_seed[] = { 256, 64, 128, 192, 256 };
+
+static const uint16_t silk_model_exc_rate[2][10] = {
+ { 256, 15, 66, 78, 124, 169, 182, 215, 242, 256 }, // unvoiced
+ { 256, 33, 63, 99, 116, 150, 199, 217, 238, 256 } // voiced
+};
+
+static const uint16_t silk_model_pulse_count[11][19] = {
+ { 256, 131, 205, 230, 238, 241, 244, 245, 246,
+ 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 },
+ { 256, 58, 151, 211, 234, 241, 244, 245, 246,
+ 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 },
+ { 256, 43, 94, 140, 173, 197, 213, 224, 232,
+ 238, 241, 244, 247, 249, 250, 251, 253, 254, 256 },
+ { 256, 17, 69, 140, 197, 228, 240, 245, 246,
+ 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 },
+ { 256, 6, 27, 68, 121, 170, 205, 226, 237,
+ 243, 246, 248, 250, 251, 252, 253, 254, 255, 256 },
+ { 256, 7, 21, 43, 71, 100, 128, 153, 173,
+ 190, 203, 214, 223, 230, 235, 239, 243, 246, 256 },
+ { 256, 2, 7, 21, 50, 92, 138, 179, 210,
+ 229, 240, 246, 249, 251, 252, 253, 254, 255, 256 },
+ { 256, 1, 3, 7, 17, 36, 65, 100, 137,
+ 171, 199, 219, 233, 241, 246, 250, 252, 254, 256 },
+ { 256, 1, 3, 5, 10, 19, 33, 53, 77,
+ 104, 132, 158, 181, 201, 216, 227, 235, 241, 256 },
+ { 256, 1, 2, 3, 9, 36, 94, 150, 189,
+ 214, 228, 238, 244, 247, 250, 252, 253, 254, 256 },
+ { 256, 2, 3, 9, 36, 94, 150, 189, 214,
+ 228, 238, 244, 247, 250, 252, 253, 254, 256, 256 }
+};
+
+static const uint16_t silk_model_pulse_location[4][168] = {
+ {
+ 256, 126, 256,
+ 256, 56, 198, 256,
+ 256, 25, 126, 230, 256,
+ 256, 12, 72, 180, 244, 256,
+ 256, 7, 42, 126, 213, 250, 256,
+ 256, 4, 24, 83, 169, 232, 253, 256,
+ 256, 3, 15, 53, 125, 200, 242, 254, 256,
+ 256, 2, 10, 35, 89, 162, 221, 248, 255, 256,
+ 256, 2, 7, 24, 63, 126, 191, 233, 251, 255, 256,
+ 256, 1, 5, 17, 45, 94, 157, 211, 241, 252, 255, 256,
+ 256, 1, 5, 13, 33, 70, 125, 182, 223, 245, 253, 255, 256,
+ 256, 1, 4, 11, 26, 54, 98, 151, 199, 232, 248, 254, 255, 256,
+ 256, 1, 3, 9, 21, 42, 77, 124, 172, 212, 237, 249, 254, 255, 256,
+ 256, 1, 2, 6, 16, 33, 60, 97, 144, 187, 220, 241, 250, 254, 255, 256,
+ 256, 1, 2, 3, 11, 25, 47, 80, 120, 163, 201, 229, 245, 253, 254, 255, 256,
+ 256, 1, 2, 3, 4, 17, 35, 62, 98, 139, 180, 214, 238, 252, 253, 254, 255, 256
+ },{
+ 256, 127, 256,
+ 256, 53, 202, 256,
+ 256, 22, 127, 233, 256,
+ 256, 11, 72, 183, 246, 256,
+ 256, 6, 41, 127, 215, 251, 256,
+ 256, 4, 24, 83, 170, 232, 253, 256,
+ 256, 3, 16, 56, 127, 200, 241, 254, 256,
+ 256, 3, 12, 39, 92, 162, 218, 246, 255, 256,
+ 256, 3, 11, 30, 67, 124, 185, 229, 249, 255, 256,
+ 256, 3, 10, 25, 53, 97, 151, 200, 233, 250, 255, 256,
+ 256, 1, 8, 21, 43, 77, 123, 171, 209, 237, 251, 255, 256,
+ 256, 1, 2, 13, 35, 62, 97, 139, 186, 219, 244, 254, 255, 256,
+ 256, 1, 2, 8, 22, 48, 85, 128, 171, 208, 234, 248, 254, 255, 256,
+ 256, 1, 2, 6, 16, 36, 67, 107, 149, 189, 220, 240, 250, 254, 255, 256,
+ 256, 1, 2, 5, 13, 29, 55, 90, 128, 166, 201, 227, 243, 251, 254, 255, 256,
+ 256, 1, 2, 4, 10, 22, 43, 73, 109, 147, 183, 213, 234, 246, 252, 254, 255, 256
+ },{
+ 256, 127, 256,
+ 256, 49, 206, 256,
+ 256, 20, 127, 236, 256,
+ 256, 11, 71, 184, 246, 256,
+ 256, 7, 43, 127, 214, 250, 256,
+ 256, 6, 30, 87, 169, 229, 252, 256,
+ 256, 5, 23, 62, 126, 194, 236, 252, 256,
+ 256, 6, 20, 49, 96, 157, 209, 239, 253, 256,
+ 256, 1, 16, 39, 74, 125, 175, 215, 245, 255, 256,
+ 256, 1, 2, 23, 55, 97, 149, 195, 236, 254, 255, 256,
+ 256, 1, 7, 23, 50, 86, 128, 170, 206, 233, 249, 255, 256,
+ 256, 1, 6, 18, 39, 70, 108, 148, 186, 217, 238, 250, 255, 256,
+ 256, 1, 4, 13, 30, 56, 90, 128, 166, 200, 226, 243, 252, 255, 256,
+ 256, 1, 4, 11, 25, 47, 76, 110, 146, 180, 209, 231, 245, 252, 255, 256,
+ 256, 1, 3, 8, 19, 37, 62, 93, 128, 163, 194, 219, 237, 248, 253, 255, 256,
+ 256, 1, 2, 6, 15, 30, 51, 79, 111, 145, 177, 205, 226, 241, 250, 254, 255, 256
+ },{
+ 256, 128, 256,
+ 256, 42, 214, 256,
+ 256, 21, 128, 235, 256,
+ 256, 12, 72, 184, 245, 256,
+ 256, 8, 42, 128, 214, 249, 256,
+ 256, 8, 31, 86, 176, 231, 251, 256,
+ 256, 5, 20, 58, 130, 202, 238, 253, 256,
+ 256, 6, 18, 45, 97, 174, 221, 241, 251, 256,
+ 256, 6, 25, 53, 88, 128, 168, 203, 231, 250, 256,
+ 256, 4, 18, 40, 71, 108, 148, 185, 216, 238, 252, 256,
+ 256, 3, 13, 31, 57, 90, 128, 166, 199, 225, 243, 253, 256,
+ 256, 2, 10, 23, 44, 73, 109, 147, 183, 212, 233, 246, 254, 256,
+ 256, 1, 6, 16, 33, 58, 90, 128, 166, 198, 223, 240, 250, 255, 256,
+ 256, 1, 5, 12, 25, 46, 75, 110, 146, 181, 210, 231, 244, 251, 255, 256,
+ 256, 1, 3, 8, 18, 35, 60, 92, 128, 164, 196, 221, 238, 248, 253, 255, 256,
+ 256, 1, 3, 7, 14, 27, 48, 76, 110, 146, 180, 208, 229, 242, 249, 253, 255, 256
+ }
+};
+
+static const uint16_t silk_model_excitation_lsb[] = {256, 136, 256};
+
+static const uint16_t silk_model_excitation_sign[3][2][7][3] = {
+ { // Inactive
+ { // Low offset
+ {256, 2, 256},
+ {256, 207, 256},
+ {256, 189, 256},
+ {256, 179, 256},
+ {256, 174, 256},
+ {256, 163, 256},
+ {256, 157, 256}
+ }, { // High offset
+ {256, 58, 256},
+ {256, 245, 256},
+ {256, 238, 256},
+ {256, 232, 256},
+ {256, 225, 256},
+ {256, 220, 256},
+ {256, 211, 256}
+ }
+ }, { // Unvoiced
+ { // Low offset
+ {256, 1, 256},
+ {256, 210, 256},
+ {256, 190, 256},
+ {256, 178, 256},
+ {256, 169, 256},
+ {256, 162, 256},
+ {256, 152, 256}
+ }, { // High offset
+ {256, 48, 256},
+ {256, 242, 256},
+ {256, 235, 256},
+ {256, 224, 256},
+ {256, 214, 256},
+ {256, 205, 256},
+ {256, 190, 256}
+ }
+ }, { // Voiced
+ { // Low offset
+ {256, 1, 256},
+ {256, 162, 256},
+ {256, 152, 256},
+ {256, 147, 256},
+ {256, 144, 256},
+ {256, 141, 256},
+ {256, 138, 256}
+ }, { // High offset
+ {256, 8, 256},
+ {256, 203, 256},
+ {256, 187, 256},
+ {256, 176, 256},
+ {256, 168, 256},
+ {256, 161, 256},
+ {256, 154, 256}
+ }
+ }
+};
+
+static const int16_t silk_stereo_weights[] = {
+ -13732, -10050, -8266, -7526, -6500, -5000, -2950, -820,
+ 820, 2950, 5000, 6500, 7526, 8266, 10050, 13732
+};
+
+static const uint8_t silk_lsf_s2_model_sel_nbmb[32][10] = {
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+ { 1, 3, 1, 2, 2, 1, 2, 1, 1, 1 },
+ { 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
+ { 1, 2, 2, 2, 2, 1, 2, 1, 1, 1 },
+ { 2, 3, 3, 3, 3, 2, 2, 2, 2, 2 },
+ { 0, 5, 3, 3, 2, 2, 2, 2, 1, 1 },
+ { 0, 2, 2, 2, 2, 2, 2, 2, 2, 1 },
+ { 2, 3, 6, 4, 4, 4, 5, 4, 5, 5 },
+ { 2, 4, 5, 5, 4, 5, 4, 6, 4, 4 },
+ { 2, 4, 4, 7, 4, 5, 4, 5, 5, 4 },
+ { 4, 3, 3, 3, 2, 3, 2, 2, 2, 2 },
+ { 1, 5, 5, 6, 4, 5, 4, 5, 5, 5 },
+ { 2, 7, 4, 6, 5, 5, 5, 5, 5, 5 },
+ { 2, 7, 5, 5, 5, 5, 5, 6, 5, 4 },
+ { 3, 3, 5, 4, 4, 5, 4, 5, 4, 4 },
+ { 2, 3, 3, 5, 5, 4, 4, 4, 4, 4 },
+ { 2, 4, 4, 6, 4, 5, 4, 5, 5, 5 },
+ { 2, 5, 4, 6, 5, 5, 5, 4, 5, 4 },
+ { 2, 7, 4, 5, 4, 5, 4, 5, 5, 5 },
+ { 2, 5, 4, 6, 7, 6, 5, 6, 5, 4 },
+ { 3, 6, 7, 4, 6, 5, 5, 6, 4, 5 },
+ { 2, 7, 6, 4, 4, 4, 5, 4, 5, 5 },
+ { 4, 5, 5, 4, 6, 6, 5, 6, 5, 4 },
+ { 2, 5, 5, 6, 5, 6, 4, 6, 4, 4 },
+ { 4, 5, 5, 5, 3, 7, 4, 5, 5, 4 },
+ { 2, 3, 4, 5, 5, 6, 4, 5, 5, 4 },
+ { 2, 3, 2, 3, 3, 4, 2, 3, 3, 3 },
+ { 1, 1, 2, 2, 2, 2, 2, 3, 2, 2 },
+ { 4, 5, 5, 6, 6, 6, 5, 6, 4, 5 },
+ { 3, 5, 5, 4, 4, 4, 4, 3, 3, 2 },
+ { 2, 5, 3, 7, 5, 5, 4, 4, 5, 4 },
+ { 4, 4, 5, 4, 5, 6, 5, 6, 5, 4 }
+};
+
+static const uint8_t silk_lsf_s2_model_sel_wb[32][16] = {
+ { 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 },
+ { 10, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 9, 9, 9, 8, 11 },
+ { 10, 13, 13, 11, 15, 12, 12, 13, 10, 13, 12, 13, 13, 12, 11, 11 },
+ { 8, 10, 9, 10, 10, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9 },
+ { 8, 14, 13, 12, 14, 12, 15, 13, 12, 12, 12, 13, 13, 12, 12, 11 },
+ { 8, 11, 13, 13, 12, 11, 11, 13, 11, 11, 11, 11, 11, 11, 10, 12 },
+ { 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 },
+ { 8, 10, 14, 11, 15, 10, 13, 11, 12, 13, 13, 12, 11, 11, 10, 11 },
+ { 8, 14, 10, 14, 14, 12, 13, 12, 14, 13, 12, 12, 13, 11, 11, 11 },
+ { 10, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 },
+ { 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9 },
+ { 10, 10, 11, 12, 13, 11, 11, 11, 11, 11, 11, 11, 10, 10, 9, 11 },
+ { 10, 10, 11, 11, 12, 11, 11, 11, 11, 11, 11, 11, 11, 10, 9, 11 },
+ { 11, 12, 12, 12, 14, 12, 12, 13, 11, 13, 12, 12, 13, 12, 11, 12 },
+ { 8, 14, 12, 13, 12, 15, 13, 10, 14, 13, 15, 12, 12, 11, 13, 11 },
+ { 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 9, 8 },
+ { 9, 14, 13, 15, 13, 12, 13, 11, 12, 13, 12, 12, 12, 11, 11, 12 },
+ { 9, 11, 11, 12, 12, 11, 11, 13, 10, 11, 11, 13, 13, 13, 11, 12 },
+ { 10, 11, 11, 10, 10, 10, 11, 10, 9, 10, 9, 10, 9, 9, 9, 12 },
+ { 8, 10, 11, 13, 11, 11, 10, 10, 10, 9, 9, 8, 8, 8, 8, 8 },
+ { 11, 12, 11, 13, 11, 11, 10, 10, 9, 9, 9, 9, 9, 10, 10, 12 },
+ { 10, 14, 11, 15, 15, 12, 13, 12, 13, 11, 13, 11, 11, 10, 11, 11 },
+ { 10, 11, 13, 14, 14, 11, 13, 11, 12, 12, 11, 11, 11, 11, 10, 12 },
+ { 9, 11, 11, 12, 12, 12, 12, 11, 13, 13, 13, 11, 9, 9, 9, 9 },
+ { 10, 13, 11, 14, 14, 12, 15, 12, 12, 13, 11, 12, 12, 11, 11, 11 },
+ { 8, 14, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 },
+ { 8, 14, 14, 11, 13, 10, 13, 13, 11, 12, 12, 15, 15, 12, 12, 12 },
+ { 11, 11, 15, 11, 13, 12, 11, 11, 11, 10, 10, 11, 11, 11, 10, 11 },
+ { 8, 8, 9, 8, 8, 8, 10, 9, 10, 9, 9, 10, 10, 10, 9, 9 },
+ { 8, 11, 10, 13, 11, 11, 10, 11, 10, 9, 8, 8, 9, 8, 8, 9 },
+ { 11, 13, 13, 12, 15, 13, 11, 11, 10, 11, 10, 10, 9, 8, 9, 8 },
+ { 10, 11, 13, 11, 12, 11, 11, 11, 10, 9, 10, 14, 12, 8, 8, 8 }
+};
+
+static const uint8_t silk_lsf_pred_weights_nbmb[2][9] = {
+ {179, 138, 140, 148, 151, 149, 153, 151, 163},
+ {116, 67, 82, 59, 92, 72, 100, 89, 92}
+};
+
+static const uint8_t silk_lsf_pred_weights_wb[2][15] = {
+ {175, 148, 160, 176, 178, 173, 174, 164, 177, 174, 196, 182, 198, 192, 182},
+ { 68, 62, 66, 60, 72, 117, 85, 90, 118, 136, 151, 142, 160, 142, 155}
+};
+
+static const uint8_t silk_lsf_weight_sel_nbmb[32][9] = {
+ { 0, 1, 0, 0, 0, 0, 0, 0, 0 },
+ { 1, 0, 0, 0, 0, 0, 0, 0, 0 },
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+ { 1, 1, 1, 0, 0, 0, 0, 1, 0 },
+ { 0, 1, 0, 0, 0, 0, 0, 0, 0 },
+ { 0, 1, 0, 0, 0, 0, 0, 0, 0 },
+ { 1, 0, 1, 1, 0, 0, 0, 1, 0 },
+ { 0, 1, 1, 0, 0, 1, 1, 0, 0 },
+ { 0, 0, 1, 1, 0, 1, 0, 1, 1 },
+ { 0, 0, 1, 1, 0, 0, 1, 1, 1 },
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+ { 0, 1, 0, 1, 1, 1, 1, 1, 0 },
+ { 0, 1, 0, 1, 1, 1, 1, 1, 0 },
+ { 0, 1, 1, 1, 1, 1, 1, 1, 0 },
+ { 1, 0, 1, 1, 0, 1, 1, 1, 1 },
+ { 0, 1, 1, 1, 1, 1, 0, 1, 0 },
+ { 0, 0, 1, 1, 0, 1, 0, 1, 0 },
+ { 0, 0, 1, 1, 1, 0, 1, 1, 1 },
+ { 0, 1, 1, 0, 0, 1, 1, 1, 0 },
+ { 0, 0, 0, 1, 1, 1, 0, 1, 0 },
+ { 0, 1, 1, 0, 0, 1, 0, 1, 0 },
+ { 0, 1, 1, 0, 0, 0, 1, 1, 0 },
+ { 0, 0, 0, 0, 0, 1, 1, 1, 1 },
+ { 0, 0, 1, 1, 0, 0, 0, 1, 1 },
+ { 0, 0, 0, 1, 0, 1, 1, 1, 1 },
+ { 0, 1, 1, 1, 1, 1, 1, 1, 0 },
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+ { 0, 0, 1, 0, 1, 1, 0, 1, 0 },
+ { 1, 0, 0, 1, 0, 0, 0, 0, 0 },
+ { 0, 0, 0, 1, 1, 0, 1, 0, 1 },
+ { 1, 0, 1, 1, 0, 1, 1, 1, 1 }
+};
+
+static const uint8_t silk_lsf_weight_sel_wb[32][15] = {
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+ { 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0 },
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 },
+ { 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0 },
+ { 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+ { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0 },
+ { 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1 },
+ { 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1 },
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
+ { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+ { 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0 },
+ { 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0 },
+ { 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0 },
+ { 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1 },
+ { 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0 },
+ { 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0 },
+ { 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0 },
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 },
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+ { 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0 },
+ { 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0 },
+ { 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0 },
+ { 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1 },
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
+ { 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1 },
+ { 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1 },
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
+ { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 },
+ { 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0 }
+};
+
+static const uint8_t silk_lsf_codebook_nbmb[32][10] = {
+ { 12, 35, 60, 83, 108, 132, 157, 180, 206, 228 },
+ { 15, 32, 55, 77, 101, 125, 151, 175, 201, 225 },
+ { 19, 42, 66, 89, 114, 137, 162, 184, 209, 230 },
+ { 12, 25, 50, 72, 97, 120, 147, 172, 200, 223 },
+ { 26, 44, 69, 90, 114, 135, 159, 180, 205, 225 },
+ { 13, 22, 53, 80, 106, 130, 156, 180, 205, 228 },
+ { 15, 25, 44, 64, 90, 115, 142, 168, 196, 222 },
+ { 19, 24, 62, 82, 100, 120, 145, 168, 190, 214 },
+ { 22, 31, 50, 79, 103, 120, 151, 170, 203, 227 },
+ { 21, 29, 45, 65, 106, 124, 150, 171, 196, 224 },
+ { 30, 49, 75, 97, 121, 142, 165, 186, 209, 229 },
+ { 19, 25, 52, 70, 93, 116, 143, 166, 192, 219 },
+ { 26, 34, 62, 75, 97, 118, 145, 167, 194, 217 },
+ { 25, 33, 56, 70, 91, 113, 143, 165, 196, 223 },
+ { 21, 34, 51, 72, 97, 117, 145, 171, 196, 222 },
+ { 20, 29, 50, 67, 90, 117, 144, 168, 197, 221 },
+ { 22, 31, 48, 66, 95, 117, 146, 168, 196, 222 },
+ { 24, 33, 51, 77, 116, 134, 158, 180, 200, 224 },
+ { 21, 28, 70, 87, 106, 124, 149, 170, 194, 217 },
+ { 26, 33, 53, 64, 83, 117, 152, 173, 204, 225 },
+ { 27, 34, 65, 95, 108, 129, 155, 174, 210, 225 },
+ { 20, 26, 72, 99, 113, 131, 154, 176, 200, 219 },
+ { 34, 43, 61, 78, 93, 114, 155, 177, 205, 229 },
+ { 23, 29, 54, 97, 124, 138, 163, 179, 209, 229 },
+ { 30, 38, 56, 89, 118, 129, 158, 178, 200, 231 },
+ { 21, 29, 49, 63, 85, 111, 142, 163, 193, 222 },
+ { 27, 48, 77, 103, 133, 158, 179, 196, 215, 232 },
+ { 29, 47, 74, 99, 124, 151, 176, 198, 220, 237 },
+ { 33, 42, 61, 76, 93, 121, 155, 174, 207, 225 },
+ { 29, 53, 87, 112, 136, 154, 170, 188, 208, 227 },
+ { 24, 30, 52, 84, 131, 150, 166, 186, 203, 229 },
+ { 37, 48, 64, 84, 104, 118, 156, 177, 201, 230 }
+};
+
+static const uint8_t silk_lsf_codebook_wb[32][16] = {
+ { 7, 23, 38, 54, 69, 85, 100, 116, 131, 147, 162, 178, 193, 208, 223, 239 },
+ { 13, 25, 41, 55, 69, 83, 98, 112, 127, 142, 157, 171, 187, 203, 220, 236 },
+ { 15, 21, 34, 51, 61, 78, 92, 106, 126, 136, 152, 167, 185, 205, 225, 240 },
+ { 10, 21, 36, 50, 63, 79, 95, 110, 126, 141, 157, 173, 189, 205, 221, 237 },
+ { 17, 20, 37, 51, 59, 78, 89, 107, 123, 134, 150, 164, 184, 205, 224, 240 },
+ { 10, 15, 32, 51, 67, 81, 96, 112, 129, 142, 158, 173, 189, 204, 220, 236 },
+ { 8, 21, 37, 51, 65, 79, 98, 113, 126, 138, 155, 168, 179, 192, 209, 218 },
+ { 12, 15, 34, 55, 63, 78, 87, 108, 118, 131, 148, 167, 185, 203, 219, 236 },
+ { 16, 19, 32, 36, 56, 79, 91, 108, 118, 136, 154, 171, 186, 204, 220, 237 },
+ { 11, 28, 43, 58, 74, 89, 105, 120, 135, 150, 165, 180, 196, 211, 226, 241 },
+ { 6, 16, 33, 46, 60, 75, 92, 107, 123, 137, 156, 169, 185, 199, 214, 225 },
+ { 11, 19, 30, 44, 57, 74, 89, 105, 121, 135, 152, 169, 186, 202, 218, 234 },
+ { 12, 19, 29, 46, 57, 71, 88, 100, 120, 132, 148, 165, 182, 199, 216, 233 },
+ { 17, 23, 35, 46, 56, 77, 92, 106, 123, 134, 152, 167, 185, 204, 222, 237 },
+ { 14, 17, 45, 53, 63, 75, 89, 107, 115, 132, 151, 171, 188, 206, 221, 240 },
+ { 9, 16, 29, 40, 56, 71, 88, 103, 119, 137, 154, 171, 189, 205, 222, 237 },
+ { 16, 19, 36, 48, 57, 76, 87, 105, 118, 132, 150, 167, 185, 202, 218, 236 },
+ { 12, 17, 29, 54, 71, 81, 94, 104, 126, 136, 149, 164, 182, 201, 221, 237 },
+ { 15, 28, 47, 62, 79, 97, 115, 129, 142, 155, 168, 180, 194, 208, 223, 238 },
+ { 8, 14, 30, 45, 62, 78, 94, 111, 127, 143, 159, 175, 192, 207, 223, 239 },
+ { 17, 30, 49, 62, 79, 92, 107, 119, 132, 145, 160, 174, 190, 204, 220, 235 },
+ { 14, 19, 36, 45, 61, 76, 91, 108, 121, 138, 154, 172, 189, 205, 222, 238 },
+ { 12, 18, 31, 45, 60, 76, 91, 107, 123, 138, 154, 171, 187, 204, 221, 236 },
+ { 13, 17, 31, 43, 53, 70, 83, 103, 114, 131, 149, 167, 185, 203, 220, 237 },
+ { 17, 22, 35, 42, 58, 78, 93, 110, 125, 139, 155, 170, 188, 206, 224, 240 },
+ { 8, 15, 34, 50, 67, 83, 99, 115, 131, 146, 162, 178, 193, 209, 224, 239 },
+ { 13, 16, 41, 66, 73, 86, 95, 111, 128, 137, 150, 163, 183, 206, 225, 241 },
+ { 17, 25, 37, 52, 63, 75, 92, 102, 119, 132, 144, 160, 175, 191, 212, 231 },
+ { 19, 31, 49, 65, 83, 100, 117, 133, 147, 161, 174, 187, 200, 213, 227, 242 },
+ { 18, 31, 52, 68, 88, 103, 117, 126, 138, 149, 163, 177, 192, 207, 223, 239 },
+ { 16, 29, 47, 61, 76, 90, 106, 119, 133, 147, 161, 176, 193, 209, 224, 240 },
+ { 15, 21, 35, 50, 61, 73, 86, 97, 110, 119, 129, 141, 175, 198, 218, 237 }
+};
+
+static const uint16_t silk_lsf_min_spacing_nbmb[] = {
+ 250, 3, 6, 3, 3, 3, 4, 3, 3, 3, 461
+};
+
+static const uint16_t silk_lsf_min_spacing_wb[] = {
+ 100, 3, 40, 3, 3, 3, 5, 14, 14, 10, 11, 3, 8, 9, 7, 3, 347
+};
+
+static const uint8_t silk_lsf_ordering_nbmb[] = {
+ 0, 9, 6, 3, 4, 5, 8, 1, 2, 7
+};
+
+static const uint8_t silk_lsf_ordering_wb[] = {
+ 0, 15, 8, 7, 4, 11, 12, 3, 2, 13, 10, 5, 6, 9, 14, 1
+};
+
+static const int16_t silk_cosine[] = { /* (0.12) */
+ 4096, 4095, 4091, 4085,
+ 4076, 4065, 4052, 4036,
+ 4017, 3997, 3973, 3948,
+ 3920, 3889, 3857, 3822,
+ 3784, 3745, 3703, 3659,
+ 3613, 3564, 3513, 3461,
+ 3406, 3349, 3290, 3229,
+ 3166, 3102, 3035, 2967,
+ 2896, 2824, 2751, 2676,
+ 2599, 2520, 2440, 2359,
+ 2276, 2191, 2106, 2019,
+ 1931, 1842, 1751, 1660,
+ 1568, 1474, 1380, 1285,
+ 1189, 1093, 995, 897,
+ 799, 700, 601, 501,
+ 401, 301, 201, 101,
+ 0, -101, -201, -301,
+ -401, -501, -601, -700,
+ -799, -897, -995, -1093,
+ -1189, -1285, -1380, -1474,
+ -1568, -1660, -1751, -1842,
+ -1931, -2019, -2106, -2191,
+ -2276, -2359, -2440, -2520,
+ -2599, -2676, -2751, -2824,
+ -2896, -2967, -3035, -3102,
+ -3166, -3229, -3290, -3349,
+ -3406, -3461, -3513, -3564,
+ -3613, -3659, -3703, -3745,
+ -3784, -3822, -3857, -3889,
+ -3920, -3948, -3973, -3997,
+ -4017, -4036, -4052, -4065,
+ -4076, -4085, -4091, -4095,
+ -4096
+};
+
+static const uint16_t silk_pitch_scale[] = { 4, 6, 8};
+
+static const uint16_t silk_pitch_min_lag[] = { 16, 24, 32};
+
+static const uint16_t silk_pitch_max_lag[] = {144, 216, 288};
+
+static const int8_t silk_pitch_offset_nb10ms[3][2] = {
+ { 0, 0},
+ { 1, 0},
+ { 0, 1}
+};
+
+static const int8_t silk_pitch_offset_nb20ms[11][4] = {
+ { 0, 0, 0, 0},
+ { 2, 1, 0, -1},
+ {-1, 0, 1, 2},
+ {-1, 0, 0, 1},
+ {-1, 0, 0, 0},
+ { 0, 0, 0, 1},
+ { 0, 0, 1, 1},
+ { 1, 1, 0, 0},
+ { 1, 0, 0, 0},
+ { 0, 0, 0, -1},
+ { 1, 0, 0, -1}
+};
+
+static const int8_t silk_pitch_offset_mbwb10ms[12][2] = {
+ { 0, 0},
+ { 0, 1},
+ { 1, 0},
+ {-1, 1},
+ { 1, -1},
+ {-1, 2},
+ { 2, -1},
+ {-2, 2},
+ { 2, -2},
+ {-2, 3},
+ { 3, -2},
+ {-3, 3}
+};
+
+static const int8_t silk_pitch_offset_mbwb20ms[34][4] = {
+ { 0, 0, 0, 0},
+ { 0, 0, 1, 1},
+ { 1, 1, 0, 0},
+ {-1, 0, 0, 0},
+ { 0, 0, 0, 1},
+ { 1, 0, 0, 0},
+ {-1, 0, 0, 1},
+ { 0, 0, 0, -1},
+ {-1, 0, 1, 2},
+ { 1, 0, 0, -1},
+ {-2, -1, 1, 2},
+ { 2, 1, 0, -1},
+ {-2, 0, 0, 2},
+ {-2, 0, 1, 3},
+ { 2, 1, -1, -2},
+ {-3, -1, 1, 3},
+ { 2, 0, 0, -2},
+ { 3, 1, 0, -2},
+ {-3, -1, 2, 4},
+ {-4, -1, 1, 4},
+ { 3, 1, -1, -3},
+ {-4, -1, 2, 5},
+ { 4, 2, -1, -3},
+ { 4, 1, -1, -4},
+ {-5, -1, 2, 6},
+ { 5, 2, -1, -4},
+ {-6, -2, 2, 6},
+ {-5, -2, 2, 5},
+ { 6, 2, -1, -5},
+ {-7, -2, 3, 8},
+ { 6, 2, -2, -6},
+ { 5, 2, -2, -5},
+ { 8, 3, -2, -7},
+ {-9, -3, 3, 9}
+};
+
+static const int8_t silk_ltp_filter0_taps[8][5] = {
+ { 4, 6, 24, 7, 5},
+ { 0, 0, 2, 0, 0},
+ { 12, 28, 41, 13, -4},
+ { -9, 15, 42, 25, 14},
+ { 1, -2, 62, 41, -9},
+ {-10, 37, 65, -4, 3},
+ { -6, 4, 66, 7, -8},
+ { 16, 14, 38, -3, 33}
+};
+
+static const int8_t silk_ltp_filter1_taps[16][5] = {
+ { 13, 22, 39, 23, 12},
+ { -1, 36, 64, 27, -6},
+ { -7, 10, 55, 43, 17},
+ { 1, 1, 8, 1, 1},
+ { 6, -11, 74, 53, -9},
+ {-12, 55, 76, -12, 8},
+ { -3, 3, 93, 27, -4},
+ { 26, 39, 59, 3, -8},
+ { 2, 0, 77, 11, 9},
+ { -8, 22, 44, -6, 7},
+ { 40, 9, 26, 3, 9},
+ { -7, 20, 101, -7, 4},
+ { 3, -8, 42, 26, 0},
+ {-15, 33, 68, 2, 23},
+ { -2, 55, 46, -2, 15},
+ { 3, -1, 21, 16, 41}
+};
+
+static const int8_t silk_ltp_filter2_taps[32][5] = {
+ { -6, 27, 61, 39, 5},
+ {-11, 42, 88, 4, 1},
+ { -2, 60, 65, 6, -4},
+ { -1, -5, 73, 56, 1},
+ { -9, 19, 94, 29, -9},
+ { 0, 12, 99, 6, 4},
+ { 8, -19, 102, 46, -13},
+ { 3, 2, 13, 3, 2},
+ { 9, -21, 84, 72, -18},
+ {-11, 46, 104, -22, 8},
+ { 18, 38, 48, 23, 0},
+ {-16, 70, 83, -21, 11},
+ { 5, -11, 117, 22, -8},
+ { -6, 23, 117, -12, 3},
+ { 3, -8, 95, 28, 4},
+ {-10, 15, 77, 60, -15},
+ { -1, 4, 124, 2, -4},
+ { 3, 38, 84, 24, -25},
+ { 2, 13, 42, 13, 31},
+ { 21, -4, 56, 46, -1},
+ { -1, 35, 79, -13, 19},
+ { -7, 65, 88, -9, -14},
+ { 20, 4, 81, 49, -29},
+ { 20, 0, 75, 3, -17},
+ { 5, -9, 44, 92, -8},
+ { 1, -3, 22, 69, 31},
+ { -6, 95, 41, -12, 5},
+ { 39, 67, 16, -4, 1},
+ { 0, -6, 120, 55, -36},
+ {-13, 44, 122, 4, -24},
+ { 81, 5, 11, 3, 7},
+ { 2, 0, 9, 10, 88}
+};
+
+static const uint16_t silk_ltp_scale_factor[] = {15565, 12288, 8192};
+
+static const uint8_t silk_shell_blocks[3][2] = {
+ { 5, 10}, // NB
+ { 8, 15}, // MB
+ {10, 20} // WB
+};
+
+static const uint8_t silk_quant_offset[2][2] = { /* (0.23) */
+ {25, 60}, // Inactive or Unvoiced
+ { 8, 25} // Voiced
+};
+
+static const int silk_stereo_interp_len[3] = {
+ 64, 96, 128
+};
+
+static inline void silk_stabilize_lsf(int16_t nlsf[16], int order, const uint16_t min_delta[17])
+{
+ int pass, i;
+ for (pass = 0; pass < 20; pass++) {
+ int k, min_diff = 0;
+ for (i = 0; i < order+1; i++) {
+ int low = i != 0 ? nlsf[i-1] : 0;
+ int high = i != order ? nlsf[i] : 32768;
+ int diff = (high - low) - (min_delta[i]);
+
+ if (diff < min_diff) {
+ min_diff = diff;
+ k = i;
+
+ if (pass == 20)
+ break;
+ }
+ }
+ if (min_diff == 0) /* no issues; stabilized */
+ return;
+
+ /* wiggle one or two LSFs */
+ if (k == 0) {
+ /* repel away from lower bound */
+ nlsf[0] = min_delta[0];
+ } else if (k == order) {
+ /* repel away from higher bound */
+ nlsf[order-1] = 32768 - min_delta[order];
+ } else {
+ /* repel away from current position */
+ int min_center = 0, max_center = 32768, center_val;
+
+ /* lower extent */
+ for (i = 0; i < k; i++)
+ min_center += min_delta[i];
+ min_center += min_delta[k] >> 1;
+
+ /* upper extent */
+ for (i = order; i > k; i--)
+ max_center -= min_delta[k];
+ max_center -= min_delta[k] >> 1;
+
+ /* move apart */
+ center_val = nlsf[k - 1] + nlsf[k];
+ center_val = (center_val >> 1) + (center_val & 1); // rounded divide by 2
+ center_val = FFMIN(max_center, FFMAX(min_center, center_val));
+
+ nlsf[k - 1] = center_val - (min_delta[k] >> 1);
+ nlsf[k] = nlsf[k - 1] + min_delta[k];
+ }
+ }
+
+ /* resort to the fall-back method, the standard method for LSF stabilization */
+
+ /* sort; as the LSFs should be nearly sorted, use insertion sort */
+ for (i = 1; i < order; i++) {
+ int j, value = nlsf[i];
+ for (j = i - 1; j >= 0 && nlsf[j] > value; j--)
+ nlsf[j + 1] = nlsf[j];
+ nlsf[j + 1] = value;
+ }
+
+ /* push forwards to increase distance */
+ if (nlsf[0] < min_delta[0])
+ nlsf[0] = min_delta[0];
+ for (i = 1; i < order; i++)
+ if (nlsf[i] < nlsf[i - 1] + min_delta[i])
+ nlsf[i] = nlsf[i - 1] + min_delta[i];
+
+ /* push backwards to increase distance */
+ if (nlsf[order-1] > 32768 - min_delta[order])
+ nlsf[order-1] = 32768 - min_delta[order];
+ for (i = order-2; i >= 0; i--)
+ if (nlsf[i] > nlsf[i + 1] - min_delta[i+1])
+ nlsf[i] = nlsf[i + 1] - min_delta[i+1];
+
+ return;
+}
+
+static inline int silk_is_lpc_stable(const int16_t lpc[16], int order)
+{
+ int k, j, DC_resp = 0;
+ int32_t lpc32[2][16]; // Q24
+ int totalinvgain = 1 << 30; // 1.0 in Q30
+ int32_t *row = lpc32[0], *prevrow;
+
+ /* initialize the first row for the Levinson recursion */
+ for (k = 0; k < order; k++) {
+ DC_resp += lpc[k];
+ row[k] = lpc[k] * 4096;
+ }
+
+ if (DC_resp >= 4096)
+ return 0;
+
+ /* check if prediction gain pushes any coefficients too far */
+ for (k = order - 1; 1; k--) {
+ int rc; // Q31; reflection coefficient
+ int gaindiv; // Q30; inverse of the gain (the divisor)
+ int gain; // gain for this reflection coefficient
+ int fbits; // fractional bits used for the gain
+ int error; // Q29; estimate of the error of our partial estimate of 1/gaindiv
+
+ if (FFABS(row[k]) > 16773022)
+ return 0;
+
+ rc = -(row[k] * 128);
+ gaindiv = (1 << 30) - MULH(rc, rc);
+
+ totalinvgain = MULH(totalinvgain, gaindiv) << 2;
+ if (k == 0)
+ return (totalinvgain >= 107374);
+
+ /* approximate 1.0/gaindiv */
+ fbits = opus_ilog(gaindiv);
+ gain = ((1 << 29) - 1) / (gaindiv >> (fbits + 1 - 16)); // Q<fbits-16>
+ error = (1 << 29) - MULL(gaindiv << (15 + 16 - fbits), gain, 16);
+ gain = ((gain << 16) + (error * gain >> 13));
+
+ /* switch to the next row of the LPC coefficients */
+ prevrow = row;
+ row = lpc32[k & 1];
+
+ for (j = 0; j < k; j++) {
+ int x = prevrow[j] - ROUND_MULL(prevrow[k - j - 1], rc, 31);
+ row[j] = ROUND_MULL(x, gain, fbits);
+ }
+ }
+}
+
+static void silk_lsp2poly(const int32_t lsp[16], int32_t pol[16], int half_order)
+{
+ int i, j;
+
+ pol[0] = 65536; // 1.0 in Q16
+ pol[1] = -lsp[0];
+
+ for (i = 1; i < half_order; i++) {
+ pol[i + 1] = pol[i - 1] * 2 - ROUND_MULL(lsp[2 * i], pol[i], 16);
+ for (j = i; j > 1; j--)
+ pol[j] += pol[j - 2] - ROUND_MULL(lsp[2 * i], pol[j - 1], 16);
+
+ pol[1] -= lsp[2 * i];
+ }
+}
+
+static void silk_lsf2lpc(const int16_t nlsf[16], float lpcf[16], int order)
+{
+ int i, k;
+ int32_t lsp[16]; // Q17; 2*cos(LSF)
+ int32_t p[9], q[9]; // Q16
+ int32_t lpc32[16]; // Q17
+ int16_t lpc[16]; // Q12
+
+ /* convert the LSFs to LSPs, i.e. 2*cos(LSF) */
+ for (k = 0; k < order; k++) {
+ int index = nlsf[k] >> 8;
+ int offset = nlsf[k] & 255;
+ int k2 = (order == 10) ? silk_lsf_ordering_nbmb[k] : silk_lsf_ordering_wb[k];
+
+ /* interpolate and round */
+ lsp[k2] = silk_cosine[index] * 256;
+ lsp[k2] += (silk_cosine[index + 1] - silk_cosine[index]) * offset;
+ lsp[k2] = (lsp[k2] + 4) >> 3;
+ }
+
+ silk_lsp2poly(lsp , p, order >> 1);
+ silk_lsp2poly(lsp + 1, q, order >> 1);
+
+ /* reconstruct A(z) */
+ for (k = 0; k < order>>1; k++) {
+ lpc32[k] = -p[k + 1] - p[k] - q[k + 1] + q[k];
+ lpc32[order-k-1] = -p[k + 1] - p[k] + q[k + 1] - q[k];
+ }
+
+ /* limit the range of the LPC coefficients to each fit within an int16_t */
+ for (i = 0; i < 10; i++) {
+ int j;
+ unsigned int maxabs = 0;
+ for (j = 0, k = 0; j < order; j++) {
+ unsigned int x = FFABS(lpc32[k]);
+ if (x > maxabs) {
+ maxabs = x; // Q17
+ k = j;
+ }
+ }
+
+ maxabs = (maxabs + 16) >> 5; // convert to Q12
+
+ if (maxabs > 32767) {
+ /* perform bandwidth expansion */
+ unsigned int chirp, chirp_base; // Q16
+ maxabs = FFMIN(maxabs, 163838); // anything above this overflows chirp's numerator
+ chirp_base = chirp = 65470 - ((maxabs - 32767) << 14) / ((maxabs * (k+1)) >> 2);
+
+ for (k = 0; k < order; k++) {
+ lpc32[k] = ROUND_MULL(lpc32[k], chirp, 16);
+ chirp = (chirp_base * chirp + 32768) >> 16;
+ }
+ } else break;
+ }
+
+ if (i == 10) {
+ /* time's up: just clamp */
+ for (k = 0; k < order; k++) {
+ int x = (lpc32[k] + 16) >> 5;
+ lpc[k] = av_clip_int16(x);
+ lpc32[k] = lpc[k] << 5; // shortcut mandated by the spec; drops lower 5 bits
+ }
+ } else {
+ for (k = 0; k < order; k++)
+ lpc[k] = (lpc32[k] + 16) >> 5;
+ }
+
+ /* if the prediction gain causes the LPC filter to become unstable,
+ apply further bandwidth expansion on the Q17 coefficients */
+ for (i = 1; i <= 16 && !silk_is_lpc_stable(lpc, order); i++) {
+ unsigned int chirp, chirp_base;
+ chirp_base = chirp = 65536 - (1 << i);
+
+ for (k = 0; k < order; k++) {
+ lpc32[k] = ROUND_MULL(lpc32[k], chirp, 16);
+ lpc[k] = (lpc32[k] + 16) >> 5;
+ chirp = (chirp_base * chirp + 32768) >> 16;
+ }
+ }
+
+ for (i = 0; i < order; i++)
+ lpcf[i] = lpc[i] / 4096.0f;
+}
+
+static inline void silk_decode_lpc(SilkContext *s, SilkFrame *frame,
+ OpusRangeCoder *rc,
+ float lpc_leadin[16], float lpc[16],
+ int *lpc_order, int *has_lpc_leadin, int voiced)
+{
+ int i;
+ int order; // order of the LP polynomial; 10 for NB/MB and 16 for WB
+ int8_t lsf_i1, lsf_i2[16]; // stage-1 and stage-2 codebook indices
+ int16_t lsf_res[16]; // residual as a Q10 value
+ int16_t nlsf[16]; // Q15
+
+ *lpc_order = order = s->wb ? 16 : 10;
+
+ /* obtain LSF stage-1 and stage-2 indices */
+ lsf_i1 = opus_rc_getsymbol(rc, silk_model_lsf_s1[s->wb][voiced]);
+ for (i = 0; i < order; i++) {
+ int index = s->wb ? silk_lsf_s2_model_sel_wb [lsf_i1][i] :
+ silk_lsf_s2_model_sel_nbmb[lsf_i1][i];
+ lsf_i2[i] = opus_rc_getsymbol(rc, silk_model_lsf_s2[index]) - 4;
+ if (lsf_i2[i] == -4)
+ lsf_i2[i] -= opus_rc_getsymbol(rc, silk_model_lsf_s2_ext);
+ else if (lsf_i2[i] == 4)
+ lsf_i2[i] += opus_rc_getsymbol(rc, silk_model_lsf_s2_ext);
+ }
+
+ /* reverse the backwards-prediction step */
+ for (i = order - 1; i >= 0; i--) {
+ int qstep = s->wb ? 9830 : 11796;
+
+ lsf_res[i] = lsf_i2[i] * 1024;
+ if (lsf_i2[i] < 0) lsf_res[i] += 102;
+ else if (lsf_i2[i] > 0) lsf_res[i] -= 102;
+ lsf_res[i] = (lsf_res[i] * qstep) >> 16;
+
+ if (i + 1 < order) {
+ int weight = s->wb ? silk_lsf_pred_weights_wb [silk_lsf_weight_sel_wb [lsf_i1][i]][i] :
+ silk_lsf_pred_weights_nbmb[silk_lsf_weight_sel_nbmb[lsf_i1][i]][i];
+ lsf_res[i] += (lsf_res[i+1] * weight) >> 8;
+ }
+ }
+
+ /* reconstruct the NLSF coefficients from the supplied indices */
+ for (i = 0; i < order; i++) {
+ const uint8_t * codebook = s->wb ? silk_lsf_codebook_wb [lsf_i1] :
+ silk_lsf_codebook_nbmb[lsf_i1];
+ int cur, prev, next, weight_sq, weight, ipart, fpart, y, value;
+
+ /* find the weight of the residual */
+ /* TODO: precompute */
+ cur = codebook[i];
+ prev = i ? codebook[i - 1] : 0;
+ next = i + 1 < order ? codebook[i + 1] : 256;
+ weight_sq = (1024 / (cur - prev) + 1024 / (next - cur)) << 16;
+
+ /* approximate square-root with mandated fixed-point arithmetic */
+ ipart = opus_ilog(weight_sq);
+ fpart = (weight_sq >> (ipart-8)) & 127;
+ y = ((ipart & 1) ? 32768 : 46214) >> ((32 - ipart)>>1);
+ weight = y + ((213 * fpart * y) >> 16);
+
+ value = cur * 128 + (lsf_res[i] * 16384) / weight;
+ nlsf[i] = av_clip(value, 0, 32767);
+ }
+
+ /* stabilize the NLSF coefficients */
+ silk_stabilize_lsf(nlsf, order, s->wb ? silk_lsf_min_spacing_wb :
+ silk_lsf_min_spacing_nbmb);
+
+ /* produce an interpolation for the first 2 subframes, */
+ /* and then convert both sets of NLSFs to LPC coefficients */
+ *has_lpc_leadin = 0;
+ if (s->subframes == 4) {
+ int offset = opus_rc_getsymbol(rc, silk_model_lsf_interpolation_offset);
+ if (offset != 4 && frame->coded) {
+ *has_lpc_leadin = 1;
+ if (offset != 0) {
+ int16_t nlsf_leadin[16];
+ for (i = 0; i < order; i++)
+ nlsf_leadin[i] = frame->nlsf[i] +
+ ((nlsf[i] - frame->nlsf[i]) * offset >> 2);
+ silk_lsf2lpc(nlsf_leadin, lpc_leadin, order);
+ } else /* avoid re-computation for a (roughly) 1-in-4 occurrence */
+ memcpy(lpc_leadin, frame->lpc, 16 * sizeof(float));
+ } else
+ offset = 4;
+ s->nlsf_interp_factor = offset;
+
+ silk_lsf2lpc(nlsf, lpc, order);
+ } else {
+ s->nlsf_interp_factor = 4;
+ silk_lsf2lpc(nlsf, lpc, order);
+ }
+
+ memcpy(frame->nlsf, nlsf, order * sizeof(nlsf[0]));
+ memcpy(frame->lpc, lpc, order * sizeof(lpc[0]));
+}
+
+static inline void silk_count_children(OpusRangeCoder *rc, int model, int32_t total,
+ int32_t child[2])
+{
+ if (total != 0) {
+ child[0] = opus_rc_getsymbol(rc,
+ silk_model_pulse_location[model] + (((total - 1 + 5) * (total - 1)) >> 1));
+ child[1] = total - child[0];
+ } else {
+ child[0] = 0;
+ child[1] = 0;
+ }
+}
+
+static inline void silk_decode_excitation(SilkContext *s, OpusRangeCoder *rc,
+ float* excitationf,
+ int qoffset_high, int active, int voiced)
+{
+ int i;
+ uint32_t seed;
+ int shellblocks;
+ int ratelevel;
+ uint8_t pulsecount[20]; // total pulses in each shell block
+ uint8_t lsbcount[20] = {0}; // raw lsbits defined for each pulse in each shell block
+ int32_t excitation[320]; // Q23
+
+ /* excitation parameters */
+ seed = opus_rc_getsymbol(rc, silk_model_lcg_seed);
+ shellblocks = silk_shell_blocks[s->bandwidth][s->subframes >> 2];
+ ratelevel = opus_rc_getsymbol(rc, silk_model_exc_rate[voiced]);
+
+ for (i = 0; i < shellblocks; i++) {
+ pulsecount[i] = opus_rc_getsymbol(rc, silk_model_pulse_count[ratelevel]);
+ if (pulsecount[i] == 17) {
+ while (pulsecount[i] == 17 && ++lsbcount[i] != 10)
+ pulsecount[i] = opus_rc_getsymbol(rc, silk_model_pulse_count[9]);
+ if (lsbcount[i] == 10)
+ pulsecount[i] = opus_rc_getsymbol(rc, silk_model_pulse_count[10]);
+ }
+ }
+
+ /* decode pulse locations using PVQ */
+ for (i = 0; i < shellblocks; i++) {
+ if (pulsecount[i] != 0) {
+ int a, b, c, d;
+ int32_t * location = excitation + 16*i;
+ int32_t branch[4][2];
+ branch[0][0] = pulsecount[i];
+
+ /* unrolled tail recursion */
+ for (a = 0; a < 1; a++) {
+ silk_count_children(rc, 0, branch[0][a], branch[1]);
+ for (b = 0; b < 2; b++) {
+ silk_count_children(rc, 1, branch[1][b], branch[2]);
+ for (c = 0; c < 2; c++) {
+ silk_count_children(rc, 2, branch[2][c], branch[3]);
+ for (d = 0; d < 2; d++) {
+ silk_count_children(rc, 3, branch[3][d], location);
+ location += 2;
+ }
+ }
+ }
+ }
+ } else
+ memset(excitation + 16*i, 0, 16*sizeof(int32_t));
+ }
+
+ /* decode least significant bits */
+ for (i = 0; i < shellblocks << 4; i++) {
+ int bit;
+ for (bit = 0; bit < lsbcount[i >> 4]; bit++)
+ excitation[i] = (excitation[i] << 1) |
+ opus_rc_getsymbol(rc, silk_model_excitation_lsb);
+ }
+
+ /* decode signs */
+ for (i = 0; i < shellblocks << 4; i++) {
+ if (excitation[i] != 0) {
+ int sign = opus_rc_getsymbol(rc, silk_model_excitation_sign[active +
+ voiced][qoffset_high][FFMIN(pulsecount[i >> 4], 6)]);
+ if (sign == 0)
+ excitation[i] *= -1;
+ }
+ }
+
+ /* assemble the excitation */
+ for (i = 0; i < shellblocks << 4; i++) {
+ int value = excitation[i];
+ excitation[i] = value * 256 | silk_quant_offset[voiced][qoffset_high];
+ if (value < 0) excitation[i] += 20;
+ else if (value > 0) excitation[i] -= 20;
+
+ /* invert samples pseudorandomly */
+ seed = 196314165 * seed + 907633515;
+ if (seed & 0x80000000)
+ excitation[i] *= -1;
+ seed += value;
+
+ excitationf[i] = excitation[i] / 8388608.0f;
+ }
+}
+
+/** Maximum residual history according to 4.2.7.6.1 */
+#define SILK_MAX_LAG (288 + LTP_ORDER / 2)
+
+/** Order of the LTP filter */
+#define LTP_ORDER 5
+
+static void silk_decode_frame(SilkContext *s, OpusRangeCoder *rc,
+ int frame_num, int channel, int coded_channels, int active, int active1)
+{
+ /* per frame */
+ int voiced; // combines with active to indicate inactive, active, or active+voiced
+ int qoffset_high;
+ int order; // order of the LPC coefficients
+ float lpc_leadin[16], lpc_body[16], residual[SILK_MAX_LAG + SILK_HISTORY];
+ int has_lpc_leadin;
+ float ltpscale;
+
+ /* per subframe */
+ struct {
+ float gain;
+ int pitchlag;
+ float ltptaps[5];
+ } sf[4];
+
+ SilkFrame * const frame = s->frame + channel;
+
+ int i;
+
+ /* obtain stereo weights */
+ if (coded_channels == 2 && channel == 0) {
+ int n, wi[2], ws[2], w[2];
+ n = opus_rc_getsymbol(rc, silk_model_stereo_s1);
+ wi[0] = opus_rc_getsymbol(rc, silk_model_stereo_s2) + 3 * (n / 5);
+ ws[0] = opus_rc_getsymbol(rc, silk_model_stereo_s3);
+ wi[1] = opus_rc_getsymbol(rc, silk_model_stereo_s2) + 3 * (n % 5);
+ ws[1] = opus_rc_getsymbol(rc, silk_model_stereo_s3);
+
+ for (i = 0; i < 2; i++)
+ w[i] = silk_stereo_weights[wi[i]] +
+ (((silk_stereo_weights[wi[i] + 1] - silk_stereo_weights[wi[i]]) * 6554) >> 16)
+ * (ws[i]*2 + 1);
+
+ s->stereo_weights[0] = (w[0] - w[1]) / 8192.0;
+ s->stereo_weights[1] = w[1] / 8192.0;
+
+ /* and read the mid-only flag */
+ s->midonly = active1 ? 0 : opus_rc_getsymbol(rc, silk_model_mid_only);
+ }
+
+ /* obtain frame type */
+ if (!active) {
+ qoffset_high = opus_rc_getsymbol(rc, silk_model_frame_type_inactive);
+ voiced = 0;
+ } else {
+ int type = opus_rc_getsymbol(rc, silk_model_frame_type_active);
+ qoffset_high = type & 1;
+ voiced = type >> 1;
+ }
+
+ /* obtain subframe quantization gains */
+ for (i = 0; i < s->subframes; i++) {
+ int log_gain; //Q7
+ int ipart, fpart, lingain;
+
+ if (i == 0 && (frame_num == 0 || !frame->coded)) {
+ /* gain is coded absolute */
+ int x = opus_rc_getsymbol(rc, silk_model_gain_highbits[active + voiced]);
+ log_gain = (x<<3) | opus_rc_getsymbol(rc, silk_model_gain_lowbits);
+
+ if (frame->coded)
+ log_gain = FFMAX(log_gain, frame->log_gain - 16);
+ } else {
+ /* gain is coded relative */
+ int delta_gain = opus_rc_getsymbol(rc, silk_model_gain_delta);
+ log_gain = av_clip(FFMAX((delta_gain<<1) - 16,
+ frame->log_gain + delta_gain - 4), 0, 63);
+ }
+
+ frame->log_gain = log_gain;
+
+ /* approximate 2**(x/128) with a Q7 (i.e. non-integer) input */
+ log_gain = (log_gain * 0x1D1C71 >> 16) + 2090;
+ ipart = log_gain >> 7;
+ fpart = log_gain & 127;
+ lingain = (1 << ipart) + ((-174 * fpart * (128-fpart) >>16) + fpart) * ((1<<ipart) >> 7);
+ sf[i].gain = lingain / 65536.0f;
+ }
+
+ /* obtain LPC filter coefficients */
+ silk_decode_lpc(s, frame, rc, lpc_leadin, lpc_body, &order, &has_lpc_leadin, voiced);
+
+ /* obtain pitch lags, if this is a voiced frame */
+ if (voiced) {
+ int lag_absolute = (!frame_num || !frame->prev_voiced);
+ int primarylag; // primary pitch lag for the entire SILK frame
+ int ltpfilter;
+ const int8_t * offsets;
+
+ if (!lag_absolute) {
+ int delta = opus_rc_getsymbol(rc, silk_model_pitch_delta);
+ if (delta)
+ primarylag = frame->primarylag + delta - 9;
+ else
+ lag_absolute = 1;
+ }
+
+ if (lag_absolute) {
+ /* primary lag is coded absolute */
+ int highbits, lowbits;
+ const uint16_t *model[] = {
+ silk_model_pitch_lowbits_nb, silk_model_pitch_lowbits_mb,
+ silk_model_pitch_lowbits_wb
+ };
+ highbits = opus_rc_getsymbol(rc, silk_model_pitch_highbits);
+ lowbits = opus_rc_getsymbol(rc, model[s->bandwidth]);
+
+ primarylag = silk_pitch_min_lag[s->bandwidth] +
+ highbits*silk_pitch_scale[s->bandwidth] + lowbits;
+ }
+ frame->primarylag = primarylag;
+
+ if (s->subframes == 2)
+ offsets = (s->bandwidth == OPUS_BANDWIDTH_NARROWBAND)
+ ? silk_pitch_offset_nb10ms[opus_rc_getsymbol(rc,
+ silk_model_pitch_contour_nb10ms)]
+ : silk_pitch_offset_mbwb10ms[opus_rc_getsymbol(rc,
+ silk_model_pitch_contour_mbwb10ms)];
+ else
+ offsets = (s->bandwidth == OPUS_BANDWIDTH_NARROWBAND)
+ ? silk_pitch_offset_nb20ms[opus_rc_getsymbol(rc,
+ silk_model_pitch_contour_nb20ms)]
+ : silk_pitch_offset_mbwb20ms[opus_rc_getsymbol(rc,
+ silk_model_pitch_contour_mbwb20ms)];
+
+ for (i = 0; i < s->subframes; i++)
+ sf[i].pitchlag = av_clip(primarylag + offsets[i],
+ silk_pitch_min_lag[s->bandwidth],
+ silk_pitch_max_lag[s->bandwidth]);
+
+ /* obtain LTP filter coefficients */
+ ltpfilter = opus_rc_getsymbol(rc, silk_model_ltp_filter);
+ for (i = 0; i < s->subframes; i++) {
+ int index, j;
+ const uint16_t *filter_sel[] = {
+ silk_model_ltp_filter0_sel, silk_model_ltp_filter1_sel,
+ silk_model_ltp_filter2_sel
+ };
+ const int8_t (*filter_taps[])[5] = {
+ silk_ltp_filter0_taps, silk_ltp_filter1_taps, silk_ltp_filter2_taps
+ };
+ index = opus_rc_getsymbol(rc, filter_sel[ltpfilter]);
+ for (j = 0; j < 5; j++)
+ sf[i].ltptaps[j] = filter_taps[ltpfilter][index][j] / 128.0f;
+ }
+ }
+
+ /* obtain LTP scale factor */
+ if (voiced && frame_num == 0)
+ ltpscale = silk_ltp_scale_factor[opus_rc_getsymbol(rc,
+ silk_model_ltp_scale_index)] / 16384.0f;
+ else ltpscale = 15565.0f/16384.0f;
+
+ /* generate the excitation signal for the entire frame */
+ silk_decode_excitation(s, rc, residual + SILK_MAX_LAG, qoffset_high,
+ active, voiced);
+
+ /* skip synthesising the side channel if we want mono-only */
+ if (s->output_channels == channel)
+ return;
+
+ /* generate the output signal */
+ for (i = 0; i < s->subframes; i++) {
+ const float * lpc_coeff = (i < 2 && has_lpc_leadin) ? lpc_leadin : lpc_body;
+ float *dst = frame->output + SILK_HISTORY + i * s->sflength;
+ float *resptr = residual + SILK_MAX_LAG + i * s->sflength;
+ float *lpc = frame->lpc_history + SILK_HISTORY + i * s->sflength;
+ float sum;
+ int j, k;
+
+ if (voiced) {
+ int out_end;
+ float scale;
+
+ if (i < 2 || s->nlsf_interp_factor == 4) {
+ out_end = -i * s->sflength;
+ scale = ltpscale;
+ } else {
+ out_end = -(i - 2) * s->sflength;
+ scale = 1.0f;
+ }
+
+ /* when the LPC coefficients change, a re-whitening filter is used */
+ /* to produce a residual that accounts for the change */
+ for (j = - sf[i].pitchlag - LTP_ORDER/2; j < out_end; j++) {
+ sum = dst[j];
+ for (k = 0; k < order; k++)
+ sum -= lpc_coeff[k] * dst[j - k - 1];
+ resptr[j] = av_clipf(sum, -1.0f, 1.0f) * scale / sf[i].gain;
+ }
+
+ if (out_end) {
+ float rescale = sf[i-1].gain / sf[i].gain;
+ for (j = out_end; j < 0; j++)
+ resptr[j] *= rescale;
+ }
+
+ /* LTP synthesis */
+ for (j = 0; j < s->sflength; j++) {
+ sum = resptr[j];
+ for (k = 0; k < LTP_ORDER; k++)
+ sum += sf[i].ltptaps[k] * resptr[j - sf[i].pitchlag + LTP_ORDER/2 - k];
+ resptr[j] = sum;
+ }
+ }
+
+ /* LPC synthesis */
+ for (j = 0; j < s->sflength; j++) {
+ sum = resptr[j] * sf[i].gain;
+ for (k = 1; k <= order; k++)
+ sum += lpc_coeff[k - 1] * lpc[j - k];
+
+ lpc[j] = sum;
+ dst[j] = av_clipf(sum, -1.0f, 1.0f);
+ }
+ }
+
+ frame->prev_voiced = voiced;
+ memmove(frame->lpc_history, frame->lpc_history + s->flength, SILK_HISTORY * sizeof(float));
+ memmove(frame->output, frame->output + s->flength, SILK_HISTORY * sizeof(float));
+
+ frame->coded = 1;
+}
+
+static void silk_unmix_ms(SilkContext *s, float *l, float *r)
+{
+ float *mid = s->frame[0].output + SILK_HISTORY - s->flength;
+ float *side = s->frame[1].output + SILK_HISTORY - s->flength;
+ float w0_prev = s->prev_stereo_weights[0];
+ float w1_prev = s->prev_stereo_weights[1];
+ float w0 = s->stereo_weights[0];
+ float w1 = s->stereo_weights[1];
+ int n1 = silk_stereo_interp_len[s->bandwidth];
+ int i;
+
+ for (i = 0; i < n1; i++) {
+ float interp0 = w0_prev + i * (w0 - w0_prev) / n1;
+ float interp1 = w1_prev + i * (w1 - w1_prev) / n1;
+ float p0 = 0.25 * (mid[i - 2] + 2 * mid[i - 1] + mid[i]);
+
+ l[i] = av_clipf((1 + interp1) * mid[i - 1] + side[i - 1] + interp0 * p0, -1.0, 1.0);
+ r[i] = av_clipf((1 - interp1) * mid[i - 1] - side[i - 1] - interp0 * p0, -1.0, 1.0);
+ }
+
+ for (; i < s->flength; i++) {
+ float p0 = 0.25 * (mid[i - 2] + 2 * mid[i - 1] + mid[i]);
+
+ l[i] = av_clipf((1 + w1) * mid[i - 1] + side[i - 1] + w0 * p0, -1.0, 1.0);
+ r[i] = av_clipf((1 - w1) * mid[i - 1] - side[i - 1] - w0 * p0, -1.0, 1.0);
+ }
+
+ memcpy(s->prev_stereo_weights, s->stereo_weights, sizeof(s->stereo_weights));
+}
+
+static void silk_flush_frame(SilkFrame *frame)
+{
+ if (!frame->coded)
+ return;
+
+ memset(frame->output, 0, sizeof(frame->output));
+ memset(frame->lpc_history, 0, sizeof(frame->lpc_history));
+
+ memset(frame->lpc, 0, sizeof(frame->lpc));
+ memset(frame->nlsf, 0, sizeof(frame->nlsf));
+
+ frame->log_gain = 0;
+
+ frame->primarylag = 0;
+ frame->prev_voiced = 0;
+ frame->coded = 0;
+}
+
+int ff_silk_decode_superframe(SilkContext *s, OpusRangeCoder *rc,
+ float *output[2],
+ enum OpusBandwidth bandwidth,
+ int coded_channels,
+ int duration_ms)
+{
+ int active[2][6], redundancy[2];
+ int nb_frames, i, j;
+
+ if (bandwidth > OPUS_BANDWIDTH_WIDEBAND ||
+ coded_channels > 2 || duration_ms > 60) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid parameters passed "
+ "to the SILK decoder.\n");
+ return AVERROR(EINVAL);
+ }
+
+ nb_frames = 1 + (duration_ms > 20) + (duration_ms > 40);
+ s->subframes = duration_ms / nb_frames / 5; // 5ms subframes
+ s->sflength = 20 * (bandwidth + 2);
+ s->flength = s->sflength * s->subframes;
+ s->bandwidth = bandwidth;
+ s->wb = bandwidth == OPUS_BANDWIDTH_WIDEBAND;
+
+ /* make sure to flush the side channel when switching from mono to stereo */
+ if (coded_channels > s->prev_coded_channels)
+ silk_flush_frame(&s->frame[1]);
+ s->prev_coded_channels = coded_channels;
+
+ /* read the LP-layer header bits */
+ for (i = 0; i < coded_channels; i++) {
+ for (j = 0; j < nb_frames; j++)
+ active[i][j] = opus_rc_p2model(rc, 1);
+
+ redundancy[i] = opus_rc_p2model(rc, 1);
+ if (redundancy[i]) {
+ av_log(s->avctx, AV_LOG_ERROR, "LBRR frames present; this is unsupported\n");
+ return AVERROR_PATCHWELCOME;
+ }
+ }
+
+ for (i = 0; i < nb_frames; i++) {
+ for (j = 0; j < coded_channels && !s->midonly; j++)
+ silk_decode_frame(s, rc, i, j, coded_channels, active[j][i], active[1][i]);
+
+ /* reset the side channel if it is not coded */
+ if (s->midonly && s->frame[1].coded)
+ silk_flush_frame(&s->frame[1]);
+
+ if (coded_channels == 1 || s->output_channels == 1) {
+ for (j = 0; j < s->output_channels; j++) {
+ memcpy(output[j] + i * s->flength,
+ s->frame[0].output + SILK_HISTORY - s->flength - 2,
+ s->flength * sizeof(float));
+ }
+ } else {
+ silk_unmix_ms(s, output[0] + i * s->flength, output[1] + i * s->flength);
+ }
+
+ s->midonly = 0;
+ }
+
+ return nb_frames * s->flength;
+}
+
+void ff_silk_free(SilkContext **ps)
+{
+ av_freep(ps);
+}
+
+void ff_silk_flush(SilkContext *s)
+{
+ silk_flush_frame(&s->frame[0]);
+ silk_flush_frame(&s->frame[1]);
+
+ memset(s->prev_stereo_weights, 0, sizeof(s->prev_stereo_weights));
+}
+
+int ff_silk_init(AVCodecContext *avctx, SilkContext **ps, int output_channels)
+{
+ SilkContext *s;
+
+ if (output_channels != 1 && output_channels != 2) {
+ av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n",
+ output_channels);
+ return AVERROR(EINVAL);
+ }
+
+ s = av_mallocz(sizeof(*s));
+ if (!s)
+ return AVERROR(ENOMEM);
+
+ s->avctx = avctx;
+ s->output_channels = output_channels;
+
+ ff_silk_flush(s);
+
+ *ps = s;
+
+ return 0;
+}
diff --git a/libavcodec/opusdec.c b/libavcodec/opusdec.c
new file mode 100644
index 0000000000..bf3a54b16b
--- /dev/null
+++ b/libavcodec/opusdec.c
@@ -0,0 +1,674 @@
+/*
+ * Opus decoder
+ * Copyright (c) 2012 Andrew D'Addesio
+ * Copyright (c) 2013-2014 Mozilla Corporation
+ *
+ * This file is part of Libav.
+ *
+ * Libav is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * Libav is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with Libav; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * Opus decoder
+ * @author Andrew D'Addesio, Anton Khirnov
+ *
+ * Codec homepage: http://opus-codec.org/
+ * Specification: http://tools.ietf.org/html/rfc6716
+ * Ogg Opus specification: https://tools.ietf.org/html/draft-ietf-codec-oggopus-03
+ *
+ * Ogg-contained .opus files can be produced with opus-tools:
+ * http://git.xiph.org/?p=opus-tools.git
+ */
+
+#include <stdint.h>
+
+#include "libavutil/attributes.h"
+#include "libavutil/audio_fifo.h"
+#include "libavutil/channel_layout.h"
+#include "libavutil/opt.h"
+
+#include "libavresample/avresample.h"
+
+#include "avcodec.h"
+#include "celp_filters.h"
+#include "fft.h"
+#include "get_bits.h"
+#include "internal.h"
+#include "mathops.h"
+#include "opus.h"
+
+static const uint16_t silk_frame_duration_ms[16] = {
+ 10, 20, 40, 60,
+ 10, 20, 40, 60,
+ 10, 20, 40, 60,
+ 10, 20,
+ 10, 20,
+};
+
+/* number of samples of silence to feed to the resampler
+ * at the beginning */
+static const int silk_resample_delay[] = {
+ 4, 8, 11, 11, 11
+};
+
+static const uint8_t celt_band_end[] = { 13, 17, 17, 19, 21 };
+
+static int get_silk_samplerate(int config)
+{
+ if (config < 4)
+ return 8000;
+ else if (config < 8)
+ return 12000;
+ return 16000;
+}
+
+/**
+ * Range decoder
+ */
+static int opus_rc_init(OpusRangeCoder *rc, const uint8_t *data, int size)
+{
+ int ret = init_get_bits8(&rc->gb, data, size);
+ if (ret < 0)
+ return ret;
+
+ rc->range = 128;
+ rc->value = 127 - get_bits(&rc->gb, 7);
+ rc->total_read_bits = 9;
+ opus_rc_normalize(rc);
+
+ return 0;
+}
+
+static void opus_raw_init(OpusRangeCoder *rc, const uint8_t *rightend,
+ unsigned int bytes)
+{
+ rc->rb.position = rightend;
+ rc->rb.bytes = bytes;
+ rc->rb.cachelen = 0;
+ rc->rb.cacheval = 0;
+}
+
+static void opus_fade(float *out,
+ const float *in1, const float *in2,
+ const float *window, int len)
+{
+ int i;
+ for (i = 0; i < len; i++)
+ out[i] = in2[i] * window[i] + in1[i] * (1.0 - window[i]);
+}
+
+static int opus_flush_resample(OpusStreamContext *s, int nb_samples)
+{
+ int celt_size = av_audio_fifo_size(s->celt_delay);
+ int ret, i;
+
+ ret = avresample_convert(s->avr, (uint8_t**)s->out, s->out_size, nb_samples,
+ NULL, 0, 0);
+ if (ret < 0)
+ return ret;
+ else if (ret != nb_samples) {
+ av_log(s->avctx, AV_LOG_ERROR, "Wrong number of flushed samples: %d\n",
+ ret);
+ return AVERROR_BUG;
+ }
+
+ if (celt_size) {
+ if (celt_size != nb_samples) {
+ av_log(s->avctx, AV_LOG_ERROR, "Wrong number of CELT delay samples.\n");
+ return AVERROR_BUG;
+ }
+ av_audio_fifo_read(s->celt_delay, (void**)s->celt_output, nb_samples);
+ for (i = 0; i < s->output_channels; i++) {
+ s->fdsp->vector_fmac_scalar(s->out[i],
+ s->celt_output[i], 1.0,
+ nb_samples);
+ }
+ }
+
+ if (s->redundancy_idx) {
+ for (i = 0; i < s->output_channels; i++)
+ opus_fade(s->out[i], s->out[i],
+ s->redundancy_output[i] + 120 + s->redundancy_idx,
+ ff_celt_window2 + s->redundancy_idx, 120 - s->redundancy_idx);
+ s->redundancy_idx = 0;
+ }
+
+ s->out[0] += nb_samples;
+ s->out[1] += nb_samples;
+ s->out_size -= nb_samples * sizeof(float);
+
+ return 0;
+}
+
+static int opus_init_resample(OpusStreamContext *s)
+{
+ float delay[16] = { 0.0 };
+ uint8_t *delayptr[2] = { (uint8_t*)delay, (uint8_t*)delay };
+ int ret;
+
+ av_opt_set_int(s->avr, "in_sample_rate", s->silk_samplerate, 0);
+ ret = avresample_open(s->avr);
+ if (ret < 0) {
+ av_log(s->avctx, AV_LOG_ERROR, "Error opening the resampler.\n");
+ return ret;
+ }
+
+ ret = avresample_convert(s->avr, NULL, 0, 0, delayptr, sizeof(delay),
+ silk_resample_delay[s->packet.bandwidth]);
+ if (ret < 0) {
+ av_log(s->avctx, AV_LOG_ERROR,
+ "Error feeding initial silence to the resampler.\n");
+ return ret;
+ }
+
+ return 0;
+}
+
+static int opus_decode_redundancy(OpusStreamContext *s, const uint8_t *data, int size)
+{
+ int ret;
+ enum OpusBandwidth bw = s->packet.bandwidth;
+
+ if (s->packet.mode == OPUS_MODE_SILK &&
+ bw == OPUS_BANDWIDTH_MEDIUMBAND)
+ bw = OPUS_BANDWIDTH_WIDEBAND;
+
+ ret = opus_rc_init(&s->redundancy_rc, data, size);
+ if (ret < 0)
+ goto fail;
+ opus_raw_init(&s->redundancy_rc, data + size, size);
+
+ ret = ff_celt_decode_frame(s->celt, &s->redundancy_rc,
+ s->redundancy_output,
+ s->packet.stereo + 1, 240,
+ 0, celt_band_end[s->packet.bandwidth]);
+ if (ret < 0)
+ goto fail;
+
+ return 0;
+fail:
+ av_log(s->avctx, AV_LOG_ERROR, "Error decoding the redundancy frame.\n");
+ return ret;
+}
+
+static int opus_decode_frame(OpusStreamContext *s, const uint8_t *data, int size)
+{
+ int samples = s->packet.frame_duration;
+ int redundancy = 0;
+ int redundancy_size, redundancy_pos;
+ int ret, i, consumed;
+ int delayed_samples = s->delayed_samples;
+
+ ret = opus_rc_init(&s->rc, data, size);
+ if (ret < 0)
+ return ret;
+
+ /* decode the silk frame */
+ if (s->packet.mode == OPUS_MODE_SILK || s->packet.mode == OPUS_MODE_HYBRID) {
+ if (!avresample_is_open(s->avr)) {
+ ret = opus_init_resample(s);
+ if (ret < 0)
+ return ret;
+ }
+
+ samples = ff_silk_decode_superframe(s->silk, &s->rc, s->silk_output,
+ FFMIN(s->packet.bandwidth, OPUS_BANDWIDTH_WIDEBAND),
+ s->packet.stereo + 1,
+ silk_frame_duration_ms[s->packet.config]);
+ if (samples < 0) {
+ av_log(s->avctx, AV_LOG_ERROR, "Error decoding a SILK frame.\n");
+ return samples;
+ }
+
+ samples = avresample_convert(s->avr, (uint8_t**)s->out, s->out_size,
+ s->packet.frame_duration,
+ (uint8_t**)s->silk_output,
+ sizeof(s->silk_buf[0]),
+ samples);
+ if (samples < 0) {
+ av_log(s->avctx, AV_LOG_ERROR, "Error resampling SILK data.\n");
+ return samples;
+ }
+ s->delayed_samples += s->packet.frame_duration - samples;
+ } else
+ ff_silk_flush(s->silk);
+
+ // decode redundancy information
+ consumed = opus_rc_tell(&s->rc);
+ if (s->packet.mode == OPUS_MODE_HYBRID && consumed + 37 <= size * 8)
+ redundancy = opus_rc_p2model(&s->rc, 12);
+ else if (s->packet.mode == OPUS_MODE_SILK && consumed + 17 <= size * 8)
+ redundancy = 1;
+
+ if (redundancy) {
+ redundancy_pos = opus_rc_p2model(&s->rc, 1);
+
+ if (s->packet.mode == OPUS_MODE_HYBRID)
+ redundancy_size = opus_rc_unimodel(&s->rc, 256) + 2;
+ else
+ redundancy_size = size - (consumed + 7) / 8;
+ size -= redundancy_size;
+ if (size < 0) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid redundancy frame size.\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ if (redundancy_pos) {
+ ret = opus_decode_redundancy(s, data + size, redundancy_size);
+ if (ret < 0)
+ return ret;
+ ff_celt_flush(s->celt);
+ }
+ }
+
+ /* decode the CELT frame */
+ if (s->packet.mode == OPUS_MODE_CELT || s->packet.mode == OPUS_MODE_HYBRID) {
+ float *out_tmp[2] = { s->out[0], s->out[1] };
+ float **dst = (s->packet.mode == OPUS_MODE_CELT) ?
+ out_tmp : s->celt_output;
+ int celt_output_samples = samples;
+ int delay_samples = av_audio_fifo_size(s->celt_delay);
+
+ if (delay_samples) {
+ if (s->packet.mode == OPUS_MODE_HYBRID) {
+ av_audio_fifo_read(s->celt_delay, (void**)s->celt_output, delay_samples);
+
+ for (i = 0; i < s->output_channels; i++) {
+ s->fdsp->vector_fmac_scalar(out_tmp[i], s->celt_output[i], 1.0,
+ delay_samples);
+ out_tmp[i] += delay_samples;
+ }
+ celt_output_samples -= delay_samples;
+ } else {
+ av_log(s->avctx, AV_LOG_WARNING,
+ "Spurious CELT delay samples present.\n");
+ av_audio_fifo_drain(s->celt_delay, delay_samples);
+ if (s->avctx->err_recognition & AV_EF_EXPLODE)
+ return AVERROR_BUG;
+ }
+ }
+
+ opus_raw_init(&s->rc, data + size, size);
+
+ ret = ff_celt_decode_frame(s->celt, &s->rc, dst,
+ s->packet.stereo + 1,
+ s->packet.frame_duration,
+ (s->packet.mode == OPUS_MODE_HYBRID) ? 17 : 0,
+ celt_band_end[s->packet.bandwidth]);
+ if (ret < 0)
+ return ret;
+
+ if (s->packet.mode == OPUS_MODE_HYBRID) {
+ int celt_delay = s->packet.frame_duration - celt_output_samples;
+ void *delaybuf[2] = { s->celt_output[0] + celt_output_samples,
+ s->celt_output[1] + celt_output_samples };
+
+ for (i = 0; i < s->output_channels; i++) {
+ s->fdsp->vector_fmac_scalar(out_tmp[i],
+ s->celt_output[i], 1.0,
+ celt_output_samples);
+ }
+
+ ret = av_audio_fifo_write(s->celt_delay, delaybuf, celt_delay);
+ if (ret < 0)
+ return ret;
+ }
+ } else
+ ff_celt_flush(s->celt);
+
+ if (s->redundancy_idx) {
+ for (i = 0; i < s->output_channels; i++)
+ opus_fade(s->out[i], s->out[i],
+ s->redundancy_output[i] + 120 + s->redundancy_idx,
+ ff_celt_window2 + s->redundancy_idx, 120 - s->redundancy_idx);
+ s->redundancy_idx = 0;
+ }
+ if (redundancy) {
+ if (!redundancy_pos) {
+ ff_celt_flush(s->celt);
+ ret = opus_decode_redundancy(s, data + size, redundancy_size);
+ if (ret < 0)
+ return ret;
+
+ for (i = 0; i < s->output_channels; i++) {
+ opus_fade(s->out[i] + samples - 120 + delayed_samples,
+ s->out[i] + samples - 120 + delayed_samples,
+ s->redundancy_output[i] + 120,
+ ff_celt_window2, 120 - delayed_samples);
+ if (delayed_samples)
+ s->redundancy_idx = 120 - delayed_samples;
+ }
+ } else {
+ for (i = 0; i < s->output_channels; i++) {
+ memcpy(s->out[i] + delayed_samples, s->redundancy_output[i], 120 * sizeof(float));
+ opus_fade(s->out[i] + 120 + delayed_samples,
+ s->redundancy_output[i] + 120,
+ s->out[i] + 120 + delayed_samples,
+ ff_celt_window2, 120);
+ }
+ }
+ }
+
+ return samples;
+}
+
+static int opus_decode_subpacket(OpusStreamContext *s,
+ const uint8_t *buf, int buf_size,
+ int nb_samples)
+{
+ int output_samples = 0;
+ int flush_needed = 0;
+ int i, j, ret;
+
+ /* check if we need to flush the resampler */
+ if (avresample_is_open(s->avr)) {
+ if (buf) {
+ int64_t cur_samplerate;
+ av_opt_get_int(s->avr, "in_sample_rate", 0, &cur_samplerate);
+ flush_needed = (s->packet.mode == OPUS_MODE_CELT) || (cur_samplerate != s->silk_samplerate);
+ } else {
+ flush_needed = !!s->delayed_samples;
+ }
+ }
+
+ if (!buf && !flush_needed)
+ return 0;
+
+ /* use dummy output buffers if the channel is not mapped to anything */
+ if (!s->out[0] ||
+ (s->output_channels == 2 && !s->out[1])) {
+ av_fast_malloc(&s->out_dummy, &s->out_dummy_allocated_size, s->out_size);
+ if (!s->out_dummy)
+ return AVERROR(ENOMEM);
+ if (!s->out[0])
+ s->out[0] = s->out_dummy;
+ if (!s->out[1])
+ s->out[1] = s->out_dummy;
+ }
+
+ /* flush the resampler if necessary */
+ if (flush_needed) {
+ ret = opus_flush_resample(s, s->delayed_samples);
+ if (ret < 0) {
+ av_log(s->avctx, AV_LOG_ERROR, "Error flushing the resampler.\n");
+ return ret;
+ }
+ avresample_close(s->avr);
+ output_samples += s->delayed_samples;
+ s->delayed_samples = 0;
+
+ if (!buf)
+ goto finish;
+ }
+
+ /* decode all the frames in the packet */
+ for (i = 0; i < s->packet.frame_count; i++) {
+ int size = s->packet.frame_size[i];
+ int samples = opus_decode_frame(s, buf + s->packet.frame_offset[i], size);
+
+ if (samples < 0) {
+ av_log(s->avctx, AV_LOG_ERROR, "Error decoding an Opus frame.\n");
+ if (s->avctx->err_recognition & AV_EF_EXPLODE)
+ return samples;
+
+ for (j = 0; j < s->output_channels; j++)
+ memset(s->out[j], 0, s->packet.frame_duration * sizeof(float));
+ samples = s->packet.frame_duration;
+ }
+ output_samples += samples;
+
+ for (j = 0; j < s->output_channels; j++)
+ s->out[j] += samples;
+ s->out_size -= samples * sizeof(float);
+ }
+
+finish:
+ s->out[0] = s->out[1] = NULL;
+ s->out_size = 0;
+
+ return output_samples;
+}
+
+static int opus_decode_packet(AVCodecContext *avctx, void *data,
+ int *got_frame_ptr, AVPacket *avpkt)
+{
+ OpusContext *c = avctx->priv_data;
+ AVFrame *frame = data;
+ const uint8_t *buf = avpkt->data;
+ int buf_size = avpkt->size;
+ int coded_samples = 0;
+ int decoded_samples = 0;
+ int i, ret;
+
+ /* decode the header of the first sub-packet to find out the sample count */
+ if (buf) {
+ OpusPacket *pkt = &c->streams[0].packet;
+ ret = ff_opus_parse_packet(pkt, buf, buf_size, c->nb_streams > 1);
+ if (ret < 0) {
+ av_log(avctx, AV_LOG_ERROR, "Error parsing the packet header.\n");
+ return ret;
+ }
+ coded_samples += pkt->frame_count * pkt->frame_duration;
+ c->streams[0].silk_samplerate = get_silk_samplerate(pkt->config);
+ }
+
+ frame->nb_samples = coded_samples + c->streams[0].delayed_samples;
+
+ /* no input or buffered data => nothing to do */
+ if (!frame->nb_samples) {
+ *got_frame_ptr = 0;
+ return 0;
+ }
+
+ /* setup the data buffers */
+ ret = ff_get_buffer(avctx, frame, 0);
+ if (ret < 0) {
+ av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
+ return ret;
+ }
+ frame->nb_samples = 0;
+
+ for (i = 0; i < avctx->channels; i++) {
+ ChannelMap *map = &c->channel_maps[i];
+ if (!map->copy)
+ c->streams[map->stream_idx].out[map->channel_idx] = (float*)frame->extended_data[i];
+ }
+
+ for (i = 0; i < c->nb_streams; i++)
+ c->streams[i].out_size = frame->linesize[0];
+
+ /* decode each sub-packet */
+ for (i = 0; i < c->nb_streams; i++) {
+ OpusStreamContext *s = &c->streams[i];
+
+ if (i && buf) {
+ ret = ff_opus_parse_packet(&s->packet, buf, buf_size, i != c->nb_streams - 1);
+ if (ret < 0) {
+ av_log(avctx, AV_LOG_ERROR, "Error parsing the packet header.\n");
+ return ret;
+ }
+ s->silk_samplerate = get_silk_samplerate(s->packet.config);
+ }
+
+ ret = opus_decode_subpacket(&c->streams[i], buf,
+ s->packet.data_size, coded_samples);
+ if (ret < 0)
+ return ret;
+ if (decoded_samples && ret != decoded_samples) {
+ av_log(avctx, AV_LOG_ERROR, "Different numbers of decoded samples "
+ "in a multi-channel stream\n");
+ return AVERROR_INVALIDDATA;
+ }
+ decoded_samples = ret;
+ buf += s->packet.packet_size;
+ buf_size -= s->packet.packet_size;
+ }
+
+ for (i = 0; i < avctx->channels; i++) {
+ ChannelMap *map = &c->channel_maps[i];
+
+ /* handle copied channels */
+ if (map->copy) {
+ memcpy(frame->extended_data[i],
+ frame->extended_data[map->copy_idx],
+ frame->linesize[0]);
+ } else if (map->silence) {
+ memset(frame->extended_data[i], 0, frame->linesize[0]);
+ }
+
+ if (c->gain_i) {
+ c->fdsp.vector_fmul_scalar((float*)frame->extended_data[i],
+ (float*)frame->extended_data[i],
+ c->gain, FFALIGN(decoded_samples, 8));
+ }
+ }
+
+ frame->nb_samples = decoded_samples;
+ *got_frame_ptr = !!decoded_samples;
+
+ return avpkt->size;
+}
+
+static av_cold void opus_decode_flush(AVCodecContext *ctx)
+{
+ OpusContext *c = ctx->priv_data;
+ int i;
+
+ for (i = 0; i < c->nb_streams; i++) {
+ OpusStreamContext *s = &c->streams[i];
+
+ memset(&s->packet, 0, sizeof(s->packet));
+ s->delayed_samples = 0;
+
+ if (s->celt_delay)
+ av_audio_fifo_drain(s->celt_delay, av_audio_fifo_size(s->celt_delay));
+ avresample_close(s->avr);
+
+ ff_silk_flush(s->silk);
+ ff_celt_flush(s->celt);
+ }
+}
+
+static av_cold int opus_decode_close(AVCodecContext *avctx)
+{
+ OpusContext *c = avctx->priv_data;
+ int i;
+
+ for (i = 0; i < c->nb_streams; i++) {
+ OpusStreamContext *s = &c->streams[i];
+
+ ff_silk_free(&s->silk);
+ ff_celt_free(&s->celt);
+
+ av_freep(&s->out_dummy);
+ s->out_dummy_allocated_size = 0;
+
+ av_audio_fifo_free(s->celt_delay);
+ avresample_free(&s->avr);
+ }
+
+ av_freep(&c->streams);
+ c->nb_streams = 0;
+
+ av_freep(&c->channel_maps);
+
+ return 0;
+}
+
+static av_cold int opus_decode_init(AVCodecContext *avctx)
+{
+ OpusContext *c = avctx->priv_data;
+ int ret, i, j;
+
+ avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
+ avctx->sample_rate = 48000;
+
+ avpriv_float_dsp_init(&c->fdsp, 0);
+
+ /* find out the channel configuration */
+ ret = ff_opus_parse_extradata(avctx, c);
+ if (ret < 0)
+ return ret;
+
+ /* allocate and init each independent decoder */
+ c->streams = av_mallocz_array(c->nb_streams, sizeof(*c->streams));
+ if (!c->streams) {
+ c->nb_streams = 0;
+ ret = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ for (i = 0; i < c->nb_streams; i++) {
+ OpusStreamContext *s = &c->streams[i];
+ uint64_t layout;
+
+ s->output_channels = (i < c->nb_stereo_streams) ? 2 : 1;
+
+ s->avctx = avctx;
+
+ for (j = 0; j < s->output_channels; j++) {
+ s->silk_output[j] = s->silk_buf[j];
+ s->celt_output[j] = s->celt_buf[j];
+ s->redundancy_output[j] = s->redundancy_buf[j];
+ }
+
+ s->fdsp = &c->fdsp;
+
+ s->avr = avresample_alloc_context();
+ if (!s->avr)
+ goto fail;
+
+ layout = (s->output_channels == 1) ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
+ av_opt_set_int(s->avr, "in_sample_fmt", avctx->sample_fmt, 0);
+ av_opt_set_int(s->avr, "out_sample_fmt", avctx->sample_fmt, 0);
+ av_opt_set_int(s->avr, "in_channel_layout", layout, 0);
+ av_opt_set_int(s->avr, "out_channel_layout", layout, 0);
+ av_opt_set_int(s->avr, "out_sample_rate", avctx->sample_rate, 0);
+
+ ret = ff_silk_init(avctx, &s->silk, s->output_channels);
+ if (ret < 0)
+ goto fail;
+
+ ret = ff_celt_init(avctx, &s->celt, s->output_channels);
+ if (ret < 0)
+ goto fail;
+
+ s->celt_delay = av_audio_fifo_alloc(avctx->sample_fmt,
+ s->output_channels, 1024);
+ if (!s->celt_delay) {
+ ret = AVERROR(ENOMEM);
+ goto fail;
+ }
+ }
+
+ return 0;
+fail:
+ opus_decode_close(avctx);
+ return ret;
+}
+
+AVCodec ff_opus_decoder = {
+ .name = "opus",
+ .long_name = NULL_IF_CONFIG_SMALL("Opus"),
+ .type = AVMEDIA_TYPE_AUDIO,
+ .id = AV_CODEC_ID_OPUS,
+ .priv_data_size = sizeof(OpusContext),
+ .init = opus_decode_init,
+ .close = opus_decode_close,
+ .decode = opus_decode_packet,
+ .flush = opus_decode_flush,
+ .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY,
+};
diff --git a/libavcodec/version.h b/libavcodec/version.h
index fd7aa5d94c..22343d5396 100644
--- a/libavcodec/version.h
+++ b/libavcodec/version.h
@@ -29,8 +29,8 @@
#include "libavutil/version.h"
#define LIBAVCODEC_VERSION_MAJOR 55
-#define LIBAVCODEC_VERSION_MINOR 50
-#define LIBAVCODEC_VERSION_MICRO 3
+#define LIBAVCODEC_VERSION_MINOR 51
+#define LIBAVCODEC_VERSION_MICRO 0
#define LIBAVCODEC_VERSION_INT AV_VERSION_INT(LIBAVCODEC_VERSION_MAJOR, \
LIBAVCODEC_VERSION_MINOR, \