diff options
author | Mike Melanson <mike@multimedia.cx> | 2003-05-05 02:54:15 +0000 |
---|---|---|
committer | Mike Melanson <mike@multimedia.cx> | 2003-05-05 02:54:15 +0000 |
commit | d86053a41689e8a5ed897ef071c62ef3fcdc3655 (patch) | |
tree | a44463e163cc8fadc4fd39baa96e664dff4d3fb2 /libavcodec/vp3.c | |
parent | 9616355144770cc9beb79a5d10503adbcc7c4a2e (diff) | |
download | ffmpeg-d86053a41689e8a5ed897ef071c62ef3fcdc3655.tar.gz |
first pass at a new VP3 video decoder
Originally committed as revision 1831 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/vp3.c')
-rw-r--r-- | libavcodec/vp3.c | 2325 |
1 files changed, 2325 insertions, 0 deletions
diff --git a/libavcodec/vp3.c b/libavcodec/vp3.c new file mode 100644 index 0000000000..a1ada883ca --- /dev/null +++ b/libavcodec/vp3.c @@ -0,0 +1,2325 @@ +/* + * + * Copyright (C) 2003 the ffmpeg project + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + * VP3 Video Decoder by Mike Melanson (melanson@pcisys.net) + * + */ + +/** + * @file vp3.c + * On2 VP3 Video Decoder + */ + +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <unistd.h> + +#include "common.h" +#include "avcodec.h" +#include "dsputil.h" +#include "mpegvideo.h" +#include "dsputil.h" +#include "bswap.h" + +#include "vp3data.h" + +#define FRAGMENT_PIXELS 8 + +/* + * Debugging Variables + * + * Define one or more of the following compile-time variables to 1 to obtain + * elaborate information about certain aspects of the decoding process. + * + * DEBUG_VP3: high-level decoding flow + * DEBUG_INIT: initialization parameters + * DEBUG_DEQUANTIZERS: display how the dequanization tables are built + * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding + * DEBUG_MODES: unpacking the coding modes for individual fragments + * DEBUG_VECTORS: display the motion vectors + * DEBUG_TOKEN: display exhaustive information about each DCT token + * DEBUG_VLC: display the VLCs as they are extracted from the stream + * DEBUG_DC_PRED: display the process of reversing DC prediction + * DEBUG_IDCT: show every detail of the IDCT process + */ + +#define DEBUG_VP3 0 +#define DEBUG_INIT 0 +#define DEBUG_DEQUANTIZERS 0 +#define DEBUG_BLOCK_CODING 0 +#define DEBUG_MODES 0 +#define DEBUG_VECTORS 0 +#define DEBUG_TOKEN 0 +#define DEBUG_VLC 0 +#define DEBUG_DC_PRED 0 +#define DEBUG_IDCT 0 + +#if DEBUG_VP3 +#define debug_vp3 printf +#else +static inline void debug_vp3(const char *format, ...) { } +#endif + +#if DEBUG_INIT +#define debug_init printf +#else +static inline void debug_init(const char *format, ...) { } +#endif + +#if DEBUG_DEQUANTIZERS +#define debug_dequantizers printf +#else +static inline void debug_dequantizers(const char *format, ...) { } +#endif + +#if DEBUG_BLOCK_CODING +#define debug_block_coding printf +#else +static inline void debug_block_coding(const char *format, ...) { } +#endif + +#if DEBUG_MODES +#define debug_modes printf +#else +static inline void debug_modes(const char *format, ...) { } +#endif + +#if DEBUG_VECTORS +#define debug_vectors printf +#else +static inline void debug_vectors(const char *format, ...) { } +#endif + +#if DEBUG_TOKEN +#define debug_token printf +#else +static inline void debug_token(const char *format, ...) { } +#endif + +#if DEBUG_VLC +#define debug_vlc printf +#else +static inline void debug_vlc(const char *format, ...) { } +#endif + +#if DEBUG_DC_PRED +#define debug_dc_pred printf +#else +static inline void debug_dc_pred(const char *format, ...) { } +#endif + +#if DEBUG_IDCT +#define debug_idct printf +#else +static inline void debug_idct(const char *format, ...) { } +#endif + +typedef struct Vp3Fragment { + DCTELEM coeffs[64]; + int coding_method; + int coeff_count; + int last_coeff; + int motion_x; + int motion_y; + /* address of first pixel taking into account which plane the fragment + * lives on as well as the plane stride */ + int first_pixel; + /* this is the macroblock that the fragment belongs to */ + int macroblock; +} Vp3Fragment; + +#define SB_NOT_CODED 0 +#define SB_PARTIALLY_CODED 1 +#define SB_FULLY_CODED 2 + +#define MODE_INTER_NO_MV 0 +#define MODE_INTRA 1 +#define MODE_INTER_PLUS_MV 2 +#define MODE_INTER_LAST_MV 3 +#define MODE_INTER_PRIOR_LAST 4 +#define MODE_USING_GOLDEN 5 +#define MODE_GOLDEN_MV 6 +#define MODE_INTER_FOURMV 7 +#define CODING_MODE_COUNT 8 + +/* special internal mode */ +#define MODE_COPY 8 + +/* There are 6 preset schemes, plus a free-form scheme */ +static int ModeAlphabet[7][CODING_MODE_COUNT] = +{ + /* this is the custom scheme */ + { 0, 0, 0, 0, 0, 0, 0, 0 }, + + /* scheme 1: Last motion vector dominates */ + { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, + MODE_INTER_PLUS_MV, MODE_INTER_NO_MV, + MODE_INTRA, MODE_USING_GOLDEN, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + + /* scheme 2 */ + { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, + MODE_INTER_NO_MV, MODE_INTER_PLUS_MV, + MODE_INTRA, MODE_USING_GOLDEN, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + + /* scheme 3 */ + { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, + MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV, + MODE_INTRA, MODE_USING_GOLDEN, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + + /* scheme 4 */ + { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, + MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST, + MODE_INTRA, MODE_USING_GOLDEN, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + + /* scheme 5: No motion vector dominates */ + { MODE_INTER_NO_MV, MODE_INTER_LAST_MV, + MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, + MODE_INTRA, MODE_USING_GOLDEN, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + + /* scheme 6 */ + { MODE_INTER_NO_MV, MODE_USING_GOLDEN, + MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, + MODE_INTER_PLUS_MV, MODE_INTRA, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + +}; + +#define MIN_DEQUANT_VAL 2 + +typedef struct Vp3DecodeContext { + AVCodecContext *avctx; + int width, height; + unsigned char *current_picture[3]; /* picture structure */ + int linesize[3]; + AVFrame golden_frame; + AVFrame last_frame; + AVFrame current_frame; + int keyframe; + DSPContext dsp; + + int quality_index; + int last_quality_index; + + int superblock_count; + int superblock_width; + int superblock_height; + int u_superblock_start; + int v_superblock_start; + unsigned char *superblock_coding; + + int macroblock_count; + int macroblock_width; + int macroblock_height; + + int fragment_count; + int fragment_width; + int fragment_height; + + Vp3Fragment *all_fragments; + int u_fragment_start; + int v_fragment_start; + + /* this is a list of indices into the all_fragments array indicating + * which of the fragments are coded */ + int *coded_fragment_list; + int coded_fragment_list_index; + int pixel_addresses_inited; + + VLC dc_vlc[16]; + VLC ac_vlc_1[16]; + VLC ac_vlc_2[16]; + VLC ac_vlc_3[16]; + VLC ac_vlc_4[16]; + + int16_t intra_y_dequant[64]; + int16_t intra_c_dequant[64]; + int16_t inter_dequant[64]; + + /* This table contains superblock_count * 16 entries. Each set of 16 + * numbers corresponds to the fragment indices 0..15 of the superblock. + * An entry will be -1 to indicate that no entry corresponds to that + * index. */ + int *superblock_fragments; + + /* This table contains superblock_count * 4 entries. Each set of 4 + * numbers corresponds to the macroblock indices 0..3 of the superblock. + * An entry will be -1 to indicate that no entry corresponds to that + * index. */ + int *superblock_macroblocks; + + /* This table contains macroblock_count * 6 entries. Each set of 6 + * numbers corresponds to the fragment indices 0..5 which comprise + * the macroblock (4 Y fragments and 2 C fragments). */ + int *macroblock_fragments; + /* This is an array of flags indicating whether a particular + * macroblock is coded. */ + unsigned char *macroblock_coded; + +} Vp3DecodeContext; + +/************************************************************************ + * VP3 specific functions + ************************************************************************/ + +/* + * This function sets up all of the various blocks mappings: + * superblocks <-> fragments, macroblocks <-> fragments, + * superblocks <-> macroblocks + */ +static void init_block_mapping(Vp3DecodeContext *s) +{ + int i, j; + signed int hilbert_walk_y[16]; + signed int hilbert_walk_c[16]; + signed int hilbert_walk_mb[4]; + + int current_fragment = 0; + int current_width = 0; + int current_height = 0; + int right_edge = 0; + int bottom_edge = 0; + int superblock_row_inc = 0; + int *hilbert = NULL; + int mapping_index = 0; + + int current_macroblock; + int c_fragment; + + signed char travel_width[16] = { + 1, 1, 0, -1, + 0, 0, 1, 0, + 1, 0, 1, 0, + 0, -1, 0, 1 + }; + + signed char travel_height[16] = { + 0, 0, 1, 0, + 1, 1, 0, -1, + 0, 1, 0, -1, + -1, 0, -1, 0 + }; + + signed char travel_width_mb[4] = { + 1, 0, 1, 0 + }; + + signed char travel_height_mb[4] = { + 0, 1, 0, -1 + }; + + debug_vp3(" vp3: initialize block mapping tables\n"); + + /* figure out hilbert pattern per these frame dimensions */ + hilbert_walk_y[0] = 1; + hilbert_walk_y[1] = 1; + hilbert_walk_y[2] = s->fragment_width; + hilbert_walk_y[3] = -1; + hilbert_walk_y[4] = s->fragment_width; + hilbert_walk_y[5] = s->fragment_width; + hilbert_walk_y[6] = 1; + hilbert_walk_y[7] = -s->fragment_width; + hilbert_walk_y[8] = 1; + hilbert_walk_y[9] = s->fragment_width; + hilbert_walk_y[10] = 1; + hilbert_walk_y[11] = -s->fragment_width; + hilbert_walk_y[12] = -s->fragment_width; + hilbert_walk_y[13] = -1; + hilbert_walk_y[14] = -s->fragment_width; + hilbert_walk_y[15] = 1; + + hilbert_walk_c[0] = 1; + hilbert_walk_c[1] = 1; + hilbert_walk_c[2] = s->fragment_width / 2; + hilbert_walk_c[3] = -1; + hilbert_walk_c[4] = s->fragment_width / 2; + hilbert_walk_c[5] = s->fragment_width / 2; + hilbert_walk_c[6] = 1; + hilbert_walk_c[7] = -s->fragment_width / 2; + hilbert_walk_c[8] = 1; + hilbert_walk_c[9] = s->fragment_width / 2; + hilbert_walk_c[10] = 1; + hilbert_walk_c[11] = -s->fragment_width / 2; + hilbert_walk_c[12] = -s->fragment_width / 2; + hilbert_walk_c[13] = -1; + hilbert_walk_c[14] = -s->fragment_width / 2; + hilbert_walk_c[15] = 1; + + hilbert_walk_mb[0] = 1; + hilbert_walk_mb[1] = s->macroblock_width; + hilbert_walk_mb[2] = 1; + hilbert_walk_mb[3] = -s->macroblock_width; + + /* iterate through each superblock (all planes) and map the fragments */ + for (i = 0; i < s->superblock_count; i++) { + debug_init(" superblock %d (u starts @ %d, v starts @ %d)\n", + i, s->u_superblock_start, s->v_superblock_start); + + /* time to re-assign the limits? */ + if (i == 0) { + + /* start of Y superblocks */ + right_edge = s->fragment_width; + bottom_edge = s->fragment_height; + current_width = 0; + current_height = 0; + superblock_row_inc = 3 * s->fragment_width; + hilbert = hilbert_walk_y; + + /* the first operation for this variable is to advance by 1 */ + current_fragment = -1; + + } else if (i == s->u_superblock_start) { + + /* start of U superblocks */ + right_edge = s->fragment_width / 2; + bottom_edge = s->fragment_height / 2; + current_width = 0; + current_height = 0; + superblock_row_inc = 3 * (s->fragment_width / 2); + hilbert = hilbert_walk_c; + + /* the first operation for this variable is to advance by 1 */ + current_fragment = s->u_fragment_start - 1; + + } else if (i == s->v_superblock_start) { + + /* start of V superblocks */ + right_edge = s->fragment_width / 2; + bottom_edge = s->fragment_height / 2; + current_width = 0; + current_height = 0; + superblock_row_inc = 3 * (s->fragment_width / 2); + hilbert = hilbert_walk_c; + + /* the first operation for this variable is to advance by 1 */ + current_fragment = s->v_fragment_start - 1; + + } + + if (current_width >= right_edge) { + /* reset width and move to next superblock row */ + current_width = 0; + current_height += 4; + + /* fragment is now at the start of a new superblock row */ + current_fragment += superblock_row_inc; + } + + /* iterate through all 16 fragments in a superblock */ + for (j = 0; j < 16; j++) { + current_fragment += hilbert[j]; + current_height += travel_height[j]; + + /* check if the fragment is in bounds */ + if ((current_width <= right_edge) && + (current_height < bottom_edge)) { + s->superblock_fragments[mapping_index] = current_fragment; + debug_init(" mapping fragment %d to superblock %d, position %d\n", + s->superblock_fragments[mapping_index], i, j); + } else { + s->superblock_fragments[mapping_index] = -1; + debug_init(" superblock %d, position %d has no fragment\n", + i, j); + } + + current_width += travel_width[j]; + mapping_index++; + } + } + + /* initialize the superblock <-> macroblock mapping; iterate through + * all of the Y plane superblocks to build this mapping */ + right_edge = s->macroblock_width; + bottom_edge = s->macroblock_height; + current_width = 0; + current_height = 0; + superblock_row_inc = s->macroblock_width; + hilbert = hilbert_walk_mb; + mapping_index = 0; + current_macroblock = -1; + for (i = 0; i < s->u_superblock_start; i++) { + + if (current_width >= right_edge) { + /* reset width and move to next superblock row */ + current_width = 0; + current_height += 2; + + /* macroblock is now at the start of a new superblock row */ + current_macroblock += superblock_row_inc; + } + + /* iterate through each potential macroblock in the superblock */ + for (j = 0; j < 4; j++) { + current_macroblock += hilbert_walk_mb[j]; + current_height += travel_height_mb[j]; + + /* check if the macroblock is in bounds */ + if ((current_width <= right_edge) && + (current_height < bottom_edge)) { + s->superblock_macroblocks[mapping_index] = current_macroblock; + debug_init(" mapping macroblock %d to superblock %d, position %d\n", + s->superblock_macroblocks[mapping_index], i, j); + } else { + s->superblock_macroblocks[mapping_index] = -1; + debug_init(" superblock %d, position %d has no macroblock\n", + i, j); + } + + current_width += travel_width_mb[j]; + mapping_index++; + } + } + + /* initialize the macroblock <-> fragment mapping */ + current_fragment = 0; + current_macroblock = 0; + mapping_index = 0; + for (i = 0; i < s->fragment_height; i += 2) { + + for (j = 0; j < s->fragment_width; j += 2) { + + debug_init(" macroblock %d contains fragments: ", current_macroblock); + s->all_fragments[current_fragment].macroblock = current_macroblock; + s->macroblock_fragments[mapping_index++] = current_fragment; + debug_init("%d ", current_fragment); + + if (j + 1 < s->fragment_width) { + s->all_fragments[current_fragment + 1].macroblock = current_macroblock; + s->macroblock_fragments[mapping_index++] = current_fragment + 1; + debug_init("%d ", current_fragment + 1); + } else + s->macroblock_fragments[mapping_index++] = -1; + + if (i + 1 < s->fragment_height) { + s->all_fragments[current_fragment + s->fragment_width].macroblock = + current_macroblock; + s->macroblock_fragments[mapping_index++] = + current_fragment + s->fragment_width; + debug_init("%d ", current_fragment + s->fragment_width); + } else + s->macroblock_fragments[mapping_index++] = -1; + + if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) { + s->all_fragments[current_fragment + s->fragment_width + 1].macroblock = + current_macroblock; + s->macroblock_fragments[mapping_index++] = + current_fragment + s->fragment_width + 1; + debug_init("%d ", current_fragment + s->fragment_width + 1); + } else + s->macroblock_fragments[mapping_index++] = -1; + + /* C planes */ + c_fragment = s->u_fragment_start + + (i * s->fragment_width / 4) + (j / 2); + s->all_fragments[c_fragment].macroblock = s->macroblock_count; + s->macroblock_fragments[mapping_index++] = c_fragment; + debug_init("%d ", c_fragment); + + c_fragment = s->v_fragment_start + + (i * s->fragment_width / 4) + (j / 2); + s->all_fragments[c_fragment].macroblock = s->macroblock_count; + s->macroblock_fragments[mapping_index++] = c_fragment; + debug_init("%d ", c_fragment); + + debug_init("\n"); + + if (j + 2 <= s->fragment_width) + current_fragment += 2; + else + current_fragment++; + current_macroblock++; + } + + current_fragment += s->fragment_width; + } +} + +/* + * This function unpacks a single token (which should be in the range 0..31) + * and returns a zero run (number of zero coefficients in current DCT matrix + * before next non-zero coefficient), the next DCT coefficient, and the + * number of consecutive, non-EOB'd DCT blocks to EOB. + */ +static void unpack_token(GetBitContext *gb, int token, int *zero_run, + DCTELEM *coeff, int *eob_run) +{ + int sign; + + *zero_run = 0; + *eob_run = 0; + *coeff = 0; + + debug_token(" vp3 token %d: ", token); + switch (token) { + + case 0: + debug_token("DCT_EOB_TOKEN, EOB next block\n"); + *eob_run = 1; + break; + + case 1: + debug_token("DCT_EOB_PAIR_TOKEN, EOB next 2 blocks\n"); + *eob_run = 2; + break; + + case 2: + debug_token("DCT_EOB_TRIPLE_TOKEN, EOB next 3 blocks\n"); + *eob_run = 3; + break; + + case 3: + debug_token("DCT_REPEAT_RUN_TOKEN, "); + *eob_run = get_bits(gb, 2) + 4; + debug_token("EOB the next %d blocks\n", *eob_run); + break; + + case 4: + debug_token("DCT_REPEAT_RUN2_TOKEN, "); + *eob_run = get_bits(gb, 3) + 8; + debug_token("EOB the next %d blocks\n", *eob_run); + break; + + case 5: + debug_token("DCT_REPEAT_RUN3_TOKEN, "); + *eob_run = get_bits(gb, 4) + 16; + debug_token("EOB the next %d blocks\n", *eob_run); + break; + + case 6: + debug_token("DCT_REPEAT_RUN4_TOKEN, "); + *eob_run = get_bits(gb, 12); + debug_token("EOB the next %d blocks\n", *eob_run); + break; + + case 7: + debug_token("DCT_SHORT_ZRL_TOKEN, "); + /* note that this token actually indicates that (3 extra bits) + 1 0s + * should be output; this case specifies a run of (3 EBs) 0s and a + * coefficient of 0. */ + *zero_run = get_bits(gb, 3); + *coeff = 0; + debug_token("skip the next %d positions in output matrix\n", *zero_run + 1); + break; + + case 8: + debug_token("DCT_ZRL_TOKEN, "); + /* note that this token actually indicates that (6 extra bits) + 1 0s + * should be output; this case specifies a run of (6 EBs) 0s and a + * coefficient of 0. */ + *zero_run = get_bits(gb, 6); + *coeff = 0; + debug_token("skip the next %d positions in output matrix\n", *zero_run + 1); + break; + + case 9: + debug_token("ONE_TOKEN, output 1\n"); + *coeff = 1; + break; + + case 10: + debug_token("MINUS_ONE_TOKEN, output -1\n"); + *coeff = -1; + break; + + case 11: + debug_token("TWO_TOKEN, output 2\n"); + *coeff = 2; + break; + + case 12: + debug_token("MINUS_TWO_TOKEN, output -2\n"); + *coeff = -2; + break; + + case 13: + case 14: + case 15: + case 16: + debug_token("LOW_VAL_TOKENS, "); + if (get_bits(gb, 1)) + *coeff = -(3 + (token - 13)); + else + *coeff = 3 + (token - 13); + debug_token("output %d\n", *coeff); + break; + + case 17: + debug_token("DCT_VAL_CATEGORY3, "); + sign = get_bits(gb, 1); + *coeff = 7 + get_bits(gb, 1); + if (sign) + *coeff = -(*coeff); + debug_token("output %d\n", *coeff); + break; + + case 18: + debug_token("DCT_VAL_CATEGORY4, "); + sign = get_bits(gb, 1); + *coeff = 9 + get_bits(gb, 2); + if (sign) + *coeff = -(*coeff); + debug_token("output %d\n", *coeff); + break; + + case 19: + debug_token("DCT_VAL_CATEGORY5, "); + sign = get_bits(gb, 1); + *coeff = 13 + get_bits(gb, 3); + if (sign) + *coeff = -(*coeff); + debug_token("output %d\n", *coeff); + break; + + case 20: + debug_token("DCT_VAL_CATEGORY6, "); + sign = get_bits(gb, 1); + *coeff = 21 + get_bits(gb, 4); + if (sign) + *coeff = -(*coeff); + debug_token("output %d\n", *coeff); + break; + + case 21: + debug_token("DCT_VAL_CATEGORY7, "); + sign = get_bits(gb, 1); + *coeff = 37 + get_bits(gb, 5); + if (sign) + *coeff = -(*coeff); + debug_token("output %d\n", *coeff); + break; + + case 22: + debug_token("DCT_VAL_CATEGORY8, "); + sign = get_bits(gb, 1); + *coeff = 69 + get_bits(gb, 9); + if (sign) + *coeff = -(*coeff); + debug_token("output %d\n", *coeff); + break; + + case 23: + case 24: + case 25: + case 26: + case 27: + debug_token("DCT_RUN_CATEGORY1, "); + *zero_run = token - 22; + if (get_bits(gb, 1)) + *coeff = -1; + else + *coeff = 1; + debug_token("output %d 0s, then %d\n", *zero_run, *coeff); + break; + + case 28: + debug_token("DCT_RUN_CATEGORY1B, "); + if (get_bits(gb, 1)) + *coeff = -1; + else + *coeff = 1; + *zero_run = 6 + get_bits(gb, 2); + debug_token("output %d 0s, then %d\n", *zero_run, *coeff); + break; + + case 29: + debug_token("DCT_RUN_CATEGORY1C, "); + if (get_bits(gb, 1)) + *coeff = -1; + else + *coeff = 1; + *zero_run = 10 + get_bits(gb, 3); + debug_token("output %d 0s, then %d\n", *zero_run, *coeff); + break; + + case 30: + debug_token("DCT_RUN_CATEGORY2, "); + sign = get_bits(gb, 1); + *coeff = 2 + get_bits(gb, 1); + if (sign) + *coeff = -(*coeff); + *zero_run = 1; + debug_token("output %d 0s, then %d\n", *zero_run, *coeff); + break; + + case 31: + debug_token("DCT_RUN_CATEGORY2, "); + sign = get_bits(gb, 1); + *coeff = 2 + get_bits(gb, 1); + if (sign) + *coeff = -(*coeff); + *zero_run = 2 + get_bits(gb, 1); + debug_token("output %d 0s, then %d\n", *zero_run, *coeff); + break; + + default: + printf (" vp3: help! Got a bad token: %d > 31\n", token); + break; + + } +} + +/* + * This function wipes out all of the fragment data. + */ +static void init_frame(Vp3DecodeContext *s, GetBitContext *gb) +{ + int i; + + /* zero out all of the fragment information */ + s->coded_fragment_list_index = 0; + for (i = 0; i < s->fragment_count; i++) { + memset(s->all_fragments[i].coeffs, 0, 64 * sizeof(DCTELEM)); + s->all_fragments[i].coeff_count = 0; + s->all_fragments[i].last_coeff = 0; + } +} + +/* + * This function sets of the dequantization tables used for a particular + * frame. + */ +static void init_dequantizer(Vp3DecodeContext *s) +{ + + int quality_scale = vp31_quality_threshold[s->quality_index]; + int dc_scale_factor = vp31_dc_scale_factor[s->quality_index]; + int i, j; + + debug_vp3(" vp3: initializing dequantization tables\n"); + + /* + * Scale dequantizers: + * + * quantizer * sf + * -------------- + * 100 + * + * where sf = dc_scale_factor for DC quantizer + * or quality_scale for AC quantizer + * + * Then, saturate the result to a lower limit of MIN_DEQUANT_VAL. + */ +#define SCALER 1 + + /* scale DC quantizers */ + s->intra_y_dequant[0] = vp31_intra_y_dequant[0] * dc_scale_factor / 100; + if (s->intra_y_dequant[0] < MIN_DEQUANT_VAL * 2) + s->intra_y_dequant[0] = MIN_DEQUANT_VAL * 2; + s->intra_y_dequant[0] *= SCALER; + + s->intra_c_dequant[0] = vp31_intra_c_dequant[0] * dc_scale_factor / 100; + if (s->intra_c_dequant[0] < MIN_DEQUANT_VAL * 2) + s->intra_c_dequant[0] = MIN_DEQUANT_VAL * 2; + s->intra_c_dequant[0] *= SCALER; + + s->inter_dequant[0] = vp31_inter_dequant[0] * dc_scale_factor / 100; + if (s->inter_dequant[0] < MIN_DEQUANT_VAL * 4) + s->inter_dequant[0] = MIN_DEQUANT_VAL * 4; + s->inter_dequant[0] *= SCALER; + + /* scale AC quantizers, zigzag at the same time in preparation for + * the dequantization phase */ + for (i = 1; i < 64; i++) { + + j = quant_index[i]; + + s->intra_y_dequant[j] = vp31_intra_y_dequant[i] * quality_scale / 100; + if (s->intra_y_dequant[j] < MIN_DEQUANT_VAL) + s->intra_y_dequant[j] = MIN_DEQUANT_VAL; + s->intra_y_dequant[j] *= SCALER; + + s->intra_c_dequant[j] = vp31_intra_c_dequant[i] * quality_scale / 100; + if (s->intra_c_dequant[j] < MIN_DEQUANT_VAL) + s->intra_c_dequant[j] = MIN_DEQUANT_VAL; + s->intra_c_dequant[j] *= SCALER; + + s->inter_dequant[j] = vp31_inter_dequant[i] * quality_scale / 100; + if (s->inter_dequant[j] < MIN_DEQUANT_VAL * 2) + s->inter_dequant[j] = MIN_DEQUANT_VAL * 2; + s->inter_dequant[j] *= SCALER; + } + + /* print debug information as requested */ + debug_dequantizers("intra Y dequantizers:\n"); + for (i = 0; i < 8; i++) { + for (j = i * 8; j < i * 8 + 8; j++) { + debug_dequantizers(" %4d,", s->intra_y_dequant[j]); + } + debug_dequantizers("\n"); + } + debug_dequantizers("\n"); + + debug_dequantizers("intra C dequantizers:\n"); + for (i = 0; i < 8; i++) { + for (j = i * 8; j < i * 8 + 8; j++) { + debug_dequantizers(" %4d,", s->intra_c_dequant[j]); + } + debug_dequantizers("\n"); + } + debug_dequantizers("\n"); + + debug_dequantizers("interframe dequantizers:\n"); + for (i = 0; i < 8; i++) { + for (j = i * 8; j < i * 8 + 8; j++) { + debug_dequantizers(" %4d,", s->inter_dequant[j]); + } + debug_dequantizers("\n"); + } + debug_dequantizers("\n"); +} + +/* + * This function is used to fetch runs of 1s or 0s from the bitstream for + * use in determining which superblocks are fully and partially coded. + * + * Codeword RunLength + * 0 1 + * 10x 2-3 + * 110x 4-5 + * 1110xx 6-9 + * 11110xxx 10-17 + * 111110xxxx 18-33 + * 111111xxxxxxxxxxxx 34-4129 + */ +static int get_superblock_run_length(GetBitContext *gb) +{ + + if (get_bits(gb, 1) == 0) + return 1; + + else if (get_bits(gb, 1) == 0) + return (2 + get_bits(gb, 1)); + + else if (get_bits(gb, 1) == 0) + return (4 + get_bits(gb, 1)); + + else if (get_bits(gb, 1) == 0) + return (6 + get_bits(gb, 2)); + + else if (get_bits(gb, 1) == 0) + return (10 + get_bits(gb, 3)); + + else if (get_bits(gb, 1) == 0) + return (18 + get_bits(gb, 4)); + + else + return (34 + get_bits(gb, 12)); + +} + +/* + * This function is used to fetch runs of 1s or 0s from the bitstream for + * use in determining which particular fragments are coded. + * + * Codeword RunLength + * 0x 1-2 + * 10x 3-4 + * 110x 5-6 + * 1110xx 7-10 + * 11110xx 11-14 + * 11111xxxx 15-30 + */ +static int get_fragment_run_length(GetBitContext *gb) +{ + + if (get_bits(gb, 1) == 0) + return (1 + get_bits(gb, 1)); + + else if (get_bits(gb, 1) == 0) + return (3 + get_bits(gb, 1)); + + else if (get_bits(gb, 1) == 0) + return (5 + get_bits(gb, 1)); + + else if (get_bits(gb, 1) == 0) + return (7 + get_bits(gb, 2)); + + else if (get_bits(gb, 1) == 0) + return (11 + get_bits(gb, 2)); + + else + return (15 + get_bits(gb, 4)); + +} + +/* + * This function decodes a VLC from the bitstream and returns a number + * that ranges from 0..7. The number indicates which of the 8 coding + * modes to use. + * + * VLC Number + * 0 0 + * 10 1 + * 110 2 + * 1110 3 + * 11110 4 + * 111110 5 + * 1111110 6 + * 1111111 7 + * + */ +static int get_mode_code(GetBitContext *gb) +{ + + if (get_bits(gb, 1) == 0) + return 0; + + else if (get_bits(gb, 1) == 0) + return 1; + + else if (get_bits(gb, 1) == 0) + return 2; + + else if (get_bits(gb, 1) == 0) + return 3; + + else if (get_bits(gb, 1) == 0) + return 4; + + else if (get_bits(gb, 1) == 0) + return 5; + + else if (get_bits(gb, 1) == 0) + return 6; + + else + return 7; + +} + +/* + * This function extracts a motion vector from the bitstream using a VLC + * scheme. 3 bits are fetched from the bitstream and 1 of 8 actions is + * taken depending on the value on those 3 bits: + * + * 0: return 0 + * 1: return 1 + * 2: return -1 + * 3: if (next bit is 1) return -2, else return 2 + * 4: if (next bit is 1) return -3, else return 3 + * 5: return 4 + (next 2 bits), next bit is sign + * 6: return 8 + (next 3 bits), next bit is sign + * 7: return 16 + (next 4 bits), next bit is sign + */ +static int get_motion_vector_vlc(GetBitContext *gb) +{ + int bits; + + bits = get_bits(gb, 3); + + switch(bits) { + + case 0: + bits = 0; + break; + + case 1: + bits = 1; + break; + + case 2: + bits = -1; + break; + + case 3: + if (get_bits(gb, 1) == 0) + bits = 2; + else + bits = -2; + break; + + case 4: + if (get_bits(gb, 1) == 0) + bits = 3; + else + bits = -3; + break; + + case 5: + bits = 4 + get_bits(gb, 2); + if (get_bits(gb, 1) == 1) + bits = -bits; + break; + + case 6: + bits = 8 + get_bits(gb, 3); + if (get_bits(gb, 1) == 1) + bits = -bits; + break; + + case 7: + bits = 16 + get_bits(gb, 4); + if (get_bits(gb, 1) == 1) + bits = -bits; + break; + + } + + return bits; +} + +/* + * This function fetches a 5-bit number from the stream followed by + * a sign and calls it a motion vector. + */ +static int get_motion_vector_fixed(GetBitContext *gb) +{ + + int bits; + + bits = get_bits(gb, 5); + + if (get_bits(gb, 1) == 1) + bits = -bits; + + return bits; +} + +/* + * This function unpacks all of the superblock/macroblock/fragment coding + * information from the bitstream. + */ +static void unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb) +{ + int bit = 0; + int current_superblock = 0; + int current_run = 0; + int decode_fully_flags = 0; + int decode_partial_blocks = 0; + + int i, j; + int current_fragment; + + debug_vp3(" vp3: unpacking superblock coding\n"); + + if (s->keyframe) { + + debug_vp3(" keyframe-- all superblocks are fully coded\n"); + memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count); + + } else { + + /* unpack the list of partially-coded superblocks */ + bit = get_bits(gb, 1); + /* toggle the bit because as soon as the first run length is + * fetched the bit will be toggled again */ + bit ^= 1; + while (current_superblock < s->superblock_count) { + if (current_run == 0) { + bit ^= 1; + current_run = get_superblock_run_length(gb); + debug_block_coding(" setting superblocks %d..%d to %s\n", + current_superblock, + current_superblock + current_run - 1, + (bit) ? "partially coded" : "not coded"); + + /* if any of the superblocks are not partially coded, flag + * a boolean to decode the list of fully-coded superblocks */ + if (bit == 0) + decode_fully_flags = 1; + } else { + + /* make a note of the fact that there are partially coded + * superblocks */ + decode_partial_blocks = 1; + + } + s->superblock_coding[current_superblock++] = + (bit) ? SB_PARTIALLY_CODED : SB_NOT_CODED; + current_run--; + } + + /* unpack the list of fully coded superblocks if any of the blocks were + * not marked as partially coded in the previous step */ + if (decode_fully_flags) { + + current_superblock = 0; + current_run = 0; + bit = get_bits(gb, 1); + /* toggle the bit because as soon as the first run length is + * fetched the bit will be toggled again */ + bit ^= 1; + while (current_superblock < s->superblock_count) { + + /* skip any superblocks already marked as partially coded */ + if (s->superblock_coding[current_superblock] == SB_NOT_CODED) { + + if (current_run == 0) { + bit ^= 1; + current_run = get_superblock_run_length(gb); + } + + debug_block_coding(" setting superblock %d to %s\n", + current_superblock, + (bit) ? "fully coded" : "not coded"); + s->superblock_coding[current_superblock] = + (bit) ? SB_FULLY_CODED : SB_NOT_CODED; + current_run--; + } + current_superblock++; + } + } + + /* if there were partial blocks, initialize bitstream for + * unpacking fragment codings */ + if (decode_partial_blocks) { + + current_run = 0; + bit = get_bits(gb, 1); + /* toggle the bit because as soon as the first run length is + * fetched the bit will be toggled again */ + bit ^= 1; + } + } + + /* figure out which fragments are coded; iterate through each + * superblock (all planes) */ + s->coded_fragment_list_index = 0; + memset(s->macroblock_coded, 0, s->macroblock_count); + for (i = 0; i < s->superblock_count; i++) { + + /* iterate through all 16 fragments in a superblock */ + for (j = 0; j < 16; j++) { + + /* if the fragment is in bounds, check its coding status */ + current_fragment = s->superblock_fragments[i * 16 + j]; + if (current_fragment != -1) { + if (s->superblock_coding[i] == SB_NOT_CODED) { + + /* copy all the fragments from the prior frame */ + s->all_fragments[current_fragment].coding_method = + MODE_COPY; + + } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) { + + /* fragment may or may not be coded; this is the case + * that cares about the fragment coding runs */ + if (current_run == 0) { + bit ^= 1; + current_run = get_fragment_run_length(gb); + } + + if (bit) { + /* mode will be decoded in the next phase */ + s->all_fragments[current_fragment].coding_method = + MODE_INTER_NO_MV; + s->coded_fragment_list[s->coded_fragment_list_index++] = + current_fragment; + s->macroblock_coded[s->all_fragments[current_fragment].macroblock] = 1; + debug_block_coding(" superblock %d is partially coded, fragment %d is coded\n", + i, current_fragment); + } else { + /* not coded; copy this fragment from the prior frame */ + s->all_fragments[current_fragment].coding_method = + MODE_COPY; + debug_block_coding(" superblock %d is partially coded, fragment %d is not coded\n", + i, current_fragment); + } + + current_run--; + + } else { + + /* fragments are fully coded in this superblock; actual + * coding will be determined in next step */ + s->all_fragments[current_fragment].coding_method = + MODE_INTER_NO_MV; + s->coded_fragment_list[s->coded_fragment_list_index++] = + current_fragment; + s->macroblock_coded[s->all_fragments[current_fragment].macroblock] = 1; + debug_block_coding(" superblock %d is fully coded, fragment %d is coded\n", + i, current_fragment); + } + } + } + } +} + +/* + * This function unpacks all the coding mode data for individual macroblocks + * from the bitstream. + */ +static void unpack_modes(Vp3DecodeContext *s, GetBitContext *gb) +{ + int i, j, k; + int scheme; + int current_macroblock; + int current_fragment; + int coding_mode; + + debug_vp3(" vp3: unpacking encoding modes\n"); + + if (s->keyframe) { + debug_vp3(" keyframe-- all blocks are coded as INTRA\n"); + + for (i = 0; i < s->fragment_count; i++) + s->all_fragments[i].coding_method = MODE_INTRA; + + } else { + + /* fetch the mode coding scheme for this frame */ + scheme = get_bits(gb, 3); + debug_modes(" using mode alphabet %d\n", scheme); + + /* is it a custom coding scheme? */ + if (scheme == 0) { + debug_modes(" custom mode alphabet ahead:\n"); + for (i = 0; i < 8; i++) + ModeAlphabet[0][i] = get_bits(gb, 3); + } + + for (i = 0; i < 8; i++) + debug_modes(" mode[%d][%d] = %d\n", scheme, i, + ModeAlphabet[scheme][i]); + + /* iterate through all of the macroblocks that contain 1 or more + * coded fragments */ + for (i = 0; i < s->u_superblock_start; i++) { + + for (j = 0; j < 4; j++) { + current_macroblock = s->superblock_macroblocks[i * 4 + j]; + if ((current_macroblock == -1) || + (!s->macroblock_coded[current_macroblock])) + continue; + + /* mode 7 means get 3 bits for each coding mode */ + if (scheme == 7) + coding_mode = get_bits(gb, 3); + else + coding_mode = ModeAlphabet[scheme][get_mode_code(gb)]; + + for (k = 0; k < 6; k++) { + current_fragment = + s->macroblock_fragments[current_macroblock * 6 + k]; + if (s->all_fragments[current_fragment].coding_method != + MODE_COPY) + s->all_fragments[current_fragment].coding_method = + coding_mode; + } + + debug_modes(" coding method for macroblock starting @ fragment %d = %d\n", + s->macroblock_fragments[current_macroblock * 6], coding_mode); + } + } + } + +} + +/* + * This function unpacks all the motion vectors for the individual + * macroblocks from the bitstream. + */ +static void unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb) +{ + int i, j, k; + int coding_mode; + int motion_x[6]; + int motion_y[6]; + int last_motion_x = 0; + int last_motion_y = 0; + int prior_last_motion_x = 0; + int prior_last_motion_y = 0; + int current_macroblock; + int current_fragment; + + debug_vp3(" vp3: unpacking motion vectors\n"); + + if (s->keyframe) { + + debug_vp3(" keyframe-- there are no motion vectors\n"); + + } else { + + memset(motion_x, 0, 6 * sizeof(int)); + memset(motion_y, 0, 6 * sizeof(int)); + + /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */ + coding_mode = get_bits(gb, 1); + debug_vectors(" using %s scheme for unpacking motion vectors\n", + (coding_mode == 0) ? "VLC" : "fixed-length"); + + /* iterate through all of the macroblocks that contain 1 or more + * coded fragments */ + for (i = 0; i < s->u_superblock_start; i++) { + + for (j = 0; j < 4; j++) { + current_macroblock = s->superblock_macroblocks[i * 4 + j]; + if ((current_macroblock == -1) || + (!s->macroblock_coded[current_macroblock])) + continue; + + current_fragment = s->macroblock_fragments[current_macroblock * 6]; + switch (s->all_fragments[current_fragment].coding_method) { + + case MODE_INTER_PLUS_MV: + case MODE_GOLDEN_MV: + /* all 6 fragments use the same motion vector */ + if (coding_mode == 0) { + motion_x[0] = get_motion_vector_vlc(gb); + motion_y[0] = get_motion_vector_vlc(gb); + } else { + motion_x[0] = get_motion_vector_fixed(gb); + motion_y[0] = get_motion_vector_fixed(gb); + } + for (k = 1; k < 6; k++) { + motion_x[k] = motion_x[0]; + motion_y[k] = motion_y[0]; + } + + /* vector maintenance, only on MODE_INTER_PLUS_MV */ + if (s->all_fragments[current_fragment].coding_method == + MODE_INTER_PLUS_MV) { + prior_last_motion_x = last_motion_x; + prior_last_motion_y = last_motion_y; + last_motion_x = motion_x[0]; + last_motion_y = motion_y[0]; + } + break; + + case MODE_INTER_FOURMV: + /* fetch 4 vectors from the bitstream, one for each + * Y fragment, then average for the C fragment vectors */ + motion_x[4] = motion_y[4] = 0; + for (k = 0; k < 4; k++) { + if (coding_mode == 0) { + motion_x[k] = get_motion_vector_vlc(gb); + motion_y[k] = get_motion_vector_vlc(gb); + } else { + motion_x[k] = get_motion_vector_fixed(gb); + motion_y[k] = get_motion_vector_fixed(gb); + } + motion_x[4] += motion_x[k]; + motion_y[4] += motion_y[k]; + } + + if (motion_x[4] >= 0) + motion_x[4] = (motion_x[4] + 2) / 4; + else + motion_x[4] = (motion_x[4] - 2) / 4; + motion_x[5] = motion_x[4]; + + if (motion_y[4] >= 0) + motion_y[4] = (motion_y[4] + 2) / 4; + else + motion_y[4] = (motion_y[4] - 2) / 4; + motion_y[5] = motion_y[4]; + + /* vector maintenance; vector[3] is treated as the + * last vector in this case */ + prior_last_motion_x = last_motion_x; + prior_last_motion_y = last_motion_y; + last_motion_x = motion_x[3]; + last_motion_y = motion_y[3]; + break; + + case MODE_INTER_LAST_MV: + /* all 6 fragments use the last motion vector */ + motion_x[0] = last_motion_x; + motion_y[0] = last_motion_y; + for (k = 1; k < 6; k++) { + motion_x[k] = motion_x[0]; + motion_y[k] = motion_y[0]; + } + + /* no vector maintenance (last vector remains the + * last vector) */ + break; + + case MODE_INTER_PRIOR_LAST: + /* all 6 fragments use the motion vector prior to the + * last motion vector */ + motion_x[0] = prior_last_motion_x; + motion_y[0] = prior_last_motion_y; + for (k = 1; k < 6; k++) { + motion_x[k] = motion_x[0]; + motion_y[k] = motion_y[0]; + } + + /* vector maintenance */ + prior_last_motion_x = last_motion_x; + prior_last_motion_y = last_motion_y; + last_motion_x = motion_x[0]; + last_motion_y = motion_y[0]; + break; + } + + /* assign the motion vectors to the correct fragments */ + debug_vectors(" vectors for macroblock starting @ fragment %d (coding method %d):\n", + current_fragment, + s->all_fragments[current_fragment].coding_method); + for (k = 0; k < 6; k++) { + current_fragment = + s->macroblock_fragments[current_macroblock * 6 + k]; + s->all_fragments[current_fragment].motion_x = motion_x[k]; + s->all_fragments[current_fragment].motion_x = motion_y[k]; + debug_vectors(" vector %d: fragment %d = (%d, %d)\n", + k, current_fragment, motion_x[k], motion_y[k]); + } + } + } + } +} + +/* + * This function is called by unpack_dct_coeffs() to extract the VLCs from + * the bitstream. The VLCs encode tokens which are used to unpack DCT + * data. This function unpacks all the VLCs for either the Y plane or both + * C planes, and is called for DC coefficients or different AC coefficient + * levels (since different coefficient types require different VLC tables. + * + * This function returns a residual eob run. E.g, if a particular token gave + * instructions to EOB the next 5 fragments and there were only 2 fragments + * left in the current fragment range, 3 would be returned so that it could + * be passed into the next call to this same function. + */ +static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, + VLC *table, int coeff_index, + int first_fragment, int last_fragment, + int eob_run) +{ + int i; + int token; + int zero_run; + DCTELEM coeff; + Vp3Fragment *fragment; + + for (i = first_fragment; i < last_fragment; i++) { + + fragment = &s->all_fragments[s->coded_fragment_list[i]]; + if (fragment->coeff_count > coeff_index) + continue; + + if (!eob_run) { + /* decode a VLC into a token */ + token = get_vlc2(gb, table->table, 5, 3); + debug_vlc(" token = %2d, ", token); + /* use the token to get a zero run, a coefficient, and an eob run */ + unpack_token(gb, token, &zero_run, &coeff, &eob_run); + } + + if (!eob_run) { + fragment->coeff_count += zero_run; + if (fragment->coeff_count < 64) + fragment->coeffs[fragment->coeff_count++] = coeff; + debug_vlc(" fragment %d coeff = %d\n", + s->coded_fragment_list[i], fragment->coeffs[coeff_index]); + } else { + fragment->last_coeff = fragment->coeff_count; + fragment->coeff_count = 64; + debug_vlc(" fragment %d eob with %d coefficients\n", + s->coded_fragment_list[i], fragment->last_coeff); + eob_run--; + } + } + + return eob_run; +} + +/* + * This function unpacks all of the DCT coefficient data from the + * bitstream. + */ +static void unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb) +{ + int i; + int dc_y_table; + int dc_c_table; + int ac_y_table; + int ac_c_table; + int residual_eob_run = 0; + + /* for the binary search */ + int left, middle, right, found; + /* this indicates the first fragment of the color plane data */ + int plane_split = 0; + + debug_vp3(" vp3: unpacking DCT coefficients\n"); + + /* find the plane split (the first color plane fragment) using a binary + * search; test the boundaries first */ + if (s->coded_fragment_list_index == 0) + return; + if (s->u_fragment_start <= s->coded_fragment_list[0]) + plane_split = 0; /* this means no Y fragments */ + else if (s->coded_fragment_list[s->coded_fragment_list_index - 1] > + s->u_fragment_start) { + + left = 0; + right = s->coded_fragment_list_index - 1; + found = 0; + do { + middle = (left + right + 1) / 2; + if ((s->coded_fragment_list[middle] >= s->u_fragment_start) && + (s->coded_fragment_list[middle - 1] < s->u_fragment_start)) + found = 1; + else if (s->coded_fragment_list[middle] < s->u_fragment_start) + left = middle; + else + right = middle; + } while (!found); + + plane_split = middle; + } + + debug_vp3(" plane split @ index %d (fragment %d)\n", plane_split, + s->coded_fragment_list[plane_split]); + + /* fetch the DC table indices */ + dc_y_table = get_bits(gb, 4); + dc_c_table = get_bits(gb, 4); + + /* unpack the Y plane DC coefficients */ + debug_vp3(" vp3: unpacking Y plane DC coefficients using table %d\n", + dc_y_table); + residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0, + 0, plane_split, residual_eob_run); + + /* unpack the C plane DC coefficients */ + debug_vp3(" vp3: unpacking C plane DC coefficients using table %d\n", + dc_c_table); + residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0, + plane_split, s->coded_fragment_list_index, residual_eob_run); + + /* fetch the level 1 AC table indices */ + ac_y_table = get_bits(gb, 4); + ac_c_table = get_bits(gb, 4); + + /* unpack the level 1 AC coefficients (coeffs 1-5) */ + for (i = 1; i <= 5; i++) { + + debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n", + i, ac_y_table); + residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i, + 0, plane_split, residual_eob_run); + + debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n", + i, ac_c_table); + residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i, + plane_split, s->coded_fragment_list_index, residual_eob_run); + } + + /* unpack the level 2 AC coefficients (coeffs 6-14) */ + for (i = 6; i <= 14; i++) { + + debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n", + i, ac_y_table); + residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i, + 0, plane_split, residual_eob_run); + + debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n", + i, ac_c_table); + residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i, + plane_split, s->coded_fragment_list_index, residual_eob_run); + } + + /* unpack the level 3 AC coefficients (coeffs 15-27) */ + for (i = 15; i <= 27; i++) { + + debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n", + i, ac_y_table); + residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i, + 0, plane_split, residual_eob_run); + + debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n", + i, ac_c_table); + residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i, + plane_split, s->coded_fragment_list_index, residual_eob_run); + } + + /* unpack the level 4 AC coefficients (coeffs 28-63) */ + for (i = 28; i <= 63; i++) { + + debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n", + i, ac_y_table); + residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i, + 0, plane_split, residual_eob_run); + + debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n", + i, ac_c_table); + residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i, + plane_split, s->coded_fragment_list_index, residual_eob_run); + } +} + +/* + * This function reverses the DC prediction for each coded fragment in + * the frame. Much of this function is adapted directly from the original + * VP3 source code. + */ +#define COMPATIBLE_FRAME(x) \ + (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type) +#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY) +#define HIGHBITDUPPED(X) (((signed short) X) >> 15) +static inline int iabs (int x) { return ((x < 0) ? -x : x); } + +static void reverse_dc_prediction(Vp3DecodeContext *s, + int first_fragment, + int fragment_width, + int fragment_height) +{ + +#define PUL 8 +#define PU 4 +#define PUR 2 +#define PL 1 + + int x, y; + int i = first_fragment; + + /* + * Fragment prediction groups: + * + * 32222222226 + * 10000000004 + * 10000000004 + * 10000000004 + * 10000000004 + * + * Note: Groups 5 and 7 do not exist as it would mean that the + * fragment's x coordinate is both 0 and (width - 1) at the same time. + */ + int predictor_group; + short predicted_dc; + + /* validity flags for the left, up-left, up, and up-right fragments */ + int fl, ful, fu, fur; + + /* DC values for the left, up-left, up, and up-right fragments */ + int vl, vul, vu, vur; + + /* indices for the left, up-left, up, and up-right fragments */ + int l, ul, u, ur; + + /* + * The 6 fields mean: + * 0: up-left multiplier + * 1: up multiplier + * 2: up-right multiplier + * 3: left multiplier + * 4: mask + * 5: right bit shift divisor (e.g., 7 means >>=7, a.k.a. div by 128) + */ + int predictor_transform[16][6] = { + { 0, 0, 0, 0, 0, 0 }, + { 0, 0, 0, 1, 0, 0 }, // PL + { 0, 0, 1, 0, 0, 0 }, // PUR + { 0, 0, 53, 75, 127, 7 }, // PUR|PL + { 0, 1, 0, 0, 0, 0 }, // PU + { 0, 1, 0, 1, 1, 1 }, // PU|PL + { 0, 1, 0, 0, 0, 0 }, // PU|PUR + { 0, 0, 53, 75, 127, 7 }, // PU|PUR|PL + { 1, 0, 0, 0, 0, 0 }, // PUL + { 0, 0, 0, 1, 0, 0 }, // PUL|PL + { 1, 0, 1, 0, 1, 1 }, // PUL|PUR + { 0, 0, 53, 75, 127, 7 }, // PUL|PUR|PL + { 0, 1, 0, 0, 0, 0 }, // PUL|PU + {-26, 29, 0, 29, 31, 5 }, // PUL|PU|PL + { 3, 10, 3, 0, 15, 4 }, // PUL|PU|PUR + {-26, 29, 0, 29, 31, 5 } // PUL|PU|PUR|PL + }; + + /* This table shows which types of blocks can use other blocks for + * prediction. For example, INTRA is the only mode in this table to + * have a frame number of 0. That means INTRA blocks can only predict + * from other INTRA blocks. There are 2 golden frame coding types; + * blocks encoding in these modes can only predict from other blocks + * that were encoded with these 1 of these 2 modes. */ + unsigned char compatible_frame[8] = { + 1, /* MODE_INTER_NO_MV */ + 0, /* MODE_INTRA */ + 1, /* MODE_INTER_PLUS_MV */ + 1, /* MODE_INTER_LAST_MV */ + 1, /* MODE_INTER_PRIOR_MV */ + 2, /* MODE_USING_GOLDEN */ + 2, /* MODE_GOLDEN_MV */ + 1 /* MODE_INTER_FOUR_MV */ + }; + int current_frame_type; + + /* there is a last DC predictor for each of the 3 frame types */ + short last_dc[3]; + + int transform = 0; + + debug_vp3(" vp3: reversing DC prediction\n"); + + vul = vu = vur = vl = 0; + last_dc[0] = last_dc[1] = last_dc[2] = 0; + + /* for each fragment row... */ + for (y = 0; y < fragment_height; y++) { + + /* for each fragment in a row... */ + for (x = 0; x < fragment_width; x++, i++) { + + /* reverse prediction if this block was coded */ + if (s->all_fragments[i].coding_method != MODE_COPY) { + + current_frame_type = + compatible_frame[s->all_fragments[i].coding_method]; + predictor_group = (x == 0) + ((y == 0) << 1) + + ((x + 1 == fragment_width) << 2); + debug_dc_pred(" frag %d: group %d, orig DC = %d, ", + i, predictor_group, s->all_fragments[i].coeffs[0]); + + switch (predictor_group) { + + case 0: + /* main body of fragments; consider all 4 possible + * fragments for prediction */ + + /* calculate the indices of the predicting fragments */ + ul = i - fragment_width - 1; + u = i - fragment_width; + ur = i - fragment_width + 1; + l = i - 1; + + /* fetch the DC values for the predicting fragments */ + vul = s->all_fragments[ul].coeffs[0]; + vu = s->all_fragments[u].coeffs[0]; + vur = s->all_fragments[ur].coeffs[0]; + vl = s->all_fragments[l].coeffs[0]; + + /* figure out which fragments are valid */ + ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul); + fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u); + fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur); + fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l); + + /* decide which predictor transform to use */ + transform = (fl*PL) | (fu*PU) | (ful*PUL) | (fur*PUR); + + break; + + case 1: + /* left column of fragments, not including top corner; + * only consider up and up-right fragments */ + + /* calculate the indices of the predicting fragments */ + u = i - fragment_width; + ur = i - fragment_width + 1; + + /* fetch the DC values for the predicting fragments */ + vu = s->all_fragments[u].coeffs[0]; + vur = s->all_fragments[ur].coeffs[0]; + + /* figure out which fragments are valid */ + fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur); + fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u); + + /* decide which predictor transform to use */ + transform = (fu*PU) | (fur*PUR); + + break; + + case 2: + case 6: + /* top row of fragments, not including top-left frag; + * only consider the left fragment for prediction */ + + /* calculate the indices of the predicting fragments */ + l = i - 1; + + /* fetch the DC values for the predicting fragments */ + vl = s->all_fragments[l].coeffs[0]; + + /* figure out which fragments are valid */ + fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l); + + /* decide which predictor transform to use */ + transform = (fl*PL); + + break; + + case 3: + /* top-left fragment */ + + /* nothing to predict from in this case */ + transform = 0; + + break; + + case 4: + /* right column of fragments, not including top corner; + * consider up-left, up, and left fragments for + * prediction */ + + /* calculate the indices of the predicting fragments */ + ul = i - fragment_width - 1; + u = i - fragment_width; + l = i - 1; + + /* fetch the DC values for the predicting fragments */ + vul = s->all_fragments[ul].coeffs[0]; + vu = s->all_fragments[u].coeffs[0]; + vl = s->all_fragments[l].coeffs[0]; + + /* figure out which fragments are valid */ + ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul); + fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u); + fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l); + + /* decide which predictor transform to use */ + transform = (fl*PL) | (fu*PU) | (ful*PUL); + + break; + + } + + debug_dc_pred("transform = %d, ", transform); + + if (transform == 0) { + + /* if there were no fragments to predict from, use last + * DC saved */ + s->all_fragments[i].coeffs[0] += last_dc[current_frame_type]; + debug_dc_pred("from last DC (%d) = %d\n", + current_frame_type, s->all_fragments[i].coeffs[0]); + + } else { + + /* apply the appropriate predictor transform */ + predicted_dc = + (predictor_transform[transform][0] * vul) + + (predictor_transform[transform][1] * vu) + + (predictor_transform[transform][2] * vur) + + (predictor_transform[transform][3] * vl); + + /* if there is a shift value in the transform, add + * the sign bit before the shift */ + if (predictor_transform[transform][5] != 0) { + predicted_dc += ((predicted_dc >> 15) & + predictor_transform[transform][4]); + predicted_dc >>= predictor_transform[transform][5]; + } + + /* check for outranging on the [ul u l] and + * [ul u ur l] predictors */ + if ((transform == 13) || (transform == 15)) { + if (iabs(predicted_dc - vu) > 128) + predicted_dc = vu; + else if (iabs(predicted_dc - vl) > 128) + predicted_dc = vl; + else if (iabs(predicted_dc - vul) > 128) + predicted_dc = vul; + } + + /* at long last, apply the predictor */ + s->all_fragments[i].coeffs[0] += predicted_dc; + debug_dc_pred("from pred DC = %d\n", + s->all_fragments[i].coeffs[0]); + } + + /* save the DC */ + last_dc[current_frame_type] = s->all_fragments[i].coeffs[0]; + } + } + } +} + +/* + * This function performs the final rendering of each fragment's data + * onto the output frame. + */ +static void render_fragments(Vp3DecodeContext *s, + int first_fragment, + int fragment_width, + int fragment_height, + int plane /* 0 = Y, 1 = U, 2 = V */) +{ + int x, y; + int m, n; + int i = first_fragment; + int j; + int16_t *dequantizer; + DCTELEM dequant_block[64]; + unsigned char *output_plane; + unsigned char *last_plane; + unsigned char *golden_plane; + int stride; + + debug_vp3(" vp3: rendering final fragments for %s\n", + (plane == 0) ? "Y plane" : (plane == 1) ? "U plane" : "V plane"); + + /* set up plane-specific parameters */ + if (plane == 0) { + dequantizer = s->intra_y_dequant; + output_plane = s->current_frame.data[0]; + last_plane = s->current_frame.data[0]; + golden_plane = s->current_frame.data[0]; + stride = -s->current_frame.linesize[0]; + } else if (plane == 1) { + dequantizer = s->intra_c_dequant; + output_plane = s->current_frame.data[1]; + last_plane = s->current_frame.data[1]; + golden_plane = s->current_frame.data[1]; + stride = -s->current_frame.linesize[1]; + } else { + dequantizer = s->intra_c_dequant; + output_plane = s->current_frame.data[2]; + last_plane = s->current_frame.data[2]; + golden_plane = s->current_frame.data[2]; + stride = -s->current_frame.linesize[2]; + } + + /* for each fragment row... */ + for (y = 0; y < fragment_height; y++) { + + /* for each fragment in a row... */ + for (x = 0; x < fragment_width; x++, i++) { + + /* transform if this block was coded */ + if (s->all_fragments[i].coding_method == MODE_INTRA) { + /* dequantize the DCT coefficients */ + for (j = 0; j < 64; j++) + dequant_block[dequant_index[j]] = + s->all_fragments[i].coeffs[j] * + dequantizer[j]; + dequant_block[0] += 1024; + + debug_idct("fragment %d:\n", i); + debug_idct("dequantized block:\n"); + for (m = 0; m < 8; m++) { + for (n = 0; n < 8; n++) { + debug_idct(" %5d", dequant_block[m * 8 + n]); + } + debug_idct("\n"); + } + debug_idct("\n"); + + /* invert DCT and place in final output */ + s->dsp.idct_put( + output_plane + s->all_fragments[i].first_pixel, + stride, dequant_block); + +/* + debug_idct("idct block:\n"); + for (m = 0; m < 8; m++) { + for (n = 0; n < 8; n++) { + debug_idct(" %3d", pixels[m * 8 + n]); + } + debug_idct("\n"); + } + debug_idct("\n"); +*/ + } else if (s->all_fragments[i].coding_method == MODE_COPY) { + + /* copy directly from the previous frame */ + for (m = 0; m < 8; m++) + memcpy( + output_plane + s->all_fragments[i].first_pixel + stride * m, + last_plane + s->all_fragments[i].first_pixel + stride * m, + 8); + + } else { + + /* carry out the motion compensation */ + + } + } + } + + emms_c(); + +} + +/* + * This function computes the first pixel addresses for each fragment. + * This function needs to be invoked after the first frame is allocated + * so that it has access to the plane strides. + */ +static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s) +{ + + int i, x, y; + + /* figure out the first pixel addresses for each of the fragments */ + /* Y plane */ + i = 0; + for (y = s->fragment_height; y > 0; y--) { + for (x = 0; x < s->fragment_width; x++) { + s->all_fragments[i++].first_pixel = + s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS - + s->golden_frame.linesize[0] + + x * FRAGMENT_PIXELS; + debug_init(" fragment %d, first pixel @ %d\n", + i-1, s->all_fragments[i-1].first_pixel); + } + } + + /* U plane */ + i = s->u_fragment_start; + for (y = s->fragment_height / 2; y > 0; y--) { + for (x = 0; x < s->fragment_width / 2; x++) { + s->all_fragments[i++].first_pixel = + s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS - + s->golden_frame.linesize[1] + + x * FRAGMENT_PIXELS; + debug_init(" fragment %d, first pixel @ %d\n", + i-1, s->all_fragments[i-1].first_pixel); + } + } + + /* V plane */ + i = s->v_fragment_start; + for (y = s->fragment_height / 2; y > 0; y--) { + for (x = 0; x < s->fragment_width / 2; x++) { + s->all_fragments[i++].first_pixel = + s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS - + s->golden_frame.linesize[2] + + x * FRAGMENT_PIXELS; + debug_init(" fragment %d, first pixel @ %d\n", + i-1, s->all_fragments[i-1].first_pixel); + } + } +} + +/* + * This is the ffmpeg/libavcodec API init function. + */ +static int vp3_decode_init(AVCodecContext *avctx) +{ + Vp3DecodeContext *s = avctx->priv_data; + int i; + + s->avctx = avctx; + s->width = avctx->width; + s->height = avctx->height; + avctx->pix_fmt = PIX_FMT_YUV420P; + avctx->has_b_frames = 0; + dsputil_init(&s->dsp, avctx); + + /* initialize to an impossible value which will force a recalculation + * in the first frame decode */ + s->quality_index = -1; + + s->superblock_width = (s->width + 31) / 32; + s->superblock_height = (s->height + 31) / 32; + s->superblock_count = s->superblock_width * s->superblock_height * 3 / 2; + s->u_superblock_start = s->superblock_width * s->superblock_height; + s->v_superblock_start = s->superblock_width * s->superblock_height * 5 / 4; + s->superblock_coding = av_malloc(s->superblock_count); + + s->macroblock_width = (s->width + 15) / 16; + s->macroblock_height = (s->height + 15) / 16; + s->macroblock_count = s->macroblock_width * s->macroblock_height; + + s->fragment_width = s->width / FRAGMENT_PIXELS; + s->fragment_height = s->height / FRAGMENT_PIXELS; + + /* fragment count covers all 8x8 blocks for all 3 planes */ + s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2; + s->u_fragment_start = s->fragment_width * s->fragment_height; + s->v_fragment_start = s->fragment_width * s->fragment_height * 5 / 4; + + debug_init(" width: %d x %d\n", s->width, s->height); + debug_init(" superblocks: %d x %d, %d total\n", + s->superblock_width, s->superblock_height, s->superblock_count); + debug_init(" macroblocks: %d x %d, %d total\n", + s->macroblock_width, s->macroblock_height, s->macroblock_count); + debug_init(" %d fragments, %d x %d, u starts @ %d, v starts @ %d\n", + s->fragment_count, + s->fragment_width, + s->fragment_height, + s->u_fragment_start, + s->v_fragment_start); + + s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment)); + s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int)); + s->pixel_addresses_inited = 0; + + /* init VLC tables */ + for (i = 0; i < 16; i++) { + + /* Dc histograms */ + init_vlc(&s->dc_vlc[i], 5, 32, + &dc_bias[i][0][1], 4, 2, + &dc_bias[i][0][0], 4, 2); + + /* level 1 AC histograms */ + init_vlc(&s->ac_vlc_1[i], 5, 32, + &ac_bias_0[i][0][1], 4, 2, + &ac_bias_0[i][0][0], 4, 2); + + /* level 2 AC histograms */ + init_vlc(&s->ac_vlc_2[i], 5, 32, + &ac_bias_1[i][0][1], 4, 2, + &ac_bias_1[i][0][0], 4, 2); + + /* level 3 AC histograms */ + init_vlc(&s->ac_vlc_3[i], 5, 32, + &ac_bias_2[i][0][1], 4, 2, + &ac_bias_2[i][0][0], 4, 2); + + /* level 4 AC histograms */ + init_vlc(&s->ac_vlc_4[i], 5, 32, + &ac_bias_3[i][0][1], 4, 2, + &ac_bias_3[i][0][0], 4, 2); + } + + /* build quantization table */ + for (i = 0; i < 64; i++) + quant_index[dequant_index[i]] = i; + + /* work out the block mapping tables */ + s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int)); + s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int)); + s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int)); + s->macroblock_coded = av_malloc(s->macroblock_count + 1); + init_block_mapping(s); + + return 0; +} + +/* + * This is the ffmpeg/libavcodec API frame decode function. + */ +static int vp3_decode_frame(AVCodecContext *avctx, + void *data, int *data_size, + uint8_t *buf, int buf_size) +{ + Vp3DecodeContext *s = avctx->priv_data; + GetBitContext gb; + static int counter = 0; + + *data_size = 0; + + init_get_bits(&gb, buf, buf_size * 8); + + s->keyframe = get_bits(&gb, 1); + s->keyframe ^= 1; + skip_bits(&gb, 1); + s->last_quality_index = s->quality_index; + s->quality_index = get_bits(&gb, 6); + if (s->quality_index != s->last_quality_index) + init_dequantizer(s); + + debug_vp3(" VP3 frame #%d: Q index = %d", counter, s->quality_index); + counter++; + + if (s->keyframe) { + /* release the previous golden frame and get a new one */ + if (counter > 1) + avctx->release_buffer(avctx, &s->golden_frame); + + s->golden_frame.reference = 0; + if(avctx->get_buffer(avctx, &s->golden_frame) < 0) { + printf("vp3: get_buffer() failed\n"); + return -1; + } + + /* last frame is hereby invalidated */ + avctx->release_buffer(avctx, &s->last_frame); + + /* golden frame is also the current frame */ + s->current_frame = s->golden_frame; + + /* time to figure out pixel addresses? */ + if (!s->pixel_addresses_inited) + vp3_calculate_pixel_addresses(s); + + } else { + + /* allocate a new current frame */ + s->current_frame.reference = 0; + if(avctx->get_buffer(avctx, &s->current_frame) < 0) { + printf("vp3: get_buffer() failed\n"); + return -1; + } + + } + + if (s->keyframe) { + debug_vp3(", keyframe\n"); + /* skip the other 2 header bytes for now */ + skip_bits(&gb, 16); + } else + debug_vp3("\n"); + + init_frame(s, &gb); + + unpack_superblocks(s, &gb); + unpack_modes(s, &gb); + unpack_vectors(s, &gb); + unpack_dct_coeffs(s, &gb); + + reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height); + reverse_dc_prediction(s, s->u_fragment_start, + s->fragment_width / 2, s->fragment_height / 2); + reverse_dc_prediction(s, s->v_fragment_start, + s->fragment_width / 2, s->fragment_height / 2); + + render_fragments(s, 0, s->fragment_width, s->fragment_height, 0); + render_fragments(s, s->u_fragment_start, + s->fragment_width / 2, s->fragment_height / 2, 1); + render_fragments(s, s->v_fragment_start, + s->fragment_width / 2, s->fragment_height / 2, 2); + + + *data_size=sizeof(AVFrame); + *(AVFrame*)data= s->current_frame; + + /* release the last frame, if it was allocated */ + avctx->release_buffer(avctx, &s->last_frame); + + /* shuffle frames */ + s->last_frame = s->current_frame; + + return buf_size; +} + +/* + * This is the ffmpeg/libavcodec API module cleanup function. + */ +static int vp3_decode_end(AVCodecContext *avctx) +{ + Vp3DecodeContext *s = avctx->priv_data; + + av_free(s->all_fragments); + av_free(s->coded_fragment_list); + av_free(s->superblock_fragments); + av_free(s->superblock_macroblocks); + av_free(s->macroblock_fragments); + av_free(s->macroblock_coded); + + /* release all frames */ + avctx->release_buffer(avctx, &s->golden_frame); + avctx->release_buffer(avctx, &s->last_frame); + avctx->release_buffer(avctx, &s->current_frame); + + return 0; +} + +AVCodec vp3_decoder = { + "vp3", + CODEC_TYPE_VIDEO, + CODEC_ID_VP3, + sizeof(Vp3DecodeContext), + vp3_decode_init, + NULL, + vp3_decode_end, + vp3_decode_frame, + 0, + NULL +}; |