aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/vp3.c
diff options
context:
space:
mode:
authorMike Melanson <mike@multimedia.cx>2003-05-05 02:54:15 +0000
committerMike Melanson <mike@multimedia.cx>2003-05-05 02:54:15 +0000
commitd86053a41689e8a5ed897ef071c62ef3fcdc3655 (patch)
treea44463e163cc8fadc4fd39baa96e664dff4d3fb2 /libavcodec/vp3.c
parent9616355144770cc9beb79a5d10503adbcc7c4a2e (diff)
downloadffmpeg-d86053a41689e8a5ed897ef071c62ef3fcdc3655.tar.gz
first pass at a new VP3 video decoder
Originally committed as revision 1831 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/vp3.c')
-rw-r--r--libavcodec/vp3.c2325
1 files changed, 2325 insertions, 0 deletions
diff --git a/libavcodec/vp3.c b/libavcodec/vp3.c
new file mode 100644
index 0000000000..a1ada883ca
--- /dev/null
+++ b/libavcodec/vp3.c
@@ -0,0 +1,2325 @@
+/*
+ *
+ * Copyright (C) 2003 the ffmpeg project
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ *
+ * VP3 Video Decoder by Mike Melanson (melanson@pcisys.net)
+ *
+ */
+
+/**
+ * @file vp3.c
+ * On2 VP3 Video Decoder
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <unistd.h>
+
+#include "common.h"
+#include "avcodec.h"
+#include "dsputil.h"
+#include "mpegvideo.h"
+#include "dsputil.h"
+#include "bswap.h"
+
+#include "vp3data.h"
+
+#define FRAGMENT_PIXELS 8
+
+/*
+ * Debugging Variables
+ *
+ * Define one or more of the following compile-time variables to 1 to obtain
+ * elaborate information about certain aspects of the decoding process.
+ *
+ * DEBUG_VP3: high-level decoding flow
+ * DEBUG_INIT: initialization parameters
+ * DEBUG_DEQUANTIZERS: display how the dequanization tables are built
+ * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
+ * DEBUG_MODES: unpacking the coding modes for individual fragments
+ * DEBUG_VECTORS: display the motion vectors
+ * DEBUG_TOKEN: display exhaustive information about each DCT token
+ * DEBUG_VLC: display the VLCs as they are extracted from the stream
+ * DEBUG_DC_PRED: display the process of reversing DC prediction
+ * DEBUG_IDCT: show every detail of the IDCT process
+ */
+
+#define DEBUG_VP3 0
+#define DEBUG_INIT 0
+#define DEBUG_DEQUANTIZERS 0
+#define DEBUG_BLOCK_CODING 0
+#define DEBUG_MODES 0
+#define DEBUG_VECTORS 0
+#define DEBUG_TOKEN 0
+#define DEBUG_VLC 0
+#define DEBUG_DC_PRED 0
+#define DEBUG_IDCT 0
+
+#if DEBUG_VP3
+#define debug_vp3 printf
+#else
+static inline void debug_vp3(const char *format, ...) { }
+#endif
+
+#if DEBUG_INIT
+#define debug_init printf
+#else
+static inline void debug_init(const char *format, ...) { }
+#endif
+
+#if DEBUG_DEQUANTIZERS
+#define debug_dequantizers printf
+#else
+static inline void debug_dequantizers(const char *format, ...) { }
+#endif
+
+#if DEBUG_BLOCK_CODING
+#define debug_block_coding printf
+#else
+static inline void debug_block_coding(const char *format, ...) { }
+#endif
+
+#if DEBUG_MODES
+#define debug_modes printf
+#else
+static inline void debug_modes(const char *format, ...) { }
+#endif
+
+#if DEBUG_VECTORS
+#define debug_vectors printf
+#else
+static inline void debug_vectors(const char *format, ...) { }
+#endif
+
+#if DEBUG_TOKEN
+#define debug_token printf
+#else
+static inline void debug_token(const char *format, ...) { }
+#endif
+
+#if DEBUG_VLC
+#define debug_vlc printf
+#else
+static inline void debug_vlc(const char *format, ...) { }
+#endif
+
+#if DEBUG_DC_PRED
+#define debug_dc_pred printf
+#else
+static inline void debug_dc_pred(const char *format, ...) { }
+#endif
+
+#if DEBUG_IDCT
+#define debug_idct printf
+#else
+static inline void debug_idct(const char *format, ...) { }
+#endif
+
+typedef struct Vp3Fragment {
+ DCTELEM coeffs[64];
+ int coding_method;
+ int coeff_count;
+ int last_coeff;
+ int motion_x;
+ int motion_y;
+ /* address of first pixel taking into account which plane the fragment
+ * lives on as well as the plane stride */
+ int first_pixel;
+ /* this is the macroblock that the fragment belongs to */
+ int macroblock;
+} Vp3Fragment;
+
+#define SB_NOT_CODED 0
+#define SB_PARTIALLY_CODED 1
+#define SB_FULLY_CODED 2
+
+#define MODE_INTER_NO_MV 0
+#define MODE_INTRA 1
+#define MODE_INTER_PLUS_MV 2
+#define MODE_INTER_LAST_MV 3
+#define MODE_INTER_PRIOR_LAST 4
+#define MODE_USING_GOLDEN 5
+#define MODE_GOLDEN_MV 6
+#define MODE_INTER_FOURMV 7
+#define CODING_MODE_COUNT 8
+
+/* special internal mode */
+#define MODE_COPY 8
+
+/* There are 6 preset schemes, plus a free-form scheme */
+static int ModeAlphabet[7][CODING_MODE_COUNT] =
+{
+ /* this is the custom scheme */
+ { 0, 0, 0, 0, 0, 0, 0, 0 },
+
+ /* scheme 1: Last motion vector dominates */
+ { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
+ MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
+ MODE_INTRA, MODE_USING_GOLDEN,
+ MODE_GOLDEN_MV, MODE_INTER_FOURMV },
+
+ /* scheme 2 */
+ { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
+ MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
+ MODE_INTRA, MODE_USING_GOLDEN,
+ MODE_GOLDEN_MV, MODE_INTER_FOURMV },
+
+ /* scheme 3 */
+ { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
+ MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
+ MODE_INTRA, MODE_USING_GOLDEN,
+ MODE_GOLDEN_MV, MODE_INTER_FOURMV },
+
+ /* scheme 4 */
+ { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
+ MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
+ MODE_INTRA, MODE_USING_GOLDEN,
+ MODE_GOLDEN_MV, MODE_INTER_FOURMV },
+
+ /* scheme 5: No motion vector dominates */
+ { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
+ MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
+ MODE_INTRA, MODE_USING_GOLDEN,
+ MODE_GOLDEN_MV, MODE_INTER_FOURMV },
+
+ /* scheme 6 */
+ { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
+ MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
+ MODE_INTER_PLUS_MV, MODE_INTRA,
+ MODE_GOLDEN_MV, MODE_INTER_FOURMV },
+
+};
+
+#define MIN_DEQUANT_VAL 2
+
+typedef struct Vp3DecodeContext {
+ AVCodecContext *avctx;
+ int width, height;
+ unsigned char *current_picture[3]; /* picture structure */
+ int linesize[3];
+ AVFrame golden_frame;
+ AVFrame last_frame;
+ AVFrame current_frame;
+ int keyframe;
+ DSPContext dsp;
+
+ int quality_index;
+ int last_quality_index;
+
+ int superblock_count;
+ int superblock_width;
+ int superblock_height;
+ int u_superblock_start;
+ int v_superblock_start;
+ unsigned char *superblock_coding;
+
+ int macroblock_count;
+ int macroblock_width;
+ int macroblock_height;
+
+ int fragment_count;
+ int fragment_width;
+ int fragment_height;
+
+ Vp3Fragment *all_fragments;
+ int u_fragment_start;
+ int v_fragment_start;
+
+ /* this is a list of indices into the all_fragments array indicating
+ * which of the fragments are coded */
+ int *coded_fragment_list;
+ int coded_fragment_list_index;
+ int pixel_addresses_inited;
+
+ VLC dc_vlc[16];
+ VLC ac_vlc_1[16];
+ VLC ac_vlc_2[16];
+ VLC ac_vlc_3[16];
+ VLC ac_vlc_4[16];
+
+ int16_t intra_y_dequant[64];
+ int16_t intra_c_dequant[64];
+ int16_t inter_dequant[64];
+
+ /* This table contains superblock_count * 16 entries. Each set of 16
+ * numbers corresponds to the fragment indices 0..15 of the superblock.
+ * An entry will be -1 to indicate that no entry corresponds to that
+ * index. */
+ int *superblock_fragments;
+
+ /* This table contains superblock_count * 4 entries. Each set of 4
+ * numbers corresponds to the macroblock indices 0..3 of the superblock.
+ * An entry will be -1 to indicate that no entry corresponds to that
+ * index. */
+ int *superblock_macroblocks;
+
+ /* This table contains macroblock_count * 6 entries. Each set of 6
+ * numbers corresponds to the fragment indices 0..5 which comprise
+ * the macroblock (4 Y fragments and 2 C fragments). */
+ int *macroblock_fragments;
+ /* This is an array of flags indicating whether a particular
+ * macroblock is coded. */
+ unsigned char *macroblock_coded;
+
+} Vp3DecodeContext;
+
+/************************************************************************
+ * VP3 specific functions
+ ************************************************************************/
+
+/*
+ * This function sets up all of the various blocks mappings:
+ * superblocks <-> fragments, macroblocks <-> fragments,
+ * superblocks <-> macroblocks
+ */
+static void init_block_mapping(Vp3DecodeContext *s)
+{
+ int i, j;
+ signed int hilbert_walk_y[16];
+ signed int hilbert_walk_c[16];
+ signed int hilbert_walk_mb[4];
+
+ int current_fragment = 0;
+ int current_width = 0;
+ int current_height = 0;
+ int right_edge = 0;
+ int bottom_edge = 0;
+ int superblock_row_inc = 0;
+ int *hilbert = NULL;
+ int mapping_index = 0;
+
+ int current_macroblock;
+ int c_fragment;
+
+ signed char travel_width[16] = {
+ 1, 1, 0, -1,
+ 0, 0, 1, 0,
+ 1, 0, 1, 0,
+ 0, -1, 0, 1
+ };
+
+ signed char travel_height[16] = {
+ 0, 0, 1, 0,
+ 1, 1, 0, -1,
+ 0, 1, 0, -1,
+ -1, 0, -1, 0
+ };
+
+ signed char travel_width_mb[4] = {
+ 1, 0, 1, 0
+ };
+
+ signed char travel_height_mb[4] = {
+ 0, 1, 0, -1
+ };
+
+ debug_vp3(" vp3: initialize block mapping tables\n");
+
+ /* figure out hilbert pattern per these frame dimensions */
+ hilbert_walk_y[0] = 1;
+ hilbert_walk_y[1] = 1;
+ hilbert_walk_y[2] = s->fragment_width;
+ hilbert_walk_y[3] = -1;
+ hilbert_walk_y[4] = s->fragment_width;
+ hilbert_walk_y[5] = s->fragment_width;
+ hilbert_walk_y[6] = 1;
+ hilbert_walk_y[7] = -s->fragment_width;
+ hilbert_walk_y[8] = 1;
+ hilbert_walk_y[9] = s->fragment_width;
+ hilbert_walk_y[10] = 1;
+ hilbert_walk_y[11] = -s->fragment_width;
+ hilbert_walk_y[12] = -s->fragment_width;
+ hilbert_walk_y[13] = -1;
+ hilbert_walk_y[14] = -s->fragment_width;
+ hilbert_walk_y[15] = 1;
+
+ hilbert_walk_c[0] = 1;
+ hilbert_walk_c[1] = 1;
+ hilbert_walk_c[2] = s->fragment_width / 2;
+ hilbert_walk_c[3] = -1;
+ hilbert_walk_c[4] = s->fragment_width / 2;
+ hilbert_walk_c[5] = s->fragment_width / 2;
+ hilbert_walk_c[6] = 1;
+ hilbert_walk_c[7] = -s->fragment_width / 2;
+ hilbert_walk_c[8] = 1;
+ hilbert_walk_c[9] = s->fragment_width / 2;
+ hilbert_walk_c[10] = 1;
+ hilbert_walk_c[11] = -s->fragment_width / 2;
+ hilbert_walk_c[12] = -s->fragment_width / 2;
+ hilbert_walk_c[13] = -1;
+ hilbert_walk_c[14] = -s->fragment_width / 2;
+ hilbert_walk_c[15] = 1;
+
+ hilbert_walk_mb[0] = 1;
+ hilbert_walk_mb[1] = s->macroblock_width;
+ hilbert_walk_mb[2] = 1;
+ hilbert_walk_mb[3] = -s->macroblock_width;
+
+ /* iterate through each superblock (all planes) and map the fragments */
+ for (i = 0; i < s->superblock_count; i++) {
+ debug_init(" superblock %d (u starts @ %d, v starts @ %d)\n",
+ i, s->u_superblock_start, s->v_superblock_start);
+
+ /* time to re-assign the limits? */
+ if (i == 0) {
+
+ /* start of Y superblocks */
+ right_edge = s->fragment_width;
+ bottom_edge = s->fragment_height;
+ current_width = 0;
+ current_height = 0;
+ superblock_row_inc = 3 * s->fragment_width;
+ hilbert = hilbert_walk_y;
+
+ /* the first operation for this variable is to advance by 1 */
+ current_fragment = -1;
+
+ } else if (i == s->u_superblock_start) {
+
+ /* start of U superblocks */
+ right_edge = s->fragment_width / 2;
+ bottom_edge = s->fragment_height / 2;
+ current_width = 0;
+ current_height = 0;
+ superblock_row_inc = 3 * (s->fragment_width / 2);
+ hilbert = hilbert_walk_c;
+
+ /* the first operation for this variable is to advance by 1 */
+ current_fragment = s->u_fragment_start - 1;
+
+ } else if (i == s->v_superblock_start) {
+
+ /* start of V superblocks */
+ right_edge = s->fragment_width / 2;
+ bottom_edge = s->fragment_height / 2;
+ current_width = 0;
+ current_height = 0;
+ superblock_row_inc = 3 * (s->fragment_width / 2);
+ hilbert = hilbert_walk_c;
+
+ /* the first operation for this variable is to advance by 1 */
+ current_fragment = s->v_fragment_start - 1;
+
+ }
+
+ if (current_width >= right_edge) {
+ /* reset width and move to next superblock row */
+ current_width = 0;
+ current_height += 4;
+
+ /* fragment is now at the start of a new superblock row */
+ current_fragment += superblock_row_inc;
+ }
+
+ /* iterate through all 16 fragments in a superblock */
+ for (j = 0; j < 16; j++) {
+ current_fragment += hilbert[j];
+ current_height += travel_height[j];
+
+ /* check if the fragment is in bounds */
+ if ((current_width <= right_edge) &&
+ (current_height < bottom_edge)) {
+ s->superblock_fragments[mapping_index] = current_fragment;
+ debug_init(" mapping fragment %d to superblock %d, position %d\n",
+ s->superblock_fragments[mapping_index], i, j);
+ } else {
+ s->superblock_fragments[mapping_index] = -1;
+ debug_init(" superblock %d, position %d has no fragment\n",
+ i, j);
+ }
+
+ current_width += travel_width[j];
+ mapping_index++;
+ }
+ }
+
+ /* initialize the superblock <-> macroblock mapping; iterate through
+ * all of the Y plane superblocks to build this mapping */
+ right_edge = s->macroblock_width;
+ bottom_edge = s->macroblock_height;
+ current_width = 0;
+ current_height = 0;
+ superblock_row_inc = s->macroblock_width;
+ hilbert = hilbert_walk_mb;
+ mapping_index = 0;
+ current_macroblock = -1;
+ for (i = 0; i < s->u_superblock_start; i++) {
+
+ if (current_width >= right_edge) {
+ /* reset width and move to next superblock row */
+ current_width = 0;
+ current_height += 2;
+
+ /* macroblock is now at the start of a new superblock row */
+ current_macroblock += superblock_row_inc;
+ }
+
+ /* iterate through each potential macroblock in the superblock */
+ for (j = 0; j < 4; j++) {
+ current_macroblock += hilbert_walk_mb[j];
+ current_height += travel_height_mb[j];
+
+ /* check if the macroblock is in bounds */
+ if ((current_width <= right_edge) &&
+ (current_height < bottom_edge)) {
+ s->superblock_macroblocks[mapping_index] = current_macroblock;
+ debug_init(" mapping macroblock %d to superblock %d, position %d\n",
+ s->superblock_macroblocks[mapping_index], i, j);
+ } else {
+ s->superblock_macroblocks[mapping_index] = -1;
+ debug_init(" superblock %d, position %d has no macroblock\n",
+ i, j);
+ }
+
+ current_width += travel_width_mb[j];
+ mapping_index++;
+ }
+ }
+
+ /* initialize the macroblock <-> fragment mapping */
+ current_fragment = 0;
+ current_macroblock = 0;
+ mapping_index = 0;
+ for (i = 0; i < s->fragment_height; i += 2) {
+
+ for (j = 0; j < s->fragment_width; j += 2) {
+
+ debug_init(" macroblock %d contains fragments: ", current_macroblock);
+ s->all_fragments[current_fragment].macroblock = current_macroblock;
+ s->macroblock_fragments[mapping_index++] = current_fragment;
+ debug_init("%d ", current_fragment);
+
+ if (j + 1 < s->fragment_width) {
+ s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
+ s->macroblock_fragments[mapping_index++] = current_fragment + 1;
+ debug_init("%d ", current_fragment + 1);
+ } else
+ s->macroblock_fragments[mapping_index++] = -1;
+
+ if (i + 1 < s->fragment_height) {
+ s->all_fragments[current_fragment + s->fragment_width].macroblock =
+ current_macroblock;
+ s->macroblock_fragments[mapping_index++] =
+ current_fragment + s->fragment_width;
+ debug_init("%d ", current_fragment + s->fragment_width);
+ } else
+ s->macroblock_fragments[mapping_index++] = -1;
+
+ if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
+ s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
+ current_macroblock;
+ s->macroblock_fragments[mapping_index++] =
+ current_fragment + s->fragment_width + 1;
+ debug_init("%d ", current_fragment + s->fragment_width + 1);
+ } else
+ s->macroblock_fragments[mapping_index++] = -1;
+
+ /* C planes */
+ c_fragment = s->u_fragment_start +
+ (i * s->fragment_width / 4) + (j / 2);
+ s->all_fragments[c_fragment].macroblock = s->macroblock_count;
+ s->macroblock_fragments[mapping_index++] = c_fragment;
+ debug_init("%d ", c_fragment);
+
+ c_fragment = s->v_fragment_start +
+ (i * s->fragment_width / 4) + (j / 2);
+ s->all_fragments[c_fragment].macroblock = s->macroblock_count;
+ s->macroblock_fragments[mapping_index++] = c_fragment;
+ debug_init("%d ", c_fragment);
+
+ debug_init("\n");
+
+ if (j + 2 <= s->fragment_width)
+ current_fragment += 2;
+ else
+ current_fragment++;
+ current_macroblock++;
+ }
+
+ current_fragment += s->fragment_width;
+ }
+}
+
+/*
+ * This function unpacks a single token (which should be in the range 0..31)
+ * and returns a zero run (number of zero coefficients in current DCT matrix
+ * before next non-zero coefficient), the next DCT coefficient, and the
+ * number of consecutive, non-EOB'd DCT blocks to EOB.
+ */
+static void unpack_token(GetBitContext *gb, int token, int *zero_run,
+ DCTELEM *coeff, int *eob_run)
+{
+ int sign;
+
+ *zero_run = 0;
+ *eob_run = 0;
+ *coeff = 0;
+
+ debug_token(" vp3 token %d: ", token);
+ switch (token) {
+
+ case 0:
+ debug_token("DCT_EOB_TOKEN, EOB next block\n");
+ *eob_run = 1;
+ break;
+
+ case 1:
+ debug_token("DCT_EOB_PAIR_TOKEN, EOB next 2 blocks\n");
+ *eob_run = 2;
+ break;
+
+ case 2:
+ debug_token("DCT_EOB_TRIPLE_TOKEN, EOB next 3 blocks\n");
+ *eob_run = 3;
+ break;
+
+ case 3:
+ debug_token("DCT_REPEAT_RUN_TOKEN, ");
+ *eob_run = get_bits(gb, 2) + 4;
+ debug_token("EOB the next %d blocks\n", *eob_run);
+ break;
+
+ case 4:
+ debug_token("DCT_REPEAT_RUN2_TOKEN, ");
+ *eob_run = get_bits(gb, 3) + 8;
+ debug_token("EOB the next %d blocks\n", *eob_run);
+ break;
+
+ case 5:
+ debug_token("DCT_REPEAT_RUN3_TOKEN, ");
+ *eob_run = get_bits(gb, 4) + 16;
+ debug_token("EOB the next %d blocks\n", *eob_run);
+ break;
+
+ case 6:
+ debug_token("DCT_REPEAT_RUN4_TOKEN, ");
+ *eob_run = get_bits(gb, 12);
+ debug_token("EOB the next %d blocks\n", *eob_run);
+ break;
+
+ case 7:
+ debug_token("DCT_SHORT_ZRL_TOKEN, ");
+ /* note that this token actually indicates that (3 extra bits) + 1 0s
+ * should be output; this case specifies a run of (3 EBs) 0s and a
+ * coefficient of 0. */
+ *zero_run = get_bits(gb, 3);
+ *coeff = 0;
+ debug_token("skip the next %d positions in output matrix\n", *zero_run + 1);
+ break;
+
+ case 8:
+ debug_token("DCT_ZRL_TOKEN, ");
+ /* note that this token actually indicates that (6 extra bits) + 1 0s
+ * should be output; this case specifies a run of (6 EBs) 0s and a
+ * coefficient of 0. */
+ *zero_run = get_bits(gb, 6);
+ *coeff = 0;
+ debug_token("skip the next %d positions in output matrix\n", *zero_run + 1);
+ break;
+
+ case 9:
+ debug_token("ONE_TOKEN, output 1\n");
+ *coeff = 1;
+ break;
+
+ case 10:
+ debug_token("MINUS_ONE_TOKEN, output -1\n");
+ *coeff = -1;
+ break;
+
+ case 11:
+ debug_token("TWO_TOKEN, output 2\n");
+ *coeff = 2;
+ break;
+
+ case 12:
+ debug_token("MINUS_TWO_TOKEN, output -2\n");
+ *coeff = -2;
+ break;
+
+ case 13:
+ case 14:
+ case 15:
+ case 16:
+ debug_token("LOW_VAL_TOKENS, ");
+ if (get_bits(gb, 1))
+ *coeff = -(3 + (token - 13));
+ else
+ *coeff = 3 + (token - 13);
+ debug_token("output %d\n", *coeff);
+ break;
+
+ case 17:
+ debug_token("DCT_VAL_CATEGORY3, ");
+ sign = get_bits(gb, 1);
+ *coeff = 7 + get_bits(gb, 1);
+ if (sign)
+ *coeff = -(*coeff);
+ debug_token("output %d\n", *coeff);
+ break;
+
+ case 18:
+ debug_token("DCT_VAL_CATEGORY4, ");
+ sign = get_bits(gb, 1);
+ *coeff = 9 + get_bits(gb, 2);
+ if (sign)
+ *coeff = -(*coeff);
+ debug_token("output %d\n", *coeff);
+ break;
+
+ case 19:
+ debug_token("DCT_VAL_CATEGORY5, ");
+ sign = get_bits(gb, 1);
+ *coeff = 13 + get_bits(gb, 3);
+ if (sign)
+ *coeff = -(*coeff);
+ debug_token("output %d\n", *coeff);
+ break;
+
+ case 20:
+ debug_token("DCT_VAL_CATEGORY6, ");
+ sign = get_bits(gb, 1);
+ *coeff = 21 + get_bits(gb, 4);
+ if (sign)
+ *coeff = -(*coeff);
+ debug_token("output %d\n", *coeff);
+ break;
+
+ case 21:
+ debug_token("DCT_VAL_CATEGORY7, ");
+ sign = get_bits(gb, 1);
+ *coeff = 37 + get_bits(gb, 5);
+ if (sign)
+ *coeff = -(*coeff);
+ debug_token("output %d\n", *coeff);
+ break;
+
+ case 22:
+ debug_token("DCT_VAL_CATEGORY8, ");
+ sign = get_bits(gb, 1);
+ *coeff = 69 + get_bits(gb, 9);
+ if (sign)
+ *coeff = -(*coeff);
+ debug_token("output %d\n", *coeff);
+ break;
+
+ case 23:
+ case 24:
+ case 25:
+ case 26:
+ case 27:
+ debug_token("DCT_RUN_CATEGORY1, ");
+ *zero_run = token - 22;
+ if (get_bits(gb, 1))
+ *coeff = -1;
+ else
+ *coeff = 1;
+ debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
+ break;
+
+ case 28:
+ debug_token("DCT_RUN_CATEGORY1B, ");
+ if (get_bits(gb, 1))
+ *coeff = -1;
+ else
+ *coeff = 1;
+ *zero_run = 6 + get_bits(gb, 2);
+ debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
+ break;
+
+ case 29:
+ debug_token("DCT_RUN_CATEGORY1C, ");
+ if (get_bits(gb, 1))
+ *coeff = -1;
+ else
+ *coeff = 1;
+ *zero_run = 10 + get_bits(gb, 3);
+ debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
+ break;
+
+ case 30:
+ debug_token("DCT_RUN_CATEGORY2, ");
+ sign = get_bits(gb, 1);
+ *coeff = 2 + get_bits(gb, 1);
+ if (sign)
+ *coeff = -(*coeff);
+ *zero_run = 1;
+ debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
+ break;
+
+ case 31:
+ debug_token("DCT_RUN_CATEGORY2, ");
+ sign = get_bits(gb, 1);
+ *coeff = 2 + get_bits(gb, 1);
+ if (sign)
+ *coeff = -(*coeff);
+ *zero_run = 2 + get_bits(gb, 1);
+ debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
+ break;
+
+ default:
+ printf (" vp3: help! Got a bad token: %d > 31\n", token);
+ break;
+
+ }
+}
+
+/*
+ * This function wipes out all of the fragment data.
+ */
+static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
+{
+ int i;
+
+ /* zero out all of the fragment information */
+ s->coded_fragment_list_index = 0;
+ for (i = 0; i < s->fragment_count; i++) {
+ memset(s->all_fragments[i].coeffs, 0, 64 * sizeof(DCTELEM));
+ s->all_fragments[i].coeff_count = 0;
+ s->all_fragments[i].last_coeff = 0;
+ }
+}
+
+/*
+ * This function sets of the dequantization tables used for a particular
+ * frame.
+ */
+static void init_dequantizer(Vp3DecodeContext *s)
+{
+
+ int quality_scale = vp31_quality_threshold[s->quality_index];
+ int dc_scale_factor = vp31_dc_scale_factor[s->quality_index];
+ int i, j;
+
+ debug_vp3(" vp3: initializing dequantization tables\n");
+
+ /*
+ * Scale dequantizers:
+ *
+ * quantizer * sf
+ * --------------
+ * 100
+ *
+ * where sf = dc_scale_factor for DC quantizer
+ * or quality_scale for AC quantizer
+ *
+ * Then, saturate the result to a lower limit of MIN_DEQUANT_VAL.
+ */
+#define SCALER 1
+
+ /* scale DC quantizers */
+ s->intra_y_dequant[0] = vp31_intra_y_dequant[0] * dc_scale_factor / 100;
+ if (s->intra_y_dequant[0] < MIN_DEQUANT_VAL * 2)
+ s->intra_y_dequant[0] = MIN_DEQUANT_VAL * 2;
+ s->intra_y_dequant[0] *= SCALER;
+
+ s->intra_c_dequant[0] = vp31_intra_c_dequant[0] * dc_scale_factor / 100;
+ if (s->intra_c_dequant[0] < MIN_DEQUANT_VAL * 2)
+ s->intra_c_dequant[0] = MIN_DEQUANT_VAL * 2;
+ s->intra_c_dequant[0] *= SCALER;
+
+ s->inter_dequant[0] = vp31_inter_dequant[0] * dc_scale_factor / 100;
+ if (s->inter_dequant[0] < MIN_DEQUANT_VAL * 4)
+ s->inter_dequant[0] = MIN_DEQUANT_VAL * 4;
+ s->inter_dequant[0] *= SCALER;
+
+ /* scale AC quantizers, zigzag at the same time in preparation for
+ * the dequantization phase */
+ for (i = 1; i < 64; i++) {
+
+ j = quant_index[i];
+
+ s->intra_y_dequant[j] = vp31_intra_y_dequant[i] * quality_scale / 100;
+ if (s->intra_y_dequant[j] < MIN_DEQUANT_VAL)
+ s->intra_y_dequant[j] = MIN_DEQUANT_VAL;
+ s->intra_y_dequant[j] *= SCALER;
+
+ s->intra_c_dequant[j] = vp31_intra_c_dequant[i] * quality_scale / 100;
+ if (s->intra_c_dequant[j] < MIN_DEQUANT_VAL)
+ s->intra_c_dequant[j] = MIN_DEQUANT_VAL;
+ s->intra_c_dequant[j] *= SCALER;
+
+ s->inter_dequant[j] = vp31_inter_dequant[i] * quality_scale / 100;
+ if (s->inter_dequant[j] < MIN_DEQUANT_VAL * 2)
+ s->inter_dequant[j] = MIN_DEQUANT_VAL * 2;
+ s->inter_dequant[j] *= SCALER;
+ }
+
+ /* print debug information as requested */
+ debug_dequantizers("intra Y dequantizers:\n");
+ for (i = 0; i < 8; i++) {
+ for (j = i * 8; j < i * 8 + 8; j++) {
+ debug_dequantizers(" %4d,", s->intra_y_dequant[j]);
+ }
+ debug_dequantizers("\n");
+ }
+ debug_dequantizers("\n");
+
+ debug_dequantizers("intra C dequantizers:\n");
+ for (i = 0; i < 8; i++) {
+ for (j = i * 8; j < i * 8 + 8; j++) {
+ debug_dequantizers(" %4d,", s->intra_c_dequant[j]);
+ }
+ debug_dequantizers("\n");
+ }
+ debug_dequantizers("\n");
+
+ debug_dequantizers("interframe dequantizers:\n");
+ for (i = 0; i < 8; i++) {
+ for (j = i * 8; j < i * 8 + 8; j++) {
+ debug_dequantizers(" %4d,", s->inter_dequant[j]);
+ }
+ debug_dequantizers("\n");
+ }
+ debug_dequantizers("\n");
+}
+
+/*
+ * This function is used to fetch runs of 1s or 0s from the bitstream for
+ * use in determining which superblocks are fully and partially coded.
+ *
+ * Codeword RunLength
+ * 0 1
+ * 10x 2-3
+ * 110x 4-5
+ * 1110xx 6-9
+ * 11110xxx 10-17
+ * 111110xxxx 18-33
+ * 111111xxxxxxxxxxxx 34-4129
+ */
+static int get_superblock_run_length(GetBitContext *gb)
+{
+
+ if (get_bits(gb, 1) == 0)
+ return 1;
+
+ else if (get_bits(gb, 1) == 0)
+ return (2 + get_bits(gb, 1));
+
+ else if (get_bits(gb, 1) == 0)
+ return (4 + get_bits(gb, 1));
+
+ else if (get_bits(gb, 1) == 0)
+ return (6 + get_bits(gb, 2));
+
+ else if (get_bits(gb, 1) == 0)
+ return (10 + get_bits(gb, 3));
+
+ else if (get_bits(gb, 1) == 0)
+ return (18 + get_bits(gb, 4));
+
+ else
+ return (34 + get_bits(gb, 12));
+
+}
+
+/*
+ * This function is used to fetch runs of 1s or 0s from the bitstream for
+ * use in determining which particular fragments are coded.
+ *
+ * Codeword RunLength
+ * 0x 1-2
+ * 10x 3-4
+ * 110x 5-6
+ * 1110xx 7-10
+ * 11110xx 11-14
+ * 11111xxxx 15-30
+ */
+static int get_fragment_run_length(GetBitContext *gb)
+{
+
+ if (get_bits(gb, 1) == 0)
+ return (1 + get_bits(gb, 1));
+
+ else if (get_bits(gb, 1) == 0)
+ return (3 + get_bits(gb, 1));
+
+ else if (get_bits(gb, 1) == 0)
+ return (5 + get_bits(gb, 1));
+
+ else if (get_bits(gb, 1) == 0)
+ return (7 + get_bits(gb, 2));
+
+ else if (get_bits(gb, 1) == 0)
+ return (11 + get_bits(gb, 2));
+
+ else
+ return (15 + get_bits(gb, 4));
+
+}
+
+/*
+ * This function decodes a VLC from the bitstream and returns a number
+ * that ranges from 0..7. The number indicates which of the 8 coding
+ * modes to use.
+ *
+ * VLC Number
+ * 0 0
+ * 10 1
+ * 110 2
+ * 1110 3
+ * 11110 4
+ * 111110 5
+ * 1111110 6
+ * 1111111 7
+ *
+ */
+static int get_mode_code(GetBitContext *gb)
+{
+
+ if (get_bits(gb, 1) == 0)
+ return 0;
+
+ else if (get_bits(gb, 1) == 0)
+ return 1;
+
+ else if (get_bits(gb, 1) == 0)
+ return 2;
+
+ else if (get_bits(gb, 1) == 0)
+ return 3;
+
+ else if (get_bits(gb, 1) == 0)
+ return 4;
+
+ else if (get_bits(gb, 1) == 0)
+ return 5;
+
+ else if (get_bits(gb, 1) == 0)
+ return 6;
+
+ else
+ return 7;
+
+}
+
+/*
+ * This function extracts a motion vector from the bitstream using a VLC
+ * scheme. 3 bits are fetched from the bitstream and 1 of 8 actions is
+ * taken depending on the value on those 3 bits:
+ *
+ * 0: return 0
+ * 1: return 1
+ * 2: return -1
+ * 3: if (next bit is 1) return -2, else return 2
+ * 4: if (next bit is 1) return -3, else return 3
+ * 5: return 4 + (next 2 bits), next bit is sign
+ * 6: return 8 + (next 3 bits), next bit is sign
+ * 7: return 16 + (next 4 bits), next bit is sign
+ */
+static int get_motion_vector_vlc(GetBitContext *gb)
+{
+ int bits;
+
+ bits = get_bits(gb, 3);
+
+ switch(bits) {
+
+ case 0:
+ bits = 0;
+ break;
+
+ case 1:
+ bits = 1;
+ break;
+
+ case 2:
+ bits = -1;
+ break;
+
+ case 3:
+ if (get_bits(gb, 1) == 0)
+ bits = 2;
+ else
+ bits = -2;
+ break;
+
+ case 4:
+ if (get_bits(gb, 1) == 0)
+ bits = 3;
+ else
+ bits = -3;
+ break;
+
+ case 5:
+ bits = 4 + get_bits(gb, 2);
+ if (get_bits(gb, 1) == 1)
+ bits = -bits;
+ break;
+
+ case 6:
+ bits = 8 + get_bits(gb, 3);
+ if (get_bits(gb, 1) == 1)
+ bits = -bits;
+ break;
+
+ case 7:
+ bits = 16 + get_bits(gb, 4);
+ if (get_bits(gb, 1) == 1)
+ bits = -bits;
+ break;
+
+ }
+
+ return bits;
+}
+
+/*
+ * This function fetches a 5-bit number from the stream followed by
+ * a sign and calls it a motion vector.
+ */
+static int get_motion_vector_fixed(GetBitContext *gb)
+{
+
+ int bits;
+
+ bits = get_bits(gb, 5);
+
+ if (get_bits(gb, 1) == 1)
+ bits = -bits;
+
+ return bits;
+}
+
+/*
+ * This function unpacks all of the superblock/macroblock/fragment coding
+ * information from the bitstream.
+ */
+static void unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
+{
+ int bit = 0;
+ int current_superblock = 0;
+ int current_run = 0;
+ int decode_fully_flags = 0;
+ int decode_partial_blocks = 0;
+
+ int i, j;
+ int current_fragment;
+
+ debug_vp3(" vp3: unpacking superblock coding\n");
+
+ if (s->keyframe) {
+
+ debug_vp3(" keyframe-- all superblocks are fully coded\n");
+ memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
+
+ } else {
+
+ /* unpack the list of partially-coded superblocks */
+ bit = get_bits(gb, 1);
+ /* toggle the bit because as soon as the first run length is
+ * fetched the bit will be toggled again */
+ bit ^= 1;
+ while (current_superblock < s->superblock_count) {
+ if (current_run == 0) {
+ bit ^= 1;
+ current_run = get_superblock_run_length(gb);
+ debug_block_coding(" setting superblocks %d..%d to %s\n",
+ current_superblock,
+ current_superblock + current_run - 1,
+ (bit) ? "partially coded" : "not coded");
+
+ /* if any of the superblocks are not partially coded, flag
+ * a boolean to decode the list of fully-coded superblocks */
+ if (bit == 0)
+ decode_fully_flags = 1;
+ } else {
+
+ /* make a note of the fact that there are partially coded
+ * superblocks */
+ decode_partial_blocks = 1;
+
+ }
+ s->superblock_coding[current_superblock++] =
+ (bit) ? SB_PARTIALLY_CODED : SB_NOT_CODED;
+ current_run--;
+ }
+
+ /* unpack the list of fully coded superblocks if any of the blocks were
+ * not marked as partially coded in the previous step */
+ if (decode_fully_flags) {
+
+ current_superblock = 0;
+ current_run = 0;
+ bit = get_bits(gb, 1);
+ /* toggle the bit because as soon as the first run length is
+ * fetched the bit will be toggled again */
+ bit ^= 1;
+ while (current_superblock < s->superblock_count) {
+
+ /* skip any superblocks already marked as partially coded */
+ if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
+
+ if (current_run == 0) {
+ bit ^= 1;
+ current_run = get_superblock_run_length(gb);
+ }
+
+ debug_block_coding(" setting superblock %d to %s\n",
+ current_superblock,
+ (bit) ? "fully coded" : "not coded");
+ s->superblock_coding[current_superblock] =
+ (bit) ? SB_FULLY_CODED : SB_NOT_CODED;
+ current_run--;
+ }
+ current_superblock++;
+ }
+ }
+
+ /* if there were partial blocks, initialize bitstream for
+ * unpacking fragment codings */
+ if (decode_partial_blocks) {
+
+ current_run = 0;
+ bit = get_bits(gb, 1);
+ /* toggle the bit because as soon as the first run length is
+ * fetched the bit will be toggled again */
+ bit ^= 1;
+ }
+ }
+
+ /* figure out which fragments are coded; iterate through each
+ * superblock (all planes) */
+ s->coded_fragment_list_index = 0;
+ memset(s->macroblock_coded, 0, s->macroblock_count);
+ for (i = 0; i < s->superblock_count; i++) {
+
+ /* iterate through all 16 fragments in a superblock */
+ for (j = 0; j < 16; j++) {
+
+ /* if the fragment is in bounds, check its coding status */
+ current_fragment = s->superblock_fragments[i * 16 + j];
+ if (current_fragment != -1) {
+ if (s->superblock_coding[i] == SB_NOT_CODED) {
+
+ /* copy all the fragments from the prior frame */
+ s->all_fragments[current_fragment].coding_method =
+ MODE_COPY;
+
+ } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
+
+ /* fragment may or may not be coded; this is the case
+ * that cares about the fragment coding runs */
+ if (current_run == 0) {
+ bit ^= 1;
+ current_run = get_fragment_run_length(gb);
+ }
+
+ if (bit) {
+ /* mode will be decoded in the next phase */
+ s->all_fragments[current_fragment].coding_method =
+ MODE_INTER_NO_MV;
+ s->coded_fragment_list[s->coded_fragment_list_index++] =
+ current_fragment;
+ s->macroblock_coded[s->all_fragments[current_fragment].macroblock] = 1;
+ debug_block_coding(" superblock %d is partially coded, fragment %d is coded\n",
+ i, current_fragment);
+ } else {
+ /* not coded; copy this fragment from the prior frame */
+ s->all_fragments[current_fragment].coding_method =
+ MODE_COPY;
+ debug_block_coding(" superblock %d is partially coded, fragment %d is not coded\n",
+ i, current_fragment);
+ }
+
+ current_run--;
+
+ } else {
+
+ /* fragments are fully coded in this superblock; actual
+ * coding will be determined in next step */
+ s->all_fragments[current_fragment].coding_method =
+ MODE_INTER_NO_MV;
+ s->coded_fragment_list[s->coded_fragment_list_index++] =
+ current_fragment;
+ s->macroblock_coded[s->all_fragments[current_fragment].macroblock] = 1;
+ debug_block_coding(" superblock %d is fully coded, fragment %d is coded\n",
+ i, current_fragment);
+ }
+ }
+ }
+ }
+}
+
+/*
+ * This function unpacks all the coding mode data for individual macroblocks
+ * from the bitstream.
+ */
+static void unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
+{
+ int i, j, k;
+ int scheme;
+ int current_macroblock;
+ int current_fragment;
+ int coding_mode;
+
+ debug_vp3(" vp3: unpacking encoding modes\n");
+
+ if (s->keyframe) {
+ debug_vp3(" keyframe-- all blocks are coded as INTRA\n");
+
+ for (i = 0; i < s->fragment_count; i++)
+ s->all_fragments[i].coding_method = MODE_INTRA;
+
+ } else {
+
+ /* fetch the mode coding scheme for this frame */
+ scheme = get_bits(gb, 3);
+ debug_modes(" using mode alphabet %d\n", scheme);
+
+ /* is it a custom coding scheme? */
+ if (scheme == 0) {
+ debug_modes(" custom mode alphabet ahead:\n");
+ for (i = 0; i < 8; i++)
+ ModeAlphabet[0][i] = get_bits(gb, 3);
+ }
+
+ for (i = 0; i < 8; i++)
+ debug_modes(" mode[%d][%d] = %d\n", scheme, i,
+ ModeAlphabet[scheme][i]);
+
+ /* iterate through all of the macroblocks that contain 1 or more
+ * coded fragments */
+ for (i = 0; i < s->u_superblock_start; i++) {
+
+ for (j = 0; j < 4; j++) {
+ current_macroblock = s->superblock_macroblocks[i * 4 + j];
+ if ((current_macroblock == -1) ||
+ (!s->macroblock_coded[current_macroblock]))
+ continue;
+
+ /* mode 7 means get 3 bits for each coding mode */
+ if (scheme == 7)
+ coding_mode = get_bits(gb, 3);
+ else
+ coding_mode = ModeAlphabet[scheme][get_mode_code(gb)];
+
+ for (k = 0; k < 6; k++) {
+ current_fragment =
+ s->macroblock_fragments[current_macroblock * 6 + k];
+ if (s->all_fragments[current_fragment].coding_method !=
+ MODE_COPY)
+ s->all_fragments[current_fragment].coding_method =
+ coding_mode;
+ }
+
+ debug_modes(" coding method for macroblock starting @ fragment %d = %d\n",
+ s->macroblock_fragments[current_macroblock * 6], coding_mode);
+ }
+ }
+ }
+
+}
+
+/*
+ * This function unpacks all the motion vectors for the individual
+ * macroblocks from the bitstream.
+ */
+static void unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
+{
+ int i, j, k;
+ int coding_mode;
+ int motion_x[6];
+ int motion_y[6];
+ int last_motion_x = 0;
+ int last_motion_y = 0;
+ int prior_last_motion_x = 0;
+ int prior_last_motion_y = 0;
+ int current_macroblock;
+ int current_fragment;
+
+ debug_vp3(" vp3: unpacking motion vectors\n");
+
+ if (s->keyframe) {
+
+ debug_vp3(" keyframe-- there are no motion vectors\n");
+
+ } else {
+
+ memset(motion_x, 0, 6 * sizeof(int));
+ memset(motion_y, 0, 6 * sizeof(int));
+
+ /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
+ coding_mode = get_bits(gb, 1);
+ debug_vectors(" using %s scheme for unpacking motion vectors\n",
+ (coding_mode == 0) ? "VLC" : "fixed-length");
+
+ /* iterate through all of the macroblocks that contain 1 or more
+ * coded fragments */
+ for (i = 0; i < s->u_superblock_start; i++) {
+
+ for (j = 0; j < 4; j++) {
+ current_macroblock = s->superblock_macroblocks[i * 4 + j];
+ if ((current_macroblock == -1) ||
+ (!s->macroblock_coded[current_macroblock]))
+ continue;
+
+ current_fragment = s->macroblock_fragments[current_macroblock * 6];
+ switch (s->all_fragments[current_fragment].coding_method) {
+
+ case MODE_INTER_PLUS_MV:
+ case MODE_GOLDEN_MV:
+ /* all 6 fragments use the same motion vector */
+ if (coding_mode == 0) {
+ motion_x[0] = get_motion_vector_vlc(gb);
+ motion_y[0] = get_motion_vector_vlc(gb);
+ } else {
+ motion_x[0] = get_motion_vector_fixed(gb);
+ motion_y[0] = get_motion_vector_fixed(gb);
+ }
+ for (k = 1; k < 6; k++) {
+ motion_x[k] = motion_x[0];
+ motion_y[k] = motion_y[0];
+ }
+
+ /* vector maintenance, only on MODE_INTER_PLUS_MV */
+ if (s->all_fragments[current_fragment].coding_method ==
+ MODE_INTER_PLUS_MV) {
+ prior_last_motion_x = last_motion_x;
+ prior_last_motion_y = last_motion_y;
+ last_motion_x = motion_x[0];
+ last_motion_y = motion_y[0];
+ }
+ break;
+
+ case MODE_INTER_FOURMV:
+ /* fetch 4 vectors from the bitstream, one for each
+ * Y fragment, then average for the C fragment vectors */
+ motion_x[4] = motion_y[4] = 0;
+ for (k = 0; k < 4; k++) {
+ if (coding_mode == 0) {
+ motion_x[k] = get_motion_vector_vlc(gb);
+ motion_y[k] = get_motion_vector_vlc(gb);
+ } else {
+ motion_x[k] = get_motion_vector_fixed(gb);
+ motion_y[k] = get_motion_vector_fixed(gb);
+ }
+ motion_x[4] += motion_x[k];
+ motion_y[4] += motion_y[k];
+ }
+
+ if (motion_x[4] >= 0)
+ motion_x[4] = (motion_x[4] + 2) / 4;
+ else
+ motion_x[4] = (motion_x[4] - 2) / 4;
+ motion_x[5] = motion_x[4];
+
+ if (motion_y[4] >= 0)
+ motion_y[4] = (motion_y[4] + 2) / 4;
+ else
+ motion_y[4] = (motion_y[4] - 2) / 4;
+ motion_y[5] = motion_y[4];
+
+ /* vector maintenance; vector[3] is treated as the
+ * last vector in this case */
+ prior_last_motion_x = last_motion_x;
+ prior_last_motion_y = last_motion_y;
+ last_motion_x = motion_x[3];
+ last_motion_y = motion_y[3];
+ break;
+
+ case MODE_INTER_LAST_MV:
+ /* all 6 fragments use the last motion vector */
+ motion_x[0] = last_motion_x;
+ motion_y[0] = last_motion_y;
+ for (k = 1; k < 6; k++) {
+ motion_x[k] = motion_x[0];
+ motion_y[k] = motion_y[0];
+ }
+
+ /* no vector maintenance (last vector remains the
+ * last vector) */
+ break;
+
+ case MODE_INTER_PRIOR_LAST:
+ /* all 6 fragments use the motion vector prior to the
+ * last motion vector */
+ motion_x[0] = prior_last_motion_x;
+ motion_y[0] = prior_last_motion_y;
+ for (k = 1; k < 6; k++) {
+ motion_x[k] = motion_x[0];
+ motion_y[k] = motion_y[0];
+ }
+
+ /* vector maintenance */
+ prior_last_motion_x = last_motion_x;
+ prior_last_motion_y = last_motion_y;
+ last_motion_x = motion_x[0];
+ last_motion_y = motion_y[0];
+ break;
+ }
+
+ /* assign the motion vectors to the correct fragments */
+ debug_vectors(" vectors for macroblock starting @ fragment %d (coding method %d):\n",
+ current_fragment,
+ s->all_fragments[current_fragment].coding_method);
+ for (k = 0; k < 6; k++) {
+ current_fragment =
+ s->macroblock_fragments[current_macroblock * 6 + k];
+ s->all_fragments[current_fragment].motion_x = motion_x[k];
+ s->all_fragments[current_fragment].motion_x = motion_y[k];
+ debug_vectors(" vector %d: fragment %d = (%d, %d)\n",
+ k, current_fragment, motion_x[k], motion_y[k]);
+ }
+ }
+ }
+ }
+}
+
+/*
+ * This function is called by unpack_dct_coeffs() to extract the VLCs from
+ * the bitstream. The VLCs encode tokens which are used to unpack DCT
+ * data. This function unpacks all the VLCs for either the Y plane or both
+ * C planes, and is called for DC coefficients or different AC coefficient
+ * levels (since different coefficient types require different VLC tables.
+ *
+ * This function returns a residual eob run. E.g, if a particular token gave
+ * instructions to EOB the next 5 fragments and there were only 2 fragments
+ * left in the current fragment range, 3 would be returned so that it could
+ * be passed into the next call to this same function.
+ */
+static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
+ VLC *table, int coeff_index,
+ int first_fragment, int last_fragment,
+ int eob_run)
+{
+ int i;
+ int token;
+ int zero_run;
+ DCTELEM coeff;
+ Vp3Fragment *fragment;
+
+ for (i = first_fragment; i < last_fragment; i++) {
+
+ fragment = &s->all_fragments[s->coded_fragment_list[i]];
+ if (fragment->coeff_count > coeff_index)
+ continue;
+
+ if (!eob_run) {
+ /* decode a VLC into a token */
+ token = get_vlc2(gb, table->table, 5, 3);
+ debug_vlc(" token = %2d, ", token);
+ /* use the token to get a zero run, a coefficient, and an eob run */
+ unpack_token(gb, token, &zero_run, &coeff, &eob_run);
+ }
+
+ if (!eob_run) {
+ fragment->coeff_count += zero_run;
+ if (fragment->coeff_count < 64)
+ fragment->coeffs[fragment->coeff_count++] = coeff;
+ debug_vlc(" fragment %d coeff = %d\n",
+ s->coded_fragment_list[i], fragment->coeffs[coeff_index]);
+ } else {
+ fragment->last_coeff = fragment->coeff_count;
+ fragment->coeff_count = 64;
+ debug_vlc(" fragment %d eob with %d coefficients\n",
+ s->coded_fragment_list[i], fragment->last_coeff);
+ eob_run--;
+ }
+ }
+
+ return eob_run;
+}
+
+/*
+ * This function unpacks all of the DCT coefficient data from the
+ * bitstream.
+ */
+static void unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
+{
+ int i;
+ int dc_y_table;
+ int dc_c_table;
+ int ac_y_table;
+ int ac_c_table;
+ int residual_eob_run = 0;
+
+ /* for the binary search */
+ int left, middle, right, found;
+ /* this indicates the first fragment of the color plane data */
+ int plane_split = 0;
+
+ debug_vp3(" vp3: unpacking DCT coefficients\n");
+
+ /* find the plane split (the first color plane fragment) using a binary
+ * search; test the boundaries first */
+ if (s->coded_fragment_list_index == 0)
+ return;
+ if (s->u_fragment_start <= s->coded_fragment_list[0])
+ plane_split = 0; /* this means no Y fragments */
+ else if (s->coded_fragment_list[s->coded_fragment_list_index - 1] >
+ s->u_fragment_start) {
+
+ left = 0;
+ right = s->coded_fragment_list_index - 1;
+ found = 0;
+ do {
+ middle = (left + right + 1) / 2;
+ if ((s->coded_fragment_list[middle] >= s->u_fragment_start) &&
+ (s->coded_fragment_list[middle - 1] < s->u_fragment_start))
+ found = 1;
+ else if (s->coded_fragment_list[middle] < s->u_fragment_start)
+ left = middle;
+ else
+ right = middle;
+ } while (!found);
+
+ plane_split = middle;
+ }
+
+ debug_vp3(" plane split @ index %d (fragment %d)\n", plane_split,
+ s->coded_fragment_list[plane_split]);
+
+ /* fetch the DC table indices */
+ dc_y_table = get_bits(gb, 4);
+ dc_c_table = get_bits(gb, 4);
+
+ /* unpack the Y plane DC coefficients */
+ debug_vp3(" vp3: unpacking Y plane DC coefficients using table %d\n",
+ dc_y_table);
+ residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
+ 0, plane_split, residual_eob_run);
+
+ /* unpack the C plane DC coefficients */
+ debug_vp3(" vp3: unpacking C plane DC coefficients using table %d\n",
+ dc_c_table);
+ residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
+ plane_split, s->coded_fragment_list_index, residual_eob_run);
+
+ /* fetch the level 1 AC table indices */
+ ac_y_table = get_bits(gb, 4);
+ ac_c_table = get_bits(gb, 4);
+
+ /* unpack the level 1 AC coefficients (coeffs 1-5) */
+ for (i = 1; i <= 5; i++) {
+
+ debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
+ i, ac_y_table);
+ residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
+ 0, plane_split, residual_eob_run);
+
+ debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
+ i, ac_c_table);
+ residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
+ plane_split, s->coded_fragment_list_index, residual_eob_run);
+ }
+
+ /* unpack the level 2 AC coefficients (coeffs 6-14) */
+ for (i = 6; i <= 14; i++) {
+
+ debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
+ i, ac_y_table);
+ residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
+ 0, plane_split, residual_eob_run);
+
+ debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
+ i, ac_c_table);
+ residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
+ plane_split, s->coded_fragment_list_index, residual_eob_run);
+ }
+
+ /* unpack the level 3 AC coefficients (coeffs 15-27) */
+ for (i = 15; i <= 27; i++) {
+
+ debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
+ i, ac_y_table);
+ residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
+ 0, plane_split, residual_eob_run);
+
+ debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
+ i, ac_c_table);
+ residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
+ plane_split, s->coded_fragment_list_index, residual_eob_run);
+ }
+
+ /* unpack the level 4 AC coefficients (coeffs 28-63) */
+ for (i = 28; i <= 63; i++) {
+
+ debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
+ i, ac_y_table);
+ residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
+ 0, plane_split, residual_eob_run);
+
+ debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
+ i, ac_c_table);
+ residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
+ plane_split, s->coded_fragment_list_index, residual_eob_run);
+ }
+}
+
+/*
+ * This function reverses the DC prediction for each coded fragment in
+ * the frame. Much of this function is adapted directly from the original
+ * VP3 source code.
+ */
+#define COMPATIBLE_FRAME(x) \
+ (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
+#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
+#define HIGHBITDUPPED(X) (((signed short) X) >> 15)
+static inline int iabs (int x) { return ((x < 0) ? -x : x); }
+
+static void reverse_dc_prediction(Vp3DecodeContext *s,
+ int first_fragment,
+ int fragment_width,
+ int fragment_height)
+{
+
+#define PUL 8
+#define PU 4
+#define PUR 2
+#define PL 1
+
+ int x, y;
+ int i = first_fragment;
+
+ /*
+ * Fragment prediction groups:
+ *
+ * 32222222226
+ * 10000000004
+ * 10000000004
+ * 10000000004
+ * 10000000004
+ *
+ * Note: Groups 5 and 7 do not exist as it would mean that the
+ * fragment's x coordinate is both 0 and (width - 1) at the same time.
+ */
+ int predictor_group;
+ short predicted_dc;
+
+ /* validity flags for the left, up-left, up, and up-right fragments */
+ int fl, ful, fu, fur;
+
+ /* DC values for the left, up-left, up, and up-right fragments */
+ int vl, vul, vu, vur;
+
+ /* indices for the left, up-left, up, and up-right fragments */
+ int l, ul, u, ur;
+
+ /*
+ * The 6 fields mean:
+ * 0: up-left multiplier
+ * 1: up multiplier
+ * 2: up-right multiplier
+ * 3: left multiplier
+ * 4: mask
+ * 5: right bit shift divisor (e.g., 7 means >>=7, a.k.a. div by 128)
+ */
+ int predictor_transform[16][6] = {
+ { 0, 0, 0, 0, 0, 0 },
+ { 0, 0, 0, 1, 0, 0 }, // PL
+ { 0, 0, 1, 0, 0, 0 }, // PUR
+ { 0, 0, 53, 75, 127, 7 }, // PUR|PL
+ { 0, 1, 0, 0, 0, 0 }, // PU
+ { 0, 1, 0, 1, 1, 1 }, // PU|PL
+ { 0, 1, 0, 0, 0, 0 }, // PU|PUR
+ { 0, 0, 53, 75, 127, 7 }, // PU|PUR|PL
+ { 1, 0, 0, 0, 0, 0 }, // PUL
+ { 0, 0, 0, 1, 0, 0 }, // PUL|PL
+ { 1, 0, 1, 0, 1, 1 }, // PUL|PUR
+ { 0, 0, 53, 75, 127, 7 }, // PUL|PUR|PL
+ { 0, 1, 0, 0, 0, 0 }, // PUL|PU
+ {-26, 29, 0, 29, 31, 5 }, // PUL|PU|PL
+ { 3, 10, 3, 0, 15, 4 }, // PUL|PU|PUR
+ {-26, 29, 0, 29, 31, 5 } // PUL|PU|PUR|PL
+ };
+
+ /* This table shows which types of blocks can use other blocks for
+ * prediction. For example, INTRA is the only mode in this table to
+ * have a frame number of 0. That means INTRA blocks can only predict
+ * from other INTRA blocks. There are 2 golden frame coding types;
+ * blocks encoding in these modes can only predict from other blocks
+ * that were encoded with these 1 of these 2 modes. */
+ unsigned char compatible_frame[8] = {
+ 1, /* MODE_INTER_NO_MV */
+ 0, /* MODE_INTRA */
+ 1, /* MODE_INTER_PLUS_MV */
+ 1, /* MODE_INTER_LAST_MV */
+ 1, /* MODE_INTER_PRIOR_MV */
+ 2, /* MODE_USING_GOLDEN */
+ 2, /* MODE_GOLDEN_MV */
+ 1 /* MODE_INTER_FOUR_MV */
+ };
+ int current_frame_type;
+
+ /* there is a last DC predictor for each of the 3 frame types */
+ short last_dc[3];
+
+ int transform = 0;
+
+ debug_vp3(" vp3: reversing DC prediction\n");
+
+ vul = vu = vur = vl = 0;
+ last_dc[0] = last_dc[1] = last_dc[2] = 0;
+
+ /* for each fragment row... */
+ for (y = 0; y < fragment_height; y++) {
+
+ /* for each fragment in a row... */
+ for (x = 0; x < fragment_width; x++, i++) {
+
+ /* reverse prediction if this block was coded */
+ if (s->all_fragments[i].coding_method != MODE_COPY) {
+
+ current_frame_type =
+ compatible_frame[s->all_fragments[i].coding_method];
+ predictor_group = (x == 0) + ((y == 0) << 1) +
+ ((x + 1 == fragment_width) << 2);
+ debug_dc_pred(" frag %d: group %d, orig DC = %d, ",
+ i, predictor_group, s->all_fragments[i].coeffs[0]);
+
+ switch (predictor_group) {
+
+ case 0:
+ /* main body of fragments; consider all 4 possible
+ * fragments for prediction */
+
+ /* calculate the indices of the predicting fragments */
+ ul = i - fragment_width - 1;
+ u = i - fragment_width;
+ ur = i - fragment_width + 1;
+ l = i - 1;
+
+ /* fetch the DC values for the predicting fragments */
+ vul = s->all_fragments[ul].coeffs[0];
+ vu = s->all_fragments[u].coeffs[0];
+ vur = s->all_fragments[ur].coeffs[0];
+ vl = s->all_fragments[l].coeffs[0];
+
+ /* figure out which fragments are valid */
+ ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
+ fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
+ fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
+ fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);
+
+ /* decide which predictor transform to use */
+ transform = (fl*PL) | (fu*PU) | (ful*PUL) | (fur*PUR);
+
+ break;
+
+ case 1:
+ /* left column of fragments, not including top corner;
+ * only consider up and up-right fragments */
+
+ /* calculate the indices of the predicting fragments */
+ u = i - fragment_width;
+ ur = i - fragment_width + 1;
+
+ /* fetch the DC values for the predicting fragments */
+ vu = s->all_fragments[u].coeffs[0];
+ vur = s->all_fragments[ur].coeffs[0];
+
+ /* figure out which fragments are valid */
+ fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
+ fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
+
+ /* decide which predictor transform to use */
+ transform = (fu*PU) | (fur*PUR);
+
+ break;
+
+ case 2:
+ case 6:
+ /* top row of fragments, not including top-left frag;
+ * only consider the left fragment for prediction */
+
+ /* calculate the indices of the predicting fragments */
+ l = i - 1;
+
+ /* fetch the DC values for the predicting fragments */
+ vl = s->all_fragments[l].coeffs[0];
+
+ /* figure out which fragments are valid */
+ fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);
+
+ /* decide which predictor transform to use */
+ transform = (fl*PL);
+
+ break;
+
+ case 3:
+ /* top-left fragment */
+
+ /* nothing to predict from in this case */
+ transform = 0;
+
+ break;
+
+ case 4:
+ /* right column of fragments, not including top corner;
+ * consider up-left, up, and left fragments for
+ * prediction */
+
+ /* calculate the indices of the predicting fragments */
+ ul = i - fragment_width - 1;
+ u = i - fragment_width;
+ l = i - 1;
+
+ /* fetch the DC values for the predicting fragments */
+ vul = s->all_fragments[ul].coeffs[0];
+ vu = s->all_fragments[u].coeffs[0];
+ vl = s->all_fragments[l].coeffs[0];
+
+ /* figure out which fragments are valid */
+ ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
+ fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
+ fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);
+
+ /* decide which predictor transform to use */
+ transform = (fl*PL) | (fu*PU) | (ful*PUL);
+
+ break;
+
+ }
+
+ debug_dc_pred("transform = %d, ", transform);
+
+ if (transform == 0) {
+
+ /* if there were no fragments to predict from, use last
+ * DC saved */
+ s->all_fragments[i].coeffs[0] += last_dc[current_frame_type];
+ debug_dc_pred("from last DC (%d) = %d\n",
+ current_frame_type, s->all_fragments[i].coeffs[0]);
+
+ } else {
+
+ /* apply the appropriate predictor transform */
+ predicted_dc =
+ (predictor_transform[transform][0] * vul) +
+ (predictor_transform[transform][1] * vu) +
+ (predictor_transform[transform][2] * vur) +
+ (predictor_transform[transform][3] * vl);
+
+ /* if there is a shift value in the transform, add
+ * the sign bit before the shift */
+ if (predictor_transform[transform][5] != 0) {
+ predicted_dc += ((predicted_dc >> 15) &
+ predictor_transform[transform][4]);
+ predicted_dc >>= predictor_transform[transform][5];
+ }
+
+ /* check for outranging on the [ul u l] and
+ * [ul u ur l] predictors */
+ if ((transform == 13) || (transform == 15)) {
+ if (iabs(predicted_dc - vu) > 128)
+ predicted_dc = vu;
+ else if (iabs(predicted_dc - vl) > 128)
+ predicted_dc = vl;
+ else if (iabs(predicted_dc - vul) > 128)
+ predicted_dc = vul;
+ }
+
+ /* at long last, apply the predictor */
+ s->all_fragments[i].coeffs[0] += predicted_dc;
+ debug_dc_pred("from pred DC = %d\n",
+ s->all_fragments[i].coeffs[0]);
+ }
+
+ /* save the DC */
+ last_dc[current_frame_type] = s->all_fragments[i].coeffs[0];
+ }
+ }
+ }
+}
+
+/*
+ * This function performs the final rendering of each fragment's data
+ * onto the output frame.
+ */
+static void render_fragments(Vp3DecodeContext *s,
+ int first_fragment,
+ int fragment_width,
+ int fragment_height,
+ int plane /* 0 = Y, 1 = U, 2 = V */)
+{
+ int x, y;
+ int m, n;
+ int i = first_fragment;
+ int j;
+ int16_t *dequantizer;
+ DCTELEM dequant_block[64];
+ unsigned char *output_plane;
+ unsigned char *last_plane;
+ unsigned char *golden_plane;
+ int stride;
+
+ debug_vp3(" vp3: rendering final fragments for %s\n",
+ (plane == 0) ? "Y plane" : (plane == 1) ? "U plane" : "V plane");
+
+ /* set up plane-specific parameters */
+ if (plane == 0) {
+ dequantizer = s->intra_y_dequant;
+ output_plane = s->current_frame.data[0];
+ last_plane = s->current_frame.data[0];
+ golden_plane = s->current_frame.data[0];
+ stride = -s->current_frame.linesize[0];
+ } else if (plane == 1) {
+ dequantizer = s->intra_c_dequant;
+ output_plane = s->current_frame.data[1];
+ last_plane = s->current_frame.data[1];
+ golden_plane = s->current_frame.data[1];
+ stride = -s->current_frame.linesize[1];
+ } else {
+ dequantizer = s->intra_c_dequant;
+ output_plane = s->current_frame.data[2];
+ last_plane = s->current_frame.data[2];
+ golden_plane = s->current_frame.data[2];
+ stride = -s->current_frame.linesize[2];
+ }
+
+ /* for each fragment row... */
+ for (y = 0; y < fragment_height; y++) {
+
+ /* for each fragment in a row... */
+ for (x = 0; x < fragment_width; x++, i++) {
+
+ /* transform if this block was coded */
+ if (s->all_fragments[i].coding_method == MODE_INTRA) {
+ /* dequantize the DCT coefficients */
+ for (j = 0; j < 64; j++)
+ dequant_block[dequant_index[j]] =
+ s->all_fragments[i].coeffs[j] *
+ dequantizer[j];
+ dequant_block[0] += 1024;
+
+ debug_idct("fragment %d:\n", i);
+ debug_idct("dequantized block:\n");
+ for (m = 0; m < 8; m++) {
+ for (n = 0; n < 8; n++) {
+ debug_idct(" %5d", dequant_block[m * 8 + n]);
+ }
+ debug_idct("\n");
+ }
+ debug_idct("\n");
+
+ /* invert DCT and place in final output */
+ s->dsp.idct_put(
+ output_plane + s->all_fragments[i].first_pixel,
+ stride, dequant_block);
+
+/*
+ debug_idct("idct block:\n");
+ for (m = 0; m < 8; m++) {
+ for (n = 0; n < 8; n++) {
+ debug_idct(" %3d", pixels[m * 8 + n]);
+ }
+ debug_idct("\n");
+ }
+ debug_idct("\n");
+*/
+ } else if (s->all_fragments[i].coding_method == MODE_COPY) {
+
+ /* copy directly from the previous frame */
+ for (m = 0; m < 8; m++)
+ memcpy(
+ output_plane + s->all_fragments[i].first_pixel + stride * m,
+ last_plane + s->all_fragments[i].first_pixel + stride * m,
+ 8);
+
+ } else {
+
+ /* carry out the motion compensation */
+
+ }
+ }
+ }
+
+ emms_c();
+
+}
+
+/*
+ * This function computes the first pixel addresses for each fragment.
+ * This function needs to be invoked after the first frame is allocated
+ * so that it has access to the plane strides.
+ */
+static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
+{
+
+ int i, x, y;
+
+ /* figure out the first pixel addresses for each of the fragments */
+ /* Y plane */
+ i = 0;
+ for (y = s->fragment_height; y > 0; y--) {
+ for (x = 0; x < s->fragment_width; x++) {
+ s->all_fragments[i++].first_pixel =
+ s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
+ s->golden_frame.linesize[0] +
+ x * FRAGMENT_PIXELS;
+ debug_init(" fragment %d, first pixel @ %d\n",
+ i-1, s->all_fragments[i-1].first_pixel);
+ }
+ }
+
+ /* U plane */
+ i = s->u_fragment_start;
+ for (y = s->fragment_height / 2; y > 0; y--) {
+ for (x = 0; x < s->fragment_width / 2; x++) {
+ s->all_fragments[i++].first_pixel =
+ s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
+ s->golden_frame.linesize[1] +
+ x * FRAGMENT_PIXELS;
+ debug_init(" fragment %d, first pixel @ %d\n",
+ i-1, s->all_fragments[i-1].first_pixel);
+ }
+ }
+
+ /* V plane */
+ i = s->v_fragment_start;
+ for (y = s->fragment_height / 2; y > 0; y--) {
+ for (x = 0; x < s->fragment_width / 2; x++) {
+ s->all_fragments[i++].first_pixel =
+ s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
+ s->golden_frame.linesize[2] +
+ x * FRAGMENT_PIXELS;
+ debug_init(" fragment %d, first pixel @ %d\n",
+ i-1, s->all_fragments[i-1].first_pixel);
+ }
+ }
+}
+
+/*
+ * This is the ffmpeg/libavcodec API init function.
+ */
+static int vp3_decode_init(AVCodecContext *avctx)
+{
+ Vp3DecodeContext *s = avctx->priv_data;
+ int i;
+
+ s->avctx = avctx;
+ s->width = avctx->width;
+ s->height = avctx->height;
+ avctx->pix_fmt = PIX_FMT_YUV420P;
+ avctx->has_b_frames = 0;
+ dsputil_init(&s->dsp, avctx);
+
+ /* initialize to an impossible value which will force a recalculation
+ * in the first frame decode */
+ s->quality_index = -1;
+
+ s->superblock_width = (s->width + 31) / 32;
+ s->superblock_height = (s->height + 31) / 32;
+ s->superblock_count = s->superblock_width * s->superblock_height * 3 / 2;
+ s->u_superblock_start = s->superblock_width * s->superblock_height;
+ s->v_superblock_start = s->superblock_width * s->superblock_height * 5 / 4;
+ s->superblock_coding = av_malloc(s->superblock_count);
+
+ s->macroblock_width = (s->width + 15) / 16;
+ s->macroblock_height = (s->height + 15) / 16;
+ s->macroblock_count = s->macroblock_width * s->macroblock_height;
+
+ s->fragment_width = s->width / FRAGMENT_PIXELS;
+ s->fragment_height = s->height / FRAGMENT_PIXELS;
+
+ /* fragment count covers all 8x8 blocks for all 3 planes */
+ s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
+ s->u_fragment_start = s->fragment_width * s->fragment_height;
+ s->v_fragment_start = s->fragment_width * s->fragment_height * 5 / 4;
+
+ debug_init(" width: %d x %d\n", s->width, s->height);
+ debug_init(" superblocks: %d x %d, %d total\n",
+ s->superblock_width, s->superblock_height, s->superblock_count);
+ debug_init(" macroblocks: %d x %d, %d total\n",
+ s->macroblock_width, s->macroblock_height, s->macroblock_count);
+ debug_init(" %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
+ s->fragment_count,
+ s->fragment_width,
+ s->fragment_height,
+ s->u_fragment_start,
+ s->v_fragment_start);
+
+ s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
+ s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
+ s->pixel_addresses_inited = 0;
+
+ /* init VLC tables */
+ for (i = 0; i < 16; i++) {
+
+ /* Dc histograms */
+ init_vlc(&s->dc_vlc[i], 5, 32,
+ &dc_bias[i][0][1], 4, 2,
+ &dc_bias[i][0][0], 4, 2);
+
+ /* level 1 AC histograms */
+ init_vlc(&s->ac_vlc_1[i], 5, 32,
+ &ac_bias_0[i][0][1], 4, 2,
+ &ac_bias_0[i][0][0], 4, 2);
+
+ /* level 2 AC histograms */
+ init_vlc(&s->ac_vlc_2[i], 5, 32,
+ &ac_bias_1[i][0][1], 4, 2,
+ &ac_bias_1[i][0][0], 4, 2);
+
+ /* level 3 AC histograms */
+ init_vlc(&s->ac_vlc_3[i], 5, 32,
+ &ac_bias_2[i][0][1], 4, 2,
+ &ac_bias_2[i][0][0], 4, 2);
+
+ /* level 4 AC histograms */
+ init_vlc(&s->ac_vlc_4[i], 5, 32,
+ &ac_bias_3[i][0][1], 4, 2,
+ &ac_bias_3[i][0][0], 4, 2);
+ }
+
+ /* build quantization table */
+ for (i = 0; i < 64; i++)
+ quant_index[dequant_index[i]] = i;
+
+ /* work out the block mapping tables */
+ s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
+ s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
+ s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
+ s->macroblock_coded = av_malloc(s->macroblock_count + 1);
+ init_block_mapping(s);
+
+ return 0;
+}
+
+/*
+ * This is the ffmpeg/libavcodec API frame decode function.
+ */
+static int vp3_decode_frame(AVCodecContext *avctx,
+ void *data, int *data_size,
+ uint8_t *buf, int buf_size)
+{
+ Vp3DecodeContext *s = avctx->priv_data;
+ GetBitContext gb;
+ static int counter = 0;
+
+ *data_size = 0;
+
+ init_get_bits(&gb, buf, buf_size * 8);
+
+ s->keyframe = get_bits(&gb, 1);
+ s->keyframe ^= 1;
+ skip_bits(&gb, 1);
+ s->last_quality_index = s->quality_index;
+ s->quality_index = get_bits(&gb, 6);
+ if (s->quality_index != s->last_quality_index)
+ init_dequantizer(s);
+
+ debug_vp3(" VP3 frame #%d: Q index = %d", counter, s->quality_index);
+ counter++;
+
+ if (s->keyframe) {
+ /* release the previous golden frame and get a new one */
+ if (counter > 1)
+ avctx->release_buffer(avctx, &s->golden_frame);
+
+ s->golden_frame.reference = 0;
+ if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
+ printf("vp3: get_buffer() failed\n");
+ return -1;
+ }
+
+ /* last frame is hereby invalidated */
+ avctx->release_buffer(avctx, &s->last_frame);
+
+ /* golden frame is also the current frame */
+ s->current_frame = s->golden_frame;
+
+ /* time to figure out pixel addresses? */
+ if (!s->pixel_addresses_inited)
+ vp3_calculate_pixel_addresses(s);
+
+ } else {
+
+ /* allocate a new current frame */
+ s->current_frame.reference = 0;
+ if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
+ printf("vp3: get_buffer() failed\n");
+ return -1;
+ }
+
+ }
+
+ if (s->keyframe) {
+ debug_vp3(", keyframe\n");
+ /* skip the other 2 header bytes for now */
+ skip_bits(&gb, 16);
+ } else
+ debug_vp3("\n");
+
+ init_frame(s, &gb);
+
+ unpack_superblocks(s, &gb);
+ unpack_modes(s, &gb);
+ unpack_vectors(s, &gb);
+ unpack_dct_coeffs(s, &gb);
+
+ reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
+ reverse_dc_prediction(s, s->u_fragment_start,
+ s->fragment_width / 2, s->fragment_height / 2);
+ reverse_dc_prediction(s, s->v_fragment_start,
+ s->fragment_width / 2, s->fragment_height / 2);
+
+ render_fragments(s, 0, s->fragment_width, s->fragment_height, 0);
+ render_fragments(s, s->u_fragment_start,
+ s->fragment_width / 2, s->fragment_height / 2, 1);
+ render_fragments(s, s->v_fragment_start,
+ s->fragment_width / 2, s->fragment_height / 2, 2);
+
+
+ *data_size=sizeof(AVFrame);
+ *(AVFrame*)data= s->current_frame;
+
+ /* release the last frame, if it was allocated */
+ avctx->release_buffer(avctx, &s->last_frame);
+
+ /* shuffle frames */
+ s->last_frame = s->current_frame;
+
+ return buf_size;
+}
+
+/*
+ * This is the ffmpeg/libavcodec API module cleanup function.
+ */
+static int vp3_decode_end(AVCodecContext *avctx)
+{
+ Vp3DecodeContext *s = avctx->priv_data;
+
+ av_free(s->all_fragments);
+ av_free(s->coded_fragment_list);
+ av_free(s->superblock_fragments);
+ av_free(s->superblock_macroblocks);
+ av_free(s->macroblock_fragments);
+ av_free(s->macroblock_coded);
+
+ /* release all frames */
+ avctx->release_buffer(avctx, &s->golden_frame);
+ avctx->release_buffer(avctx, &s->last_frame);
+ avctx->release_buffer(avctx, &s->current_frame);
+
+ return 0;
+}
+
+AVCodec vp3_decoder = {
+ "vp3",
+ CODEC_TYPE_VIDEO,
+ CODEC_ID_VP3,
+ sizeof(Vp3DecodeContext),
+ vp3_decode_init,
+ NULL,
+ vp3_decode_end,
+ vp3_decode_frame,
+ 0,
+ NULL
+};