diff options
author | Vitor Sessak <vitor1001@gmail.com> | 2009-08-23 01:55:54 +0000 |
---|---|---|
committer | Vitor Sessak <vitor1001@gmail.com> | 2009-08-23 01:55:54 +0000 |
commit | 7bd47335889093c66af6b912935fd121b870be0d (patch) | |
tree | 86f680b4dc0e87b39e4bf73da6c5596595a6ae65 /libavcodec/twinvq.c | |
parent | a48ce2c3a749d5c2cd124a28b8a1d5332aad9160 (diff) | |
download | ffmpeg-7bd47335889093c66af6b912935fd121b870be0d.tar.gz |
TwinVQ decoder
Originally committed as revision 19682 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/twinvq.c')
-rw-r--r-- | libavcodec/twinvq.c | 1139 |
1 files changed, 1139 insertions, 0 deletions
diff --git a/libavcodec/twinvq.c b/libavcodec/twinvq.c new file mode 100644 index 0000000000..967e9f9169 --- /dev/null +++ b/libavcodec/twinvq.c @@ -0,0 +1,1139 @@ +/* + * TwinVQ decoder + * Copyright (c) 2009 Vitor Sessak + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +#include "avcodec.h" +#include "get_bits.h" +#include "dsputil.h" + +#include <math.h> +#include <stdint.h> + +#include "twinvq_data.h" + +enum FrameType { + FT_SHORT = 0, ///< Short frame (divided in n sub-blocks) + FT_MEDIUM, ///< Medium frame (divided in m<n sub-blocks) + FT_LONG, ///< Long frame (single sub-block + PPC) + FT_PPC, ///< Periodic Peak Component (part of the long frame) +}; + +/** + * Parameters and tables that are different for each frame type + */ +struct FrameMode { + uint8_t sub; ///< Number subblocks in each frame + const uint16_t *bark_tab; + + /** number of distinct bark scale envelope values */ + uint8_t bark_env_size; + + const int16_t *bark_cb; ///< codebook for the bark scale envelope (BSE) + uint8_t bark_n_coef;///< number of BSE CB coefficients to read + uint8_t bark_n_bit; ///< number of bits of the BSE coefs + + //@{ + /** main codebooks for spectrum data */ + const int16_t *cb0; + const int16_t *cb1; + //@} + + uint8_t cb_len_read; ///< number of spectrum coefficients to read +}; + +/** + * Parameters and tables that are different for every combination of + * bitrate/sample rate + */ +typedef struct { + struct FrameMode fmode[3]; ///< frame type-dependant parameters + + uint16_t size; ///< frame size in samples + uint8_t n_lsp; ///< number of lsp coefficients + const float *lspcodebook; + + /* number of bits of the different LSP CB coefficients */ + uint8_t lsp_bit0; + uint8_t lsp_bit1; + uint8_t lsp_bit2; + + uint8_t lsp_split; ///< number of CB entries for the LSP decoding + const int16_t *ppc_shape_cb; ///< PPC shape CB + + /** number of the bits for the PPC period value */ + uint8_t ppc_period_bit; + + uint8_t ppc_shape_bit; ///< number of bits of the PPC shape CB coeffs + uint8_t ppc_shape_len; ///< size of PPC shape CB + uint8_t pgain_bit; ///< bits for PPC gain + + /** constant for peak period to peak width conversion */ + uint16_t peak_per2wid; +} ModeTab; + +static const ModeTab mode_08_08 = { + { + { 8, bark_tab_s08_64, 10, tab.fcb08s , 1, 5, tab.cb0808s0, tab.cb0808s1, 18}, + { 2, bark_tab_m08_256, 20, tab.fcb08m , 2, 5, tab.cb0808m0, tab.cb0808m1, 16}, + { 1, bark_tab_l08_512, 30, tab.fcb08l , 3, 6, tab.cb0808l0, tab.cb0808l1, 17} + }, + 512 , 12, tab.lsp08, 1, 5, 3, 3, tab.shape08 , 8, 28, 20, 6, 40 +}; + +static const ModeTab mode_11_08 = { + { + { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1108s0, tab.cb1108s1, 29}, + { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1108m0, tab.cb1108m1, 24}, + { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1108l0, tab.cb1108l1, 27} + }, + 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90 +}; + +static const ModeTab mode_11_10 = { + { + { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1110s0, tab.cb1110s1, 21}, + { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1110m0, tab.cb1110m1, 18}, + { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1110l0, tab.cb1110l1, 20} + }, + 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90 +}; + +static const ModeTab mode_16_16 = { + { + { 8, bark_tab_s16_128, 10, tab.fcb16s , 1, 5, tab.cb1616s0, tab.cb1616s1, 16}, + { 2, bark_tab_m16_512, 20, tab.fcb16m , 2, 5, tab.cb1616m0, tab.cb1616m1, 15}, + { 1, bark_tab_l16_1024,30, tab.fcb16l , 3, 6, tab.cb1616l0, tab.cb1616l1, 16} + }, + 1024, 16, tab.lsp16, 1, 6, 4, 3, tab.shape16 , 9, 56, 60, 7, 180 +}; + +static const ModeTab mode_22_20 = { + { + { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18}, + { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17}, + { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18} + }, + 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144 +}; + +static const ModeTab mode_22_24 = { + { + { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15}, + { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14}, + { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15} + }, + 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144 +}; + +static const ModeTab mode_22_32 = { + { + { 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11}, + { 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11}, + { 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12} + }, + 512 , 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72 +}; + +static const ModeTab mode_44_40 = { + { + {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4440s0, tab.cb4440s1, 18}, + { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4440m0, tab.cb4440m1, 17}, + { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4440l0, tab.cb4440l1, 17} + }, + 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432 +}; + +static const ModeTab mode_44_48 = { + { + {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4448s0, tab.cb4448s1, 15}, + { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4448m0, tab.cb4448m1, 14}, + { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4448l0, tab.cb4448l1, 14} + }, + 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432 +}; + +typedef struct TwinContext { + AVCodecContext *avctx; + DSPContext dsp; + MDCTContext mdct_ctx[3]; + + const ModeTab *mtab; + + // history + float lsp_hist[2][20]; ///< LSP coefficients of the last frame + float bark_hist[3][2][40]; ///< BSE coefficients of last frame + + // bitstream parameters + int16_t permut[4][4096]; + uint8_t length[4][2]; ///< main codebook stride + uint8_t length_change[4]; + uint8_t bits_main_spec[2][4][2]; ///< bits for the main codebook + int bits_main_spec_change[4]; + int n_div[4]; + + float *spectrum; + float *curr_frame; ///< non-interleaved output + float *prev_frame; ///< non-interleaved previous frame + int last_block_pos[2]; + + float *cos_tabs[3]; + + // scratch buffers + float *tmp_buf; +} TwinContext; + +#define PPC_SHAPE_CB_SIZE 64 +#define SUB_AMP_MAX 4500.0 +#define MULAW_MU 100.0 +#define GAIN_BITS 8 +#define AMP_MAX 13000.0 +#define SUB_GAIN_BITS 5 +#define WINDOW_TYPE_BITS 4 +#define PGAIN_MU 200 + +/** @note not speed critical, hence not optimized */ +static void memset_float(float *buf, float val, int size) +{ + while (size--) + *buf++ = val; +} + +/** + * Evaluate a single LPC amplitude spectrum envelope coefficient from the line + * spectrum pairs. + * + * @param lsp a vector of the cosinus of the LSP values + * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude + * @param order the order of the LSP (and the size of the *lsp buffer). Must + * be a multiple of four. + * @return the LPC value + * + * @todo reuse code from vorbis_dec.c: vorbis_floor0_decode + */ +static float eval_lpc_spectrum(const float *lsp, float cos_val, int order) +{ + int j; + float p = 0.5f; + float q = 0.5f; + float two_cos_w = 2.0f*cos_val; + + for (j=0; j+1 < order; j += 2*2) { + // Unroll the loop once since order is a multiple of four + q *= lsp[j ] - two_cos_w; + p *= lsp[j+1] - two_cos_w; + + q *= lsp[j+2] - two_cos_w; + p *= lsp[j+3] - two_cos_w; + } + + p *= p * (2.0f - two_cos_w); + q *= q * (2.0f + two_cos_w); + + return 0.5 / (p + q); +} + +/** + * Evaluates the LPC amplitude spectrum envelope from the line spectrum pairs. + */ +static void eval_lpcenv(TwinContext *tctx, const float *cos_vals, float *lpc) +{ + int i; + const ModeTab *mtab = tctx->mtab; + int size_s = mtab->size / mtab->fmode[FT_SHORT].sub; + + for (i=0; i < size_s/2; i++) { + float cos_i = tctx->cos_tabs[0][i]; + lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp); + lpc[size_s-i-1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp); + } +} + +static void interpolate(float *out, float v1, float v2, int size) +{ + int i; + float step = (v1 - v2)/(size + 1); + + for (i=0; i < size; i++) { + v2 += step; + out[i] = v2; + } +} + +static inline float get_cos(int idx, int part, const float *cos_tab, int size) +{ + return part ? -cos_tab[size - idx - 1] : + cos_tab[ idx ]; +} + +/** + * Evaluates the LPC amplitude spectrum envelope from the line spectrum pairs. + * Probably for speed reasons, the coefficients are evaluated as + * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ... + * where s is an evaluated value, i is a value interpolated from the others + * and b might be either calculated or interpolated, depending on an + * unexplained condition. + * + * @param step the size of a block "siiiibiiii" + * @param in the cosinus of the LSP data + * @param part is 0 for 0...PI (positive cossinus values) and 1 for PI...2PI + (negative cossinus values) + * @param size the size of the whole output + */ +static inline void eval_lpcenv_or_interp(TwinContext *tctx, + enum FrameType ftype, + float *out, const float *in, + int size, int step, int part) +{ + int i; + const ModeTab *mtab = tctx->mtab; + const float *cos_tab = tctx->cos_tabs[ftype]; + + // Fill the 's' + for (i=0; i < size; i += step) + out[i] = + eval_lpc_spectrum(in, + get_cos(i, part, cos_tab, size), + mtab->n_lsp); + + // Fill the 'iiiibiiii' + for (i=step; i <= size - 2*step; i += step) { + if (out[i + step] + out[i - step] > 1.95*out[i] || + out[i + step] >= out[i - step]) { + interpolate(out + i - step + 1, out[i], out[i-step], step - 1); + } else { + out[i - step/2] = + eval_lpc_spectrum(in, + get_cos(i-step/2, part, cos_tab, size), + mtab->n_lsp); + interpolate(out + i - step + 1, out[i-step/2], out[i-step ], step/2 - 1); + interpolate(out + i - step/2 + 1, out[i ], out[i-step/2], step/2 - 1); + } + } + + interpolate(out + size - 2*step + 1, out[size-step], out[size - 2*step], step - 1); +} + +static void eval_lpcenv_2parts(TwinContext *tctx, enum FrameType ftype, + const float *buf, float *lpc, + int size, int step) +{ + eval_lpcenv_or_interp(tctx, ftype, lpc , buf, size/2, step, 0); + eval_lpcenv_or_interp(tctx, ftype, lpc + size/2, buf, size/2, 2*step, 1); + + interpolate(lpc+size/2-step+1, lpc[size/2], lpc[size/2-step], step); + + memset_float(lpc + size - 2*step + 1, lpc[size - 2*step], 2*step - 1); +} + +/** + * Inverse quantization. Read CB coefficients for cb1 and cb2 from the + * bitstream, sum the corresponding vectors and write the result to *out + * after permutation. + */ +static void dequant(TwinContext *tctx, GetBitContext *gb, float *out, + enum FrameType ftype, + const int16_t *cb0, const int16_t *cb1, int cb_len) +{ + int pos = 0; + int i, j; + + for (i=0; i < tctx->n_div[ftype]; i++) { + int tmp0, tmp1; + int sign0 = 1; + int sign1 = 1; + const int16_t *tab0, *tab1; + int length = tctx->length[ftype][i >= tctx->length_change[ftype]]; + int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]); + + int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part]; + if (bits == 7) { + if (get_bits1(gb)) + sign0 = -1; + bits = 6; + } + tmp0 = get_bits(gb, bits); + + bits = tctx->bits_main_spec[1][ftype][bitstream_second_part]; + + if (bits == 7) { + if (get_bits1(gb)) + sign1 = -1; + + bits = 6; + } + tmp1 = get_bits(gb, bits); + + tab0 = cb0 + tmp0*cb_len; + tab1 = cb1 + tmp1*cb_len; + + for (j=0; j < length; j++) + out[tctx->permut[ftype][pos+j]] = sign0*tab0[j] + sign1*tab1[j]; + + pos += length; + } + +} + +static inline float mulawinv(float y, float clip, float mu) +{ + y = av_clipf(y/clip, -1, 1); + return clip * FFSIGN(y) * (exp(log(1+mu) * fabs(y)) - 1) / mu; +} + +/** + * Evaluate a*b/400 rounded to the nearest integer. When, for example, + * a*b == 200 and the nearest integer is ill-defined, use a table to emulate + * the following broken float-based implementation used by the binary decoder: + * + * \code + * static int very_broken_op(int a, int b) + * { + * static float test; // Ugh, force gcc to do the division first... + * + * test = a/400.; + * return b * test + 0.5; + * } + * \endcode + * + * @note if this function is replaced by just ROUNDED_DIV(a*b,400.), the stddev + * between the original file (before encoding with Yamaha encoder) and the + * decoded output increases, which leads one to believe that the encoder expects + * exactly this broken calculation. + */ +static int very_broken_op(int a, int b) +{ + int x = a*b + 200; + int size; + const uint8_t *rtab; + + if (x%400 || b%5) + return x/400; + + x /= 400; + + size = tabs[b/5].size; + rtab = tabs[b/5].tab; + return x - rtab[size*av_log2(2*(x - 1)/size)+(x - 1)%size]; +} + +/** + * Sum to data a periodic peak of a given period, width and shape. + * + * @param period the period of the peak divised by 400.0 + */ +static void add_peak(int period, int width, const float *shape, + float ppc_gain, float *speech, int len) +{ + int i, j; + + const float *shape_end = shape + len; + int center; + + // First peak centered around zero + for (i=0; i < width/2; i++) + speech[i] += ppc_gain * *shape++; + + for (i=1; i < ROUNDED_DIV(len,width) ; i++) { + center = very_broken_op(period, i); + for (j=-width/2; j < (width+1)/2; j++) + speech[j+center] += ppc_gain * *shape++; + } + + // For the last block, be careful not to go beyond the end of the buffer + center = very_broken_op(period, i); + for (j=-width/2; j < (width+1)/2 && shape < shape_end; j++) + speech[j+center] += ppc_gain * *shape++; +} + +static void decode_ppc(TwinContext *tctx, int period_coef, const float *shape, + float ppc_gain, float *speech) +{ + const ModeTab *mtab = tctx->mtab; + int isampf = tctx->avctx->sample_rate/1000; + int ibps = tctx->avctx->bit_rate/(1000 * tctx->avctx->channels); + int min_period = ROUNDED_DIV( 40*2*mtab->size, isampf); + int max_period = ROUNDED_DIV(6*40*2*mtab->size, isampf); + int period_range = max_period - min_period; + + // This is actually the period multiplied by 400. It is just linearly coded + // between its maximum and minimum value. + int period = min_period + + ROUNDED_DIV(period_coef*period_range, (1 << mtab->ppc_period_bit) - 1); + int width; + + if (isampf == 22 && ibps == 32) { + // For some unknown reason, NTT decided to code this case differently... + width = ROUNDED_DIV((period + 800)* mtab->peak_per2wid, 400*mtab->size); + } else + width = (period )* mtab->peak_per2wid/(400*mtab->size); + + add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len); +} + +static void dec_gain(TwinContext *tctx, GetBitContext *gb, enum FrameType ftype, + float *out) +{ + const ModeTab *mtab = tctx->mtab; + int i, j; + int sub = mtab->fmode[ftype].sub; + float step = AMP_MAX / ((1 << GAIN_BITS) - 1); + float sub_step = SUB_AMP_MAX / ((1 << SUB_GAIN_BITS) - 1); + + if (ftype == FT_LONG) { + for (i=0; i < tctx->avctx->channels; i++) + out[i] = (1./(1<<13)) * + mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS), + AMP_MAX, MULAW_MU); + } else { + for (i=0; i < tctx->avctx->channels; i++) { + float val = (1./(1<<23)) * + mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS), + AMP_MAX, MULAW_MU); + + for (j=0; j < sub; j++) { + out[i*sub + j] = + val*mulawinv(sub_step* 0.5 + + sub_step* get_bits(gb, SUB_GAIN_BITS), + SUB_AMP_MAX, MULAW_MU); + } + } + } +} + +/** + * Rearrange the LSP coefficients so that they have a minimum distance of + * min_dist. This function does it exactly as described in section of 3.2.4 + * of the G.729 specification (but interestingly is different from what the + * reference decoder actually does). + */ +static void rearrange_lsp(int order, float *lsp, float min_dist) +{ + int i; + float min_dist2 = min_dist * 0.5; + for (i=1; i < order; i++) + if (lsp[i] - lsp[i-1] < min_dist) { + float avg = (lsp[i] + lsp[i-1]) * 0.5; + + lsp[i-1] = avg - min_dist2; + lsp[i ] = avg + min_dist2; + } +} + +static void bubblesort(float *lsp, int lp_order) +{ + int i,j; + + /* sort lsp in ascending order. float bubble agorithm, + O(n) if data already sorted, O(n^2) - otherwise */ + for (i=0; i < lp_order - 1; i++) + for (j=i; j >= 0 && lsp[j] > lsp[j+1]; j--) + FFSWAP(float, lsp[j], lsp[j+1]); +} + +static void decode_lsp(TwinContext *tctx, int lpc_idx1, uint8_t *lpc_idx2, + int lpc_hist_idx, float *lsp, float *hist) +{ + const ModeTab *mtab = tctx->mtab; + int i, j; + + const float *cb = mtab->lspcodebook; + const float *cb2 = cb + (1 << mtab->lsp_bit1)*mtab->n_lsp; + const float *cb3 = cb2 + (1 << mtab->lsp_bit2)*mtab->n_lsp; + + const int8_t funny_rounding[4] = { + -2, + mtab->lsp_split == 4 ? -2 : 1, + mtab->lsp_split == 4 ? -2 : 1, + 0 + }; + + j=0; + for (i=0; i < mtab->lsp_split; i++) { + int chunk_end = ((i + 1)*mtab->n_lsp + funny_rounding[i])/mtab->lsp_split; + for (; j < chunk_end; j++) + lsp[j] = cb [lpc_idx1 * mtab->n_lsp + j] + + cb2[lpc_idx2[i] * mtab->n_lsp + j]; + } + + rearrange_lsp(mtab->n_lsp, lsp, 0.0001); + + for (i=0; i < mtab->n_lsp; i++) { + float tmp1 = 1. - cb3[lpc_hist_idx*mtab->n_lsp + i]; + float tmp2 = hist[i] * cb3[lpc_hist_idx*mtab->n_lsp + i]; + hist[i] = lsp[i]; + lsp[i] = lsp[i] * tmp1 + tmp2; + } + + rearrange_lsp(mtab->n_lsp, lsp, 0.0001); + rearrange_lsp(mtab->n_lsp, lsp, 0.000095); + bubblesort(lsp, mtab->n_lsp); +} + +static void dec_lpc_spectrum_inv(TwinContext *tctx, float *lsp, + enum FrameType ftype, float *lpc) +{ + int i; + int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub; + + for (i=0; i < tctx->mtab->n_lsp; i++) + lsp[i] = 2*cos(lsp[i]); + + switch (ftype) { + case FT_LONG: + eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8); + break; + case FT_MEDIUM: + eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2); + break; + case FT_SHORT: + eval_lpcenv(tctx, lsp, lpc); + break; + } +} + +static void imdct_and_window(TwinContext *tctx, enum FrameType ftype, int wtype, + float *in, float *prev, int ch) +{ + const ModeTab *mtab = tctx->mtab; + int bsize = mtab->size / mtab->fmode[ftype].sub; + int size = mtab->size; + float *buf1 = tctx->tmp_buf; + int j; + int wsize; // Window size + float *out = tctx->curr_frame + 2*ch*mtab->size; + float *out2 = out; + float *prev_buf; + int first_wsize; + + static const uint8_t wtype_to_wsize[] = {0, 0, 2, 2, 2, 1, 0, 1, 1}; + int types_sizes[] = { + mtab->size / mtab->fmode[FT_LONG ].sub, + mtab->size / mtab->fmode[FT_MEDIUM].sub, + mtab->size / (2*mtab->fmode[FT_SHORT ].sub), + }; + + wsize = types_sizes[wtype_to_wsize[wtype]]; + first_wsize = wsize; + prev_buf = prev + (size - bsize)/2; + + for (j=0; j < mtab->fmode[ftype].sub; j++) { + int sub_wtype = ftype == FT_MEDIUM ? 8 : wtype; + + if (!j && wtype == 4) + sub_wtype = 4; + else if (j == mtab->fmode[ftype].sub-1 && wtype == 7) + sub_wtype = 7; + + wsize = types_sizes[wtype_to_wsize[sub_wtype]]; + + ff_imdct_half(&tctx->mdct_ctx[ftype], buf1 + bsize*j, in + bsize*j); + + tctx->dsp.vector_fmul_window(out2, + prev_buf + (bsize-wsize)/2, + buf1 + bsize*j, + ff_sine_windows[av_log2(wsize) - 7], + 0.0, + wsize/2); + out2 += wsize; + + memcpy(out2, buf1 + bsize*j + wsize/2, (bsize - wsize/2)*sizeof(float)); + + out2 += ftype == FT_MEDIUM ? (bsize-wsize)/2 : bsize - wsize; + + prev_buf = buf1 + bsize*j + bsize/2; + } + + tctx->last_block_pos[ch] = (size + first_wsize)/2; +} + +static void imdct_output(TwinContext *tctx, enum FrameType ftype, int wtype, + float *out) +{ + const ModeTab *mtab = tctx->mtab; + float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0]; + int i, j; + + for (i=0; i < tctx->avctx->channels; i++) { + imdct_and_window(tctx, ftype, wtype, + tctx->spectrum + i*mtab->size, + prev_buf + 2*i*mtab->size, + i); + } + + if (tctx->avctx->channels == 2) { + for (i=0; i < mtab->size - tctx->last_block_pos[0]; i++) { + float f1 = prev_buf[ i]; + float f2 = prev_buf[2*mtab->size + i]; + out[2*i ] = f1 + f2; + out[2*i + 1] = f1 - f2; + } + for (j=0; i < mtab->size; j++,i++) { + float f1 = tctx->curr_frame[ j]; + float f2 = tctx->curr_frame[2*mtab->size + j]; + out[2*i ] = f1 + f2; + out[2*i + 1] = f1 - f2; + } + } else { + memcpy(out, prev_buf, + (mtab->size - tctx->last_block_pos[0]) * sizeof(*out)); + + out += mtab->size - tctx->last_block_pos[0]; + + memcpy(out, tctx->curr_frame, + (tctx->last_block_pos[0]) * sizeof(*out)); + } + +} + +static void dec_bark_env(TwinContext *tctx, const uint8_t *in, int use_hist, + int ch, float *out, float gain, enum FrameType ftype) +{ + const ModeTab *mtab = tctx->mtab; + int i,j; + float *hist = tctx->bark_hist[ftype][ch]; + float val = ((const float []) {0.4, 0.35, 0.28})[ftype]; + int bark_n_coef = mtab->fmode[ftype].bark_n_coef; + int fw_cb_len = mtab->fmode[ftype].bark_env_size / bark_n_coef; + int idx = 0; + + for (i=0; i < fw_cb_len; i++) + for (j=0; j < bark_n_coef; j++, idx++) { + float tmp2 = + mtab->fmode[ftype].bark_cb[fw_cb_len*in[j] + i] * (1./4096); + float st = use_hist ? + (1. - val) * tmp2 + val*hist[idx] + 1. : tmp2 + 1.; + + hist[idx] = tmp2; + if (st < -1.) st = 1.; + + memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]); + out += mtab->fmode[ftype].bark_tab[idx]; + } + +} + +static void read_and_decode_spectrum(TwinContext *tctx, GetBitContext *gb, + float *out, enum FrameType ftype) +{ + const ModeTab *mtab = tctx->mtab; + int channels = tctx->avctx->channels; + int sub = mtab->fmode[ftype].sub; + int block_size = mtab->size / sub; + float gain[channels*sub]; + float ppc_shape[mtab->ppc_shape_len * channels * 4]; + uint8_t bark1[channels][sub][mtab->fmode[ftype].bark_n_coef]; + uint8_t bark_use_hist[channels][sub]; + + uint8_t lpc_idx1[channels]; + uint8_t lpc_idx2[channels][tctx->mtab->lsp_split]; + uint8_t lpc_hist_idx[channels]; + + int i, j, k; + + dequant(tctx, gb, out, ftype, + mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1, + mtab->fmode[ftype].cb_len_read); + + for (i=0; i < channels; i++) + for (j=0; j < sub; j++) + for (k=0; k < mtab->fmode[ftype].bark_n_coef; k++) + bark1[i][j][k] = + get_bits(gb, mtab->fmode[ftype].bark_n_bit); + + for (i=0; i < channels; i++) + for (j=0; j < sub; j++) + bark_use_hist[i][j] = get_bits1(gb); + + dec_gain(tctx, gb, ftype, gain); + + for (i=0; i < channels; i++) { + lpc_hist_idx[i] = get_bits(gb, tctx->mtab->lsp_bit0); + lpc_idx1 [i] = get_bits(gb, tctx->mtab->lsp_bit1); + + for (j=0; j < tctx->mtab->lsp_split; j++) + lpc_idx2[i][j] = get_bits(gb, tctx->mtab->lsp_bit2); + } + + if (ftype == FT_LONG) { + int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len*channels - 1)/ + tctx->n_div[3]; + dequant(tctx, gb, ppc_shape, FT_PPC, mtab->ppc_shape_cb, + mtab->ppc_shape_cb + cb_len_p*PPC_SHAPE_CB_SIZE, cb_len_p); + } + + for (i=0; i < channels; i++) { + float *chunk = out + mtab->size * i; + float lsp[tctx->mtab->n_lsp]; + + for (j=0; j < sub; j++) { + dec_bark_env(tctx, bark1[i][j], bark_use_hist[i][j], i, + tctx->tmp_buf, gain[sub*i+j], ftype); + + tctx->dsp.vector_fmul(chunk + block_size*j, tctx->tmp_buf, + block_size); + + } + + if (ftype == FT_LONG) { + float pgain_step = 25000. / ((1 << mtab->pgain_bit) - 1); + int p_coef = get_bits(gb, tctx->mtab->ppc_period_bit); + int g_coef = get_bits(gb, tctx->mtab->pgain_bit); + float v = 1./8192* + mulawinv(pgain_step*g_coef+ pgain_step/2, 25000., PGAIN_MU); + + decode_ppc(tctx, p_coef, ppc_shape + i*mtab->ppc_shape_len, v, + chunk); + } + + decode_lsp(tctx, lpc_idx1[i], lpc_idx2[i], lpc_hist_idx[i], lsp, + tctx->lsp_hist[i]); + + dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf); + + for (j=0; j < mtab->fmode[ftype].sub; j++) { + tctx->dsp.vector_fmul(chunk, tctx->tmp_buf, block_size); + chunk += block_size; + } + } +} + +static int twin_decode_frame(AVCodecContext * avctx, void *data, + int *data_size, AVPacket *avpkt) +{ + const uint8_t *buf = avpkt->data; + int buf_size = avpkt->size; + TwinContext *tctx = avctx->priv_data; + GetBitContext gb; + const ModeTab *mtab = tctx->mtab; + float *out = data; + enum FrameType ftype; + int window_type; + int i; + static const enum FrameType wtype_to_ftype_table[] = { + FT_LONG, FT_LONG, FT_SHORT, FT_LONG, + FT_MEDIUM, FT_LONG, FT_LONG, FT_MEDIUM, FT_MEDIUM + }; + + if (buf_size*8 < avctx->bit_rate*mtab->size/avctx->sample_rate + 8) { + av_log(avctx, AV_LOG_ERROR, + "Frame too small (%d bytes). Truncated file?\n", buf_size); + *data_size = 0; + return buf_size; + } + + init_get_bits(&gb, buf, buf_size * 8); + skip_bits(&gb, get_bits(&gb, 8)); + window_type = get_bits(&gb, WINDOW_TYPE_BITS); + + if (window_type > 8) { + av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n"); + return -1; + } + + ftype = wtype_to_ftype_table[window_type]; + + read_and_decode_spectrum(tctx, &gb, tctx->spectrum, ftype); + + imdct_output(tctx, ftype, window_type, out); + + FFSWAP(float*, tctx->curr_frame, tctx->prev_frame); + + if (tctx->avctx->frame_number < 2) { + *data_size=0; + return buf_size; + } + + for (i=0; i < avctx->channels * mtab->size; i++) + out[i] = av_clipf(out[i], -32700./(1<<15), 32700./(1<<15)); + + *data_size = mtab->size*avctx->channels*4; + + return buf_size; +} + +/** + * Init IMDCT and windowing tables + */ +static av_cold void init_mdct_win(TwinContext *tctx) +{ + int i,j; + const ModeTab *mtab = tctx->mtab; + int size_s = mtab->size / mtab->fmode[FT_SHORT].sub; + int size_m = mtab->size / mtab->fmode[FT_MEDIUM].sub; + int channels = tctx->avctx->channels; + float norm = channels == 1 ? 2. : 1.; + + for (i=0; i < 3; i++) { + int bsize = tctx->mtab->size/tctx->mtab->fmode[i].sub; + ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1, + -sqrt(norm/bsize) / (1<<15)); + } + + tctx->tmp_buf = av_malloc(mtab->size * sizeof(*tctx->tmp_buf)); + + tctx->spectrum = av_malloc(2*mtab->size*channels*sizeof(float)); + tctx->curr_frame = av_malloc(2*mtab->size*channels*sizeof(float)); + tctx->prev_frame = av_malloc(2*mtab->size*channels*sizeof(float)); + + for(i=0; i < 3; i++) { + int m = 4*mtab->size/mtab->fmode[i].sub; + double freq = 2*M_PI/m; + tctx->cos_tabs[i] = av_malloc((m/4)*sizeof(*tctx->cos_tabs)); + + for (j=0; j <= m/8; j++) + tctx->cos_tabs[i][j] = cos((2*j + 1)*freq); + for (j=1; j < m/8; j++) + tctx->cos_tabs[i][m/4-j] = tctx->cos_tabs[i][j]; + } + + + ff_sine_window_init(ff_sine_windows[av_log2(size_m) - 7], size_m ); + ff_sine_window_init(ff_sine_windows[av_log2(size_s/2) - 7], size_s/2); + ff_sine_window_init(ff_sine_windows[av_log2(mtab->size) - 7], mtab->size); +} + +/** + * Interpret the data as if it were a num_blocks x line_len[0] matrix and for + * each line do a cyclic permutation, i.e. + * abcdefghijklm -> defghijklmabc + * where the amount to be shifted is evaluated depending on the column. + */ +static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks, + int block_size, + const uint8_t line_len[2], int length_div, + enum FrameType ftype) + +{ + int i,j; + + for (i=0; i < line_len[0]; i++) { + int shift; + + if (num_blocks == 1 || + (ftype == FT_LONG && num_vect % num_blocks) || + (ftype != FT_LONG && num_vect & 1 ) || + i == line_len[1]) { + shift = 0; + } else if (ftype == FT_LONG) { + shift = i; + } else + shift = i*i; + + for (j=0; j < num_vect && (j+num_vect*i < block_size*num_blocks); j++) + tab[i*num_vect+j] = i*num_vect + (j + shift) % num_vect; + } +} + +/** + * Interpret the input data as in the following table: + * + * \verbatim + * + * abcdefgh + * ijklmnop + * qrstuvw + * x123456 + * + * \endverbatim + * + * and transpose it, giving the output + * aiqxbjr1cks2dlt3emu4fvn5gow6hp + */ +static void transpose_perm(int16_t *out, int16_t *in, int num_vect, + const uint8_t line_len[2], int length_div) +{ + int i,j; + int cont= 0; + for (i=0; i < num_vect; i++) + for (j=0; j < line_len[i >= length_div]; j++) + out[cont++] = in[j*num_vect + i]; +} + +static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size) +{ + int block_size = size/n_blocks; + int i; + + for (i=0; i < size; i++) + out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks; +} + +static av_cold void construct_perm_table(TwinContext *tctx,enum FrameType ftype) +{ + int block_size; + const ModeTab *mtab = tctx->mtab; + int size = tctx->avctx->channels*mtab->fmode[ftype].sub; + int16_t *tmp_perm = (int16_t *) tctx->tmp_buf; + + if (ftype == FT_PPC) { + size = tctx->avctx->channels; + block_size = mtab->ppc_shape_len; + } else + block_size = mtab->size / mtab->fmode[ftype].sub; + + permutate_in_line(tmp_perm, tctx->n_div[ftype], size, + block_size, tctx->length[ftype], + tctx->length_change[ftype], ftype); + + transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype], + tctx->length[ftype], tctx->length_change[ftype]); + + linear_perm(tctx->permut[ftype], tctx->permut[ftype], size, + size*block_size); +} + +static av_cold void init_bitstream_params(TwinContext *tctx) +{ + const ModeTab *mtab = tctx->mtab; + int n_ch = tctx->avctx->channels; + int total_fr_bits = tctx->avctx->bit_rate*mtab->size/ + tctx->avctx->sample_rate; + + int lsp_bits_per_block = n_ch*(mtab->lsp_bit0 + mtab->lsp_bit1 + + mtab->lsp_split*mtab->lsp_bit2); + + int ppc_bits = n_ch*(mtab->pgain_bit + mtab->ppc_shape_bit + + mtab->ppc_period_bit); + + int bsize_no_main_cb[3]; + int bse_bits[3]; + int i; + + for (i=0; i < 3; i++) + // +1 for history usage switch + bse_bits[i] = n_ch * + (mtab->fmode[i].bark_n_coef * mtab->fmode[i].bark_n_bit + 1); + + bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits + + WINDOW_TYPE_BITS + n_ch*GAIN_BITS; + + for (i=0; i < 2; i++) + bsize_no_main_cb[i] = + lsp_bits_per_block + n_ch*GAIN_BITS + WINDOW_TYPE_BITS + + mtab->fmode[i].sub*(bse_bits[i] + n_ch*SUB_GAIN_BITS); + + // The remaining bits are all used for the main spectrum coefficients + for (i=0; i < 4; i++) { + int bit_size; + int vect_size; + int rounded_up, rounded_down, num_rounded_down, num_rounded_up; + if (i == 3) { + bit_size = n_ch * mtab->ppc_shape_bit; + vect_size = n_ch * mtab->ppc_shape_len; + } else { + bit_size = total_fr_bits - bsize_no_main_cb[i]; + vect_size = n_ch * mtab->size; + } + + tctx->n_div[i] = (bit_size + 13) / 14; + + rounded_up = (bit_size + tctx->n_div[i] - 1)/tctx->n_div[i]; + rounded_down = (bit_size )/tctx->n_div[i]; + num_rounded_down = rounded_up * tctx->n_div[i] - bit_size; + num_rounded_up = tctx->n_div[i] - num_rounded_down; + tctx->bits_main_spec[0][i][0] = (rounded_up + 1)/2; + tctx->bits_main_spec[1][i][0] = (rounded_up )/2; + tctx->bits_main_spec[0][i][1] = (rounded_down + 1)/2; + tctx->bits_main_spec[1][i][1] = (rounded_down )/2; + tctx->bits_main_spec_change[i] = num_rounded_up; + + rounded_up = (vect_size + tctx->n_div[i] - 1)/tctx->n_div[i]; + rounded_down = (vect_size )/tctx->n_div[i]; + num_rounded_down = rounded_up * tctx->n_div[i] - vect_size; + num_rounded_up = tctx->n_div[i] - num_rounded_down; + tctx->length[i][0] = rounded_up; + tctx->length[i][1] = rounded_down; + tctx->length_change[i] = num_rounded_up; + } + + for (i=0; i < 4; i++) + construct_perm_table(tctx, i); +} + +static av_cold int twin_decode_init(AVCodecContext *avctx) +{ + TwinContext *tctx = avctx->priv_data; + int isampf = avctx->sample_rate/1000; + int ibps = avctx->bit_rate/(1000 * avctx->channels); + + tctx->avctx = avctx; + avctx->sample_fmt = SAMPLE_FMT_FLT; + + if (avctx->channels > 2) { + av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n", + avctx->channels); + return -1; + } + + switch ((isampf << 8) + ibps) { + case (8 <<8) + 8: tctx->mtab = &mode_08_08; break; + case (11<<8) + 8: tctx->mtab = &mode_11_08; break; + case (11<<8) + 10: tctx->mtab = &mode_11_10; break; + case (16<<8) + 16: tctx->mtab = &mode_16_16; break; + case (22<<8) + 20: tctx->mtab = &mode_22_20; break; + case (22<<8) + 24: tctx->mtab = &mode_22_24; break; + case (22<<8) + 32: tctx->mtab = &mode_22_32; break; + case (44<<8) + 40: tctx->mtab = &mode_44_40; break; + case (44<<8) + 48: tctx->mtab = &mode_44_48; break; + default: + av_log(avctx, AV_LOG_ERROR, "This version does not support %d kHz - %d kbit/s/ch mode.\n", isampf, isampf); + return -1; + } + + dsputil_init(&tctx->dsp, avctx); + init_mdct_win(tctx); + init_bitstream_params(tctx); + + memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist)); + + return 0; +} + +static av_cold int twin_decode_close(AVCodecContext *avctx) +{ + TwinContext *tctx = avctx->priv_data; + int i; + + for (i=0; i < 3; i++) { + ff_mdct_end(&tctx->mdct_ctx[i]); + av_free(tctx->cos_tabs[i]); + } + + + av_free(tctx->curr_frame); + av_free(tctx->spectrum); + av_free(tctx->prev_frame); + av_free(tctx->tmp_buf); + + return 0; +} + +AVCodec twinvq_decoder = +{ + "twinvq", + CODEC_TYPE_AUDIO, + CODEC_ID_TWINVQ, + sizeof(TwinContext), + twin_decode_init, + NULL, + twin_decode_close, + twin_decode_frame, + .long_name = NULL_IF_CONFIG_SMALL("VQF TwinVQ"), +}; |