diff options
author | Paul B Mahol <onemda@gmail.com> | 2020-07-15 21:43:59 +0200 |
---|---|---|
committer | Paul B Mahol <onemda@gmail.com> | 2020-08-21 22:46:07 +0200 |
commit | 6158029dfc6bb2ae9f55eb63e8573d27b55e2167 (patch) | |
tree | 3b4918ea6ddc323ccca98bc60f3a65b4895db339 /libavcodec/rpzaenc.c | |
parent | b30f737f7af5385d55b877b41737852d487f5ab1 (diff) | |
download | ffmpeg-6158029dfc6bb2ae9f55eb63e8573d27b55e2167.tar.gz |
avcodec: add RPZA encoder
Diffstat (limited to 'libavcodec/rpzaenc.c')
-rw-r--r-- | libavcodec/rpzaenc.c | 859 |
1 files changed, 859 insertions, 0 deletions
diff --git a/libavcodec/rpzaenc.c b/libavcodec/rpzaenc.c new file mode 100644 index 0000000000..2d3876743f --- /dev/null +++ b/libavcodec/rpzaenc.c @@ -0,0 +1,859 @@ +/* + * QuickTime RPZA Video Encoder + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +/** + * @file rpzaenc.c + * QT RPZA Video Encoder by Todd Kirby <doubleshot@pacbell.net> and David Adler + */ + +#include "libavutil/avassert.h" +#include "libavutil/common.h" +#include "libavutil/opt.h" + +#include "avcodec.h" +#include "internal.h" +#include "put_bits.h" + +typedef struct RpzaContext { + AVClass *avclass; + + int skip_frame_thresh; + int start_one_color_thresh; + int continue_one_color_thresh; + int sixteen_color_thresh; + + AVFrame *prev_frame; // buffer for previous source frame + PutBitContext pb; // buffer for encoded frame data. + + int frame_width; // width in pixels of source frame + int frame_height; // height in pixesl of source frame + + int first_frame; // flag set to one when the first frame is being processed + // so that comparisons with previous frame data in not attempted +} RpzaContext; + +typedef enum channel_offset { + RED = 2, + GREEN = 1, + BLUE = 0, +} channel_offset; + +typedef struct rgb { + uint8_t r; + uint8_t g; + uint8_t b; +} rgb; + +#define SQR(x) ((x) * (x)) + +/* 15 bit components */ +#define GET_CHAN(color, chan) (((color) >> ((chan) * 5) & 0x1F) * 8) +#define R(color) GET_CHAN(color, RED) +#define G(color) GET_CHAN(color, GREEN) +#define B(color) GET_CHAN(color, BLUE) + +typedef struct BlockInfo { + int row; + int col; + int block_width; + int block_height; + int image_width; + int image_height; + int block_index; + uint16_t start; + int rowstride; + int blocks_per_row; + int total_blocks; +} BlockInfo; + +static void get_colors(uint8_t *min, uint8_t *max, uint8_t color4[4][3]) +{ + uint8_t step; + + color4[0][0] = min[0]; + color4[0][1] = min[1]; + color4[0][2] = min[2]; + + color4[3][0] = max[0]; + color4[3][1] = max[1]; + color4[3][2] = max[2]; + + // red components + step = (color4[3][0] - color4[0][0] + 1) / 3; + color4[1][0] = color4[0][0] + step; + color4[2][0] = color4[3][0] - step; + + // green components + step = (color4[3][1] - color4[0][1] + 1) / 3; + color4[1][1] = color4[0][1] + step; + color4[2][1] = color4[3][1] - step; + + // blue components + step = (color4[3][2] - color4[0][2] + 1) / 3; + color4[1][2] = color4[0][2] + step; + color4[2][2] = color4[3][2] - step; +} + +/* Fill BlockInfo struct with information about a 4x4 block of the image */ +static int get_block_info(BlockInfo *bi, int block) +{ + bi->row = block / bi->blocks_per_row; + bi->col = block % bi->blocks_per_row; + + // test for right edge block + if (bi->col == bi->blocks_per_row - 1 && (bi->image_width % 4) != 0) { + bi->block_width = bi->image_width % 4; + } else { + bi->block_width = 4; + } + + // test for bottom edge block + if (bi->row == (bi->image_height / 4) && (bi->image_height % 4) != 0) { + bi->block_height = bi->image_height % 4; + } else { + bi->block_height = 4; + } + + return block ? (bi->col * 4) + (bi->row * bi->rowstride * 4) : 0; +} + +static uint16_t rgb24_to_rgb555(uint8_t *rgb24) +{ + uint16_t rgb555 = 0; + uint32_t r, g, b; + + r = rgb24[0] >> 3; + g = rgb24[1] >> 3; + b = rgb24[2] >> 3; + + rgb555 |= (r << 10); + rgb555 |= (g << 5); + rgb555 |= (b << 0); + + return rgb555; +} + +/* + * Returns the total difference between two 24 bit color values + */ +static int diff_colors(uint8_t *colorA, uint8_t *colorB) +{ + int tot; + + tot = SQR(colorA[0] - colorB[0]); + tot += SQR(colorA[1] - colorB[1]); + tot += SQR(colorA[2] - colorB[2]); + + return tot; +} + +/* + * Returns the maximum channel difference + */ +static int max_component_diff(uint16_t *colorA, uint16_t *colorB) +{ + int diff, max = 0; + + diff = FFABS(R(colorA[0]) - R(colorB[0])); + if (diff > max) { + max = diff; + } + diff = FFABS(G(colorA[0]) - G(colorB[0])); + if (diff > max) { + max = diff; + } + diff = FFABS(B(colorA[0]) - B(colorB[0])); + if (diff > max) { + max = diff; + } + return max * 8; +} + +/* + * Find the channel that has the largest difference between minimum and maximum + * color values. Put the minimum value in min, maximum in max and the channel + * in chan. + */ +static void get_max_component_diff(BlockInfo *bi, uint16_t *block_ptr, + uint8_t *min, uint8_t *max, channel_offset *chan) +{ + int x, y; + uint8_t min_r, max_r, min_g, max_g, min_b, max_b; + uint8_t r, g, b; + + // fix warning about uninitialized vars + min_r = min_g = min_b = UINT8_MAX; + max_r = max_g = max_b = 0; + + // loop thru and compare pixels + for (y = 0; y < bi->block_height; y++) { + for (x = 0; x < bi->block_width; x++){ + // TODO: optimize + min_r = FFMIN(R(block_ptr[x]), min_r); + min_g = FFMIN(G(block_ptr[x]), min_g); + min_b = FFMIN(B(block_ptr[x]), min_b); + + max_r = FFMAX(R(block_ptr[x]), max_r); + max_g = FFMAX(G(block_ptr[x]), max_g); + max_b = FFMAX(B(block_ptr[x]), max_b); + } + block_ptr += bi->rowstride; + } + + r = max_r - min_r; + g = max_g - min_g; + b = max_b - min_b; + + if (r > g && r > b) { + *max = max_r; + *min = min_r; + *chan = RED; + } else if (g > b && g >= r) { + *max = max_g; + *min = min_g; + *chan = GREEN; + } else { + *max = max_b; + *min = min_b; + *chan = BLUE; + } +} + +/* + * Compare two 4x4 blocks to determine if the total difference between the + * blocks is greater than the thresh parameter. Returns -1 if difference + * exceeds threshold or zero otherwise. + */ +static int compare_blocks(uint16_t *block1, uint16_t *block2, BlockInfo *bi, int thresh) +{ + int x, y, diff = 0; + for (y = 0; y < bi->block_height; y++) { + for (x = 0; x < bi->block_width; x++) { + diff = max_component_diff(&block1[x], &block2[x]); + if (diff >= thresh) { + return -1; + } + } + block1 += bi->rowstride; + block2 += bi->rowstride; + } + return 0; +} + +/* + * Determine the fit of one channel to another within a 4x4 block. This + * is used to determine the best palette choices for 4-color encoding. + */ +static int leastsquares(uint16_t *block_ptr, BlockInfo *bi, + channel_offset xchannel, channel_offset ychannel, + double *slope, double *y_intercept, double *correlation_coef) +{ + double sumx = 0, sumy = 0, sumx2 = 0, sumy2 = 0, sumxy = 0, + sumx_sq = 0, sumy_sq = 0, tmp, tmp2; + int i, j, count; + uint8_t x, y; + + count = bi->block_height * bi->block_width; + + if (count < 2) + return -1; + + for (i = 0; i < bi->block_height; i++) { + for (j = 0; j < bi->block_width; j++){ + x = GET_CHAN(block_ptr[j], xchannel); + y = GET_CHAN(block_ptr[j], ychannel); + sumx += x; + sumy += y; + sumx2 += x * x; + sumy2 += y * y; + sumxy += x * y; + } + block_ptr += bi->rowstride; + } + + sumx_sq = sumx * sumx; + tmp = (count * sumx2 - sumx_sq); + + // guard against div/0 + if (tmp == 0) + return -2; + + sumy_sq = sumy * sumy; + + *slope = (sumx * sumy - sumxy) / tmp; + *y_intercept = (sumy - (*slope) * sumx) / count; + + tmp2 = count * sumy2 - sumy_sq; + if (tmp2 == 0) { + *correlation_coef = 0.0; + } else { + *correlation_coef = (count * sumxy - sumx * sumy) / + sqrt(tmp * tmp2); + } + + return 0; // success +} + +/* + * Determine the amount of error in the leastsquares fit. + */ +static int calc_lsq_max_fit_error(uint16_t *block_ptr, BlockInfo *bi, + int min, int max, int tmp_min, int tmp_max, + channel_offset xchannel, channel_offset ychannel) +{ + int i, j, x, y; + int err; + int max_err = 0; + + for (i = 0; i < bi->block_height; i++) { + for (j = 0; j < bi->block_width; j++){ + int x_inc, lin_y, lin_x; + x = GET_CHAN(block_ptr[j], xchannel); + y = GET_CHAN(block_ptr[j], ychannel); + + /* calculate x_inc as the 4-color index (0..3) */ + x_inc = floor( (x - min) * 3.0 / (max - min) + 0.5); + x_inc = FFMAX(FFMIN(3, x_inc), 0); + + /* calculate lin_y corresponding to x_inc */ + lin_y = (int)(tmp_min + (tmp_max - tmp_min) * x_inc / 3.0 + 0.5); + + err = FFABS(lin_y - y); + if (err > max_err) + max_err = err; + + /* calculate lin_x corresponding to x_inc */ + lin_x = (int)(min + (max - min) * x_inc / 3.0 + 0.5); + + err = FFABS(lin_x - x); + if (err > max_err) + max_err += err; + } + block_ptr += bi->rowstride; + } + + return max_err; +} + +/* + * Find the closest match to a color within the 4-color palette + */ +static int match_color(uint16_t *color, uint8_t colors[4][3]) +{ + int ret = 0; + int smallest_variance = INT_MAX; + uint8_t dithered_color[3]; + + for (int channel = 0; channel < 3; channel++) { + dithered_color[channel] = GET_CHAN(color[0], channel); + } + + for (int palette_entry = 0; palette_entry < 4; palette_entry++) { + int variance = diff_colors(dithered_color, colors[palette_entry]); + + if (variance < smallest_variance) { + smallest_variance = variance; + ret = palette_entry; + } + } + + return ret; +} + +/* + * Encode a block using the 4-color opcode and palette. return number of + * blocks encoded (until we implement multi-block 4 color runs this will + * always be 1) + */ +static int encode_four_color_block(uint8_t *min_color, uint8_t *max_color, + PutBitContext *pb, uint16_t *block_ptr, BlockInfo *bi) +{ + int x, y, idx; + uint8_t color4[4][3]; + uint16_t rounded_max, rounded_min; + + // round min and max wider + rounded_min = rgb24_to_rgb555(min_color); + rounded_max = rgb24_to_rgb555(max_color); + + // put a and b colors + // encode 4 colors = first 16 bit color with MSB zeroed and... + put_bits(pb, 16, rounded_max & ~0x8000); + // ...second 16 bit color with MSB on. + put_bits(pb, 16, rounded_min | 0x8000); + + get_colors(min_color, max_color, color4); + + for (y = 0; y < 4; y++) { + for (x = 0; x < 4; x++) { + idx = match_color(&block_ptr[x], color4); + put_bits(pb, 2, idx); + } + block_ptr += bi->rowstride; + } + return 1; // num blocks encoded +} + +/* + * Copy a 4x4 block from the current frame buffer to the previous frame buffer. + */ +static void update_block_in_prev_frame(const uint16_t *src_pixels, + uint16_t *dest_pixels, + const BlockInfo *bi, int block_counter) +{ + for (int y = 0; y < 4; y++) { + memcpy(dest_pixels, src_pixels, 8); + dest_pixels += bi->rowstride; + src_pixels += bi->rowstride; + } +} + +/* + * update statistics for the specified block. If first_block, + * it initializes the statistics. Otherwise it updates the statistics IF THIS + * BLOCK IS SUITABLE TO CONTINUE A 1-COLOR RUN. That is, it checks whether + * the range of colors (since the routine was called first_block != 0) are + * all close enough intensities to be represented by a single color. + + * The routine returns 0 if this block is too different to be part of + * the same run of 1-color blocks. The routine returns 1 if this + * block can be part of the same 1-color block run. + + * If the routine returns 1, it also updates its arguments to include + * the statistics of this block. Otherwise, the stats are unchanged + * and don't include the current block. + */ +static int update_block_stats(RpzaContext *s, BlockInfo *bi, uint16_t *block, + uint8_t min_color[3], uint8_t max_color[3], + int *total_rgb, int *total_pixels, + uint8_t avg_color[3], int first_block) +{ + int x, y; + int is_in_range; + int total_pixels_blk; + int threshold; + + uint8_t min_color_blk[3], max_color_blk[3]; + int total_rgb_blk[3]; + uint8_t avg_color_blk[3]; + + if (first_block) { + min_color[0] = UINT8_MAX; + min_color[1] = UINT8_MAX; + min_color[2] = UINT8_MAX; + max_color[0] = 0; + max_color[1] = 0; + max_color[2] = 0; + total_rgb[0] = 0; + total_rgb[1] = 0; + total_rgb[2] = 0; + *total_pixels = 0; + threshold = s->start_one_color_thresh; + } else { + threshold = s->continue_one_color_thresh; + } + + /* + The *_blk variables will include the current block. + Initialize them based on the blocks so far. + */ + min_color_blk[0] = min_color[0]; + min_color_blk[1] = min_color[1]; + min_color_blk[2] = min_color[2]; + max_color_blk[0] = max_color[0]; + max_color_blk[1] = max_color[1]; + max_color_blk[2] = max_color[2]; + total_rgb_blk[0] = total_rgb[0]; + total_rgb_blk[1] = total_rgb[1]; + total_rgb_blk[2] = total_rgb[2]; + total_pixels_blk = *total_pixels + bi->block_height * bi->block_width; + + /* + Update stats for this block's pixels + */ + for (y = 0; y < bi->block_height; y++) { + for (x = 0; x < bi->block_width; x++) { + total_rgb_blk[0] += R(block[x]); + total_rgb_blk[1] += G(block[x]); + total_rgb_blk[2] += B(block[x]); + + min_color_blk[0] = FFMIN(R(block[x]), min_color_blk[0]); + min_color_blk[1] = FFMIN(G(block[x]), min_color_blk[1]); + min_color_blk[2] = FFMIN(B(block[x]), min_color_blk[2]); + + max_color_blk[0] = FFMAX(R(block[x]), max_color_blk[0]); + max_color_blk[1] = FFMAX(G(block[x]), max_color_blk[1]); + max_color_blk[2] = FFMAX(B(block[x]), max_color_blk[2]); + } + block += bi->rowstride; + } + + /* + Calculate average color including current block. + */ + avg_color_blk[0] = total_rgb_blk[0] / total_pixels_blk; + avg_color_blk[1] = total_rgb_blk[1] / total_pixels_blk; + avg_color_blk[2] = total_rgb_blk[2] / total_pixels_blk; + + /* + Are all the pixels within threshold of the average color? + */ + is_in_range = (max_color_blk[0] - avg_color_blk[0] <= threshold && + max_color_blk[1] - avg_color_blk[1] <= threshold && + max_color_blk[2] - avg_color_blk[2] <= threshold && + avg_color_blk[0] - min_color_blk[0] <= threshold && + avg_color_blk[1] - min_color_blk[1] <= threshold && + avg_color_blk[2] - min_color_blk[2] <= threshold); + + if (is_in_range) { + /* + Set the output variables to include this block. + */ + min_color[0] = min_color_blk[0]; + min_color[1] = min_color_blk[1]; + min_color[2] = min_color_blk[2]; + max_color[0] = max_color_blk[0]; + max_color[1] = max_color_blk[1]; + max_color[2] = max_color_blk[2]; + total_rgb[0] = total_rgb_blk[0]; + total_rgb[1] = total_rgb_blk[1]; + total_rgb[2] = total_rgb_blk[2]; + *total_pixels = total_pixels_blk; + avg_color[0] = avg_color_blk[0]; + avg_color[1] = avg_color_blk[1]; + avg_color[2] = avg_color_blk[2]; + } + + return is_in_range; +} + +static void rpza_encode_stream(RpzaContext *s, const AVFrame *pict) +{ + BlockInfo bi; + int block_counter = 0; + int n_blocks; + int total_blocks; + int prev_block_offset; + int block_offset = 0; + uint8_t min = 0, max = 0; + channel_offset chan; + int i; + int tmp_min, tmp_max; + int total_rgb[3]; + uint8_t avg_color[3]; + int pixel_count; + uint8_t min_color[3], max_color[3]; + double slope, y_intercept, correlation_coef; + uint16_t *src_pixels = (uint16_t *)pict->data[0]; + uint16_t *prev_pixels = (uint16_t *)s->prev_frame->data[0]; + + /* Number of 4x4 blocks in frame. */ + total_blocks = ((s->frame_width + 3) / 4) * ((s->frame_height + 3) / 4); + + bi.image_width = s->frame_width; + bi.image_height = s->frame_height; + bi.rowstride = pict->linesize[0] / 2; + + bi.blocks_per_row = (s->frame_width + 3) / 4; + + while (block_counter < total_blocks) { + // SKIP CHECK + // make sure we have a valid previous frame and we're not writing + // a key frame + if (!s->first_frame) { + n_blocks = 0; + prev_block_offset = 0; + + while (n_blocks < 32 && block_counter + n_blocks < total_blocks) { + + block_offset = get_block_info(&bi, block_counter + n_blocks); + + // multi-block opcodes cannot span multiple rows. + // If we're starting a new row, break out and write the opcode + /* TODO: Should eventually use bi.row here to determine when a + row break occurs, but that is currently breaking the + quicktime player. This is probably due to a bug in the + way I'm calculating the current row. + */ + if (prev_block_offset && block_offset - prev_block_offset > 12) { + break; + } + + prev_block_offset = block_offset; + + if (compare_blocks(&prev_pixels[block_offset], + &src_pixels[block_offset], &bi, s->skip_frame_thresh) != 0) { + // write out skipable blocks + if (n_blocks) { + + // write skip opcode + put_bits(&s->pb, 8, 0x80 | (n_blocks - 1)); + block_counter += n_blocks; + + goto post_skip; + } + break; + } + + /* + * NOTE: we don't update skipped blocks in the previous frame buffer + * since skipped needs always to be compared against the first skipped + * block to avoid artifacts during gradual fade in/outs. + */ + + // update_block_in_prev_frame(&src_pixels[block_offset], + // &prev_pixels[block_offset], &bi, block_counter + n_blocks); + + n_blocks++; + } + + // we're either at the end of the frame or we've reached the maximum + // of 32 blocks in a run. Write out the run. + if (n_blocks) { + // write skip opcode + put_bits(&s->pb, 8, 0x80 | (n_blocks - 1)); + block_counter += n_blocks; + + continue; + } + + } else { + block_offset = get_block_info(&bi, block_counter); + } +post_skip : + + // ONE COLOR CHECK + if (update_block_stats(s, &bi, &src_pixels[block_offset], + min_color, max_color, + total_rgb, &pixel_count, avg_color, 1)) { + int first_block_offset; + first_block_offset = prev_block_offset = block_offset; + + n_blocks = 1; + + /* update this block in the previous frame buffer */ + update_block_in_prev_frame(&src_pixels[block_offset], + &prev_pixels[block_offset], &bi, block_counter + n_blocks); + + // check for subsequent blocks with the same color + while (n_blocks < 32 && block_counter + n_blocks < total_blocks) { + block_offset = get_block_info(&bi, block_counter + n_blocks); + + // multi-block opcodes cannot span multiple rows. + // If we've hit end of a row, break out and write the opcode + if (block_offset - prev_block_offset > 12) { + break; + } + + if (!update_block_stats(s, &bi, &src_pixels[block_offset], + min_color, max_color, + total_rgb, &pixel_count, avg_color, 0)) { + break; + } + + prev_block_offset = block_offset; + + /* update this block in the previous frame buffer */ + update_block_in_prev_frame(&src_pixels[block_offset], + &prev_pixels[block_offset], &bi, block_counter + n_blocks); + + n_blocks++; + } + + // write one color opcode. + put_bits(&s->pb, 8, 0xa0 | (n_blocks - 1)); + // write color to encode. + put_bits(&s->pb, 16, rgb24_to_rgb555(avg_color)); + // skip past the blocks we've just encoded. + block_counter += n_blocks; + } else { // FOUR COLOR CHECK + int err = 0; + + // get max component diff for block + get_max_component_diff(&bi, &src_pixels[block_offset], &min, &max, &chan); + + min_color[0] = 0; + max_color[0] = 0; + min_color[1] = 0; + max_color[1] = 0; + min_color[2] = 0; + max_color[2] = 0; + + // run least squares against other two components + for (i = 0; i < 3; i++) { + if (i == chan) { + min_color[i] = min; + max_color[i] = max; + continue; + } + + slope = y_intercept = correlation_coef = 0; + + if (leastsquares(&src_pixels[block_offset], &bi, chan, i, + &slope, &y_intercept, &correlation_coef)) { + min_color[i] = GET_CHAN(src_pixels[block_offset], i); + max_color[i] = GET_CHAN(src_pixels[block_offset], i); + } else { + tmp_min = (int)(0.5 + min * slope + y_intercept); + tmp_max = (int)(0.5 + max * slope + y_intercept); + + av_assert0(tmp_min <= tmp_max); + // clamp min and max color values + tmp_min = av_clip_uint8(tmp_min); + tmp_max = av_clip_uint8(tmp_max); + + err = FFMAX(calc_lsq_max_fit_error(&src_pixels[block_offset], &bi, + min, max, tmp_min, tmp_max, chan, i), err); + + min_color[i] = tmp_min; + max_color[i] = tmp_max; + } + } + + if (err > s->sixteen_color_thresh) { // DO SIXTEEN COLOR BLOCK + uint16_t *row_ptr; + int rgb555; + + block_offset = get_block_info(&bi, block_counter); + + row_ptr = &src_pixels[block_offset]; + + for (int y = 0; y < 4; y++) { + for (int x = 0; x < 4; x++){ + rgb555 = row_ptr[x] & ~0x8000; + + put_bits(&s->pb, 16, rgb555); + } + row_ptr += bi.rowstride; + } + + block_counter++; + } else { // FOUR COLOR BLOCK + block_counter += encode_four_color_block(min_color, max_color, + &s->pb, &src_pixels[block_offset], &bi); + } + + /* update this block in the previous frame buffer */ + update_block_in_prev_frame(&src_pixels[block_offset], + &prev_pixels[block_offset], &bi, block_counter); + } + } +} + +static int rpza_encode_init(AVCodecContext *avctx) +{ + RpzaContext *s = avctx->priv_data; + + s->frame_width = avctx->width; + s->frame_height = avctx->height; + + s->prev_frame = av_frame_alloc(); + if (!s->prev_frame) + return AVERROR(ENOMEM); + + return 0; +} + +static int rpza_encode_frame(AVCodecContext *avctx, AVPacket *pkt, + const AVFrame *frame, int *got_packet) +{ + RpzaContext *s = avctx->priv_data; + const AVFrame *pict = frame; + uint8_t *buf; + int ret; + + if ((ret = ff_alloc_packet2(avctx, pkt, 6LL * avctx->height * avctx->width, 0)) < 0) + return ret; + + init_put_bits(&s->pb, pkt->data, pkt->size); + + // skip 4 byte header, write it later once the size of the chunk is known + put_bits32(&s->pb, 0x00); + + if (!s->prev_frame->data[0]) { + s->first_frame = 1; + s->prev_frame->format = pict->format; + s->prev_frame->width = pict->width; + s->prev_frame->height = pict->height; + ret = av_frame_get_buffer(s->prev_frame, 0); + if (ret < 0) + return ret; + } else { + s->first_frame = 0; + } + + rpza_encode_stream(s, pict); + + flush_put_bits(&s->pb); + + av_shrink_packet(pkt, put_bits_count(&s->pb) >> 3); + buf = pkt->data; + + // write header opcode + buf[0] = 0xe1; // chunk opcode + + // write chunk length + AV_WB24(buf + 1, pkt->size); + + *got_packet = 1; + + return 0; +} + +static int rpza_encode_end(AVCodecContext *avctx) +{ + RpzaContext *s = (RpzaContext *)avctx->priv_data; + + av_frame_free(&s->prev_frame); + + return 0; +} + +#define OFFSET(x) offsetof(RpzaContext, x) +#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM +static const AVOption options[] = { + { "skip_frame_thresh", NULL, OFFSET(skip_frame_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE}, + { "start_one_color_thresh", NULL, OFFSET(start_one_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE}, + { "continue_one_color_thresh", NULL, OFFSET(continue_one_color_thresh), AV_OPT_TYPE_INT, {.i64=0}, 0, 24, VE}, + { "sixteen_color_thresh", NULL, OFFSET(sixteen_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE}, + { NULL }, +}; + +static const AVClass rpza_class = { + .class_name = "rpza", + .item_name = av_default_item_name, + .option = options, + .version = LIBAVUTIL_VERSION_INT, +}; + +AVCodec ff_rpza_encoder = { + .name = "rpza", + .long_name = NULL_IF_CONFIG_SMALL("QuickTime video (RPZA)"), + .type = AVMEDIA_TYPE_VIDEO, + .id = AV_CODEC_ID_RPZA, + .priv_data_size = sizeof(RpzaContext), + .priv_class = &rpza_class, + .init = rpza_encode_init, + .encode2 = rpza_encode_frame, + .close = rpza_encode_end, + .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, + .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB555, + AV_PIX_FMT_NONE}, +}; |