diff options
author | Alex Converse <alex.converse@gmail.com> | 2009-01-30 20:15:48 +0000 |
---|---|---|
committer | Alex Converse <alex.converse@gmail.com> | 2009-01-30 20:15:48 +0000 |
commit | 686025404486c751c808aa7441da19cacef637b4 (patch) | |
tree | b07c0ab6665aaf6c6c8d081c65a1b4d8832b70a4 /libavcodec/rdft.c | |
parent | 9d52d54df35d43b149ed1d1607fc95948df70f8c (diff) | |
download | ffmpeg-686025404486c751c808aa7441da19cacef637b4.tar.gz |
Add the rdft family of transforms (fft/ifft of an all real sequence) to dsputil.
Originally committed as revision 16864 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/rdft.c')
-rw-r--r-- | libavcodec/rdft.c | 127 |
1 files changed, 127 insertions, 0 deletions
diff --git a/libavcodec/rdft.c b/libavcodec/rdft.c new file mode 100644 index 0000000000..36c6f1bf05 --- /dev/null +++ b/libavcodec/rdft.c @@ -0,0 +1,127 @@ +/* + * (I)RDFT transforms + * Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com> + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ +#include <math.h> +#include "dsputil.h" + +/** + * @file rdft.c + * (Inverse) Real Discrete Fourier Transforms. + */ + +/* sin(2*pi*x/n) for 0<=x<n/4, followed by n/2<=x<3n/4 */ +DECLARE_ALIGNED_16(FFTSample, ff_sin_16[8]); +DECLARE_ALIGNED_16(FFTSample, ff_sin_32[16]); +DECLARE_ALIGNED_16(FFTSample, ff_sin_64[32]); +DECLARE_ALIGNED_16(FFTSample, ff_sin_128[64]); +DECLARE_ALIGNED_16(FFTSample, ff_sin_256[128]); +DECLARE_ALIGNED_16(FFTSample, ff_sin_512[256]); +DECLARE_ALIGNED_16(FFTSample, ff_sin_1024[512]); +DECLARE_ALIGNED_16(FFTSample, ff_sin_2048[1024]); +DECLARE_ALIGNED_16(FFTSample, ff_sin_4096[2048]); +DECLARE_ALIGNED_16(FFTSample, ff_sin_8192[4096]); +DECLARE_ALIGNED_16(FFTSample, ff_sin_16384[8192]); +DECLARE_ALIGNED_16(FFTSample, ff_sin_32768[16384]); +DECLARE_ALIGNED_16(FFTSample, ff_sin_65536[32768]); +FFTSample *ff_sin_tabs[] = { + ff_sin_16, ff_sin_32, ff_sin_64, ff_sin_128, ff_sin_256, ff_sin_512, ff_sin_1024, + ff_sin_2048, ff_sin_4096, ff_sin_8192, ff_sin_16384, ff_sin_32768, ff_sin_65536, +}; + +av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans) +{ + int n = 1 << nbits; + int i; + const double theta = (trans == RDFT || trans == IRIDFT ? -1 : 1)*2*M_PI/n; + + s->nbits = nbits; + s->inverse = trans == IRDFT || trans == IRIDFT; + s->sign_convention = trans == RIDFT || trans == IRIDFT ? 1 : -1; + + if (nbits < 4 || nbits > 16) + return -1; + + if (ff_fft_init(&s->fft, nbits-1, trans == IRDFT || trans == RIDFT) < 0) + return -1; + + s->tcos = ff_cos_tabs[nbits-4]; + s->tsin = ff_sin_tabs[nbits-4]+(trans == RDFT || trans == IRIDFT)*(n>>2); + for (i = 0; i < (n>>2); i++) { + s->tcos[i] = cos(i*theta); + s->tsin[i] = sin(i*theta); + } + return 0; +} + +/** Map one real FFT into two parallel real even and odd FFTs. Then interleave + * the two real FFTs into one complex FFT. Unmangle the results. + * ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM + */ +void ff_rdft_calc_c(RDFTContext* s, FFTSample* data) +{ + int i, i1, i2; + FFTComplex ev, od; + const int n = 1 << s->nbits; + const float k1 = 0.5; + const float k2 = 0.5 - s->inverse; + const FFTSample *tcos = s->tcos; + const FFTSample *tsin = s->tsin; + + if (!s->inverse) { + ff_fft_permute(&s->fft, (FFTComplex*)data); + ff_fft_calc(&s->fft, (FFTComplex*)data); + } + /* i=0 is a special case because of packing, the DC term is real, so we + are going to throw the N/2 term (also real) in with it. */ + ev.re = data[0]; + data[0] = ev.re+data[1]; + data[1] = ev.re-data[1]; + for (i = 1; i < (n>>2); i++) { + i1 = 2*i; + i2 = n-i1; + /* Separate even and odd FFTs */ + ev.re = k1*(data[i1 ]+data[i2 ]); + od.im = -k2*(data[i1 ]-data[i2 ]); + ev.im = k1*(data[i1+1]-data[i2+1]); + od.re = k2*(data[i1+1]+data[i2+1]); + /* Apply twiddle factors to the odd FFT and add to the even FFT */ + data[i1 ] = ev.re + od.re*tcos[i] - od.im*tsin[i]; + data[i1+1] = ev.im + od.im*tcos[i] + od.re*tsin[i]; + data[i2 ] = ev.re - od.re*tcos[i] + od.im*tsin[i]; + data[i2+1] = -ev.im + od.im*tcos[i] + od.re*tsin[i]; + } + data[2*i+1]=s->sign_convention*data[2*i+1]; + if (s->inverse) { + data[0] *= k1; + data[1] *= k1; + ff_fft_permute(&s->fft, (FFTComplex*)data); + ff_fft_calc(&s->fft, (FFTComplex*)data); + } +} + +void ff_rdft_calc(RDFTContext *s, FFTSample *data) +{ + ff_rdft_calc_c(s, data); +} + +av_cold void ff_rdft_end(RDFTContext *s) +{ + ff_fft_end(&s->fft); +} |