diff options
author | Michael Niedermayer <michaelni@gmx.at> | 2002-11-02 11:28:08 +0000 |
---|---|---|
committer | Michael Niedermayer <michaelni@gmx.at> | 2002-11-02 11:28:08 +0000 |
commit | 05c4072b45f3cde1185de6eccfe7febf91d9f8fd (patch) | |
tree | 164979e7e556e44f5678d5599a40810bbf89fed8 /libavcodec/ppc/mpegvideo_altivec.c | |
parent | 26b35efb3a0d02a1ef6a8af804e6c59c1a190fa3 (diff) | |
download | ffmpeg-05c4072b45f3cde1185de6eccfe7febf91d9f8fd.tar.gz |
Altivec Patch (Mark III) by (Dieter Shirley <dieters at schemasoft dot com>)
Originally committed as revision 1147 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/ppc/mpegvideo_altivec.c')
-rw-r--r-- | libavcodec/ppc/mpegvideo_altivec.c | 509 |
1 files changed, 509 insertions, 0 deletions
diff --git a/libavcodec/ppc/mpegvideo_altivec.c b/libavcodec/ppc/mpegvideo_altivec.c new file mode 100644 index 0000000000..bcbc1e6baf --- /dev/null +++ b/libavcodec/ppc/mpegvideo_altivec.c @@ -0,0 +1,509 @@ +/* + * Copyright (c) 2002 Dieter Shirley + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + +#include <stdlib.h> +#include <stdio.h> +#include "../dsputil.h" +#include "../mpegvideo.h" + + +// Used when initializing constant vectors +#define FOUR_INSTANCES(x) x,x,x,x + +// Swaps two variables (used for altivec registers) +#define SWAP(a,b) \ +do { \ + __typeof__(a) swap_temp=a; \ + a=b; \ + b=swap_temp; \ +} while (0) + +// transposes a matrix consisting of four vectors with four elements each +#define TRANSPOSE4(a,b,c,d) \ +do { \ + __typeof__(a) _trans_ach = vec_mergeh(a, c); \ + __typeof__(a) _trans_acl = vec_mergel(a, c); \ + __typeof__(a) _trans_bdh = vec_mergeh(b, d); \ + __typeof__(a) _trans_bdl = vec_mergel(b, d); \ + \ + a = vec_mergeh(_trans_ach, _trans_bdh); \ + b = vec_mergel(_trans_ach, _trans_bdh); \ + c = vec_mergeh(_trans_acl, _trans_bdl); \ + d = vec_mergel(_trans_acl, _trans_bdl); \ +} while (0) + +#define TRANSPOSE8(a,b,c,d,e,f,g,h) \ +do { \ + __typeof__(a) _A1, _B1, _C1, _D1, _E1, _F1, _G1, _H1; \ + __typeof__(a) _A2, _B2, _C2, _D2, _E2, _F2, _G2, _H2; \ + \ + _A1 = vec_mergeh (a, e); \ + _B1 = vec_mergel (a, e); \ + _C1 = vec_mergeh (b, f); \ + _D1 = vec_mergel (b, f); \ + _E1 = vec_mergeh (c, g); \ + _F1 = vec_mergel (c, g); \ + _G1 = vec_mergeh (d, h); \ + _H1 = vec_mergel (d, h); \ + \ + _A2 = vec_mergeh (_A1, _E1); \ + _B2 = vec_mergel (_A1, _E1); \ + _C2 = vec_mergeh (_B1, _F1); \ + _D2 = vec_mergel (_B1, _F1); \ + _E2 = vec_mergeh (_C1, _G1); \ + _F2 = vec_mergel (_C1, _G1); \ + _G2 = vec_mergeh (_D1, _H1); \ + _H2 = vec_mergel (_D1, _H1); \ + \ + a = vec_mergeh (_A2, _E2); \ + b = vec_mergel (_A2, _E2); \ + c = vec_mergeh (_B2, _F2); \ + d = vec_mergel (_B2, _F2); \ + e = vec_mergeh (_C2, _G2); \ + f = vec_mergel (_C2, _G2); \ + g = vec_mergeh (_D2, _H2); \ + h = vec_mergel (_D2, _H2); \ +} while (0) + + +// Loads a four-byte value (int or float) from the target address +// into every element in the target vector. Only works if the +// target address is four-byte aligned (which should be always). +#define LOAD4(vec, address) \ +{ \ + __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \ + vector unsigned char _perm_vec = vec_lvsl(0,(address)); \ + vec = vec_ld(0, _load_addr); \ + vec = vec_perm(vec, vec, _perm_vec); \ + vec = vec_splat(vec, 0); \ +} + +int dct_quantize_altivec(MpegEncContext* s, + DCTELEM* data, int n, + int qscale, int* overflow) +{ + int lastNonZero; + vector float row0, row1, row2, row3, row4, row5, row6, row7; + vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7; + const vector float zero = {FOUR_INSTANCES(0.0f)}; + + // Load the data into the row/alt vectors + { + vector signed short data0, data1, data2, data3, data4, data5, data6, data7; + + data0 = vec_ld(0, data); + data1 = vec_ld(16, data); + data2 = vec_ld(32, data); + data3 = vec_ld(48, data); + data4 = vec_ld(64, data); + data5 = vec_ld(80, data); + data6 = vec_ld(96, data); + data7 = vec_ld(112, data); + + // Transpose the data before we start + TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); + + // load the data into floating point vectors. We load + // the high half of each row into the main row vectors + // and the low half into the alt vectors. + row0 = vec_ctf(vec_unpackh(data0), 0); + alt0 = vec_ctf(vec_unpackl(data0), 0); + row1 = vec_ctf(vec_unpackh(data1), 0); + alt1 = vec_ctf(vec_unpackl(data1), 0); + row2 = vec_ctf(vec_unpackh(data2), 0); + alt2 = vec_ctf(vec_unpackl(data2), 0); + row3 = vec_ctf(vec_unpackh(data3), 0); + alt3 = vec_ctf(vec_unpackl(data3), 0); + row4 = vec_ctf(vec_unpackh(data4), 0); + alt4 = vec_ctf(vec_unpackl(data4), 0); + row5 = vec_ctf(vec_unpackh(data5), 0); + alt5 = vec_ctf(vec_unpackl(data5), 0); + row6 = vec_ctf(vec_unpackh(data6), 0); + alt6 = vec_ctf(vec_unpackl(data6), 0); + row7 = vec_ctf(vec_unpackh(data7), 0); + alt7 = vec_ctf(vec_unpackl(data7), 0); + } + + // The following block could exist as a separate an altivec dct + // function. However, if we put it inline, the DCT data can remain + // in the vector local variables, as floats, which we'll use during the + // quantize step... + { + const vector float vec_0_298631336 = {FOUR_INSTANCES(0.298631336f)}; + const vector float vec_0_390180644 = {FOUR_INSTANCES(-0.390180644f)}; + const vector float vec_0_541196100 = {FOUR_INSTANCES(0.541196100f)}; + const vector float vec_0_765366865 = {FOUR_INSTANCES(0.765366865f)}; + const vector float vec_0_899976223 = {FOUR_INSTANCES(-0.899976223f)}; + const vector float vec_1_175875602 = {FOUR_INSTANCES(1.175875602f)}; + const vector float vec_1_501321110 = {FOUR_INSTANCES(1.501321110f)}; + const vector float vec_1_847759065 = {FOUR_INSTANCES(-1.847759065f)}; + const vector float vec_1_961570560 = {FOUR_INSTANCES(-1.961570560f)}; + const vector float vec_2_053119869 = {FOUR_INSTANCES(2.053119869f)}; + const vector float vec_2_562915447 = {FOUR_INSTANCES(-2.562915447f)}; + const vector float vec_3_072711026 = {FOUR_INSTANCES(3.072711026f)}; + + + int whichPass, whichHalf; + + for(whichPass = 1; whichPass<=2; whichPass++) + { + for(whichHalf = 1; whichHalf<=2; whichHalf++) + { + vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; + vector float tmp10, tmp11, tmp12, tmp13; + vector float z1, z2, z3, z4, z5; + + tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7]; + tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7]; + tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4]; + tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4]; + tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6]; + tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6]; + tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5]; + tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5]; + + tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3; + tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3; + tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2; + tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2; + + + // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS); + row0 = vec_add(tmp10, tmp11); + + // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); + row4 = vec_sub(tmp10, tmp11); + + + // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); + z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero); + + // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), + // CONST_BITS-PASS1_BITS); + row2 = vec_madd(tmp13, vec_0_765366865, z1); + + // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), + // CONST_BITS-PASS1_BITS); + row6 = vec_madd(tmp12, vec_1_847759065, z1); + + z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7; + z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6; + z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6; + z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7; + + // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ + z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero); + + // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ + z3 = vec_madd(z3, vec_1_961570560, z5); + + // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ + z4 = vec_madd(z4, vec_0_390180644, z5); + + // The following adds are rolled into the multiplies above + // z3 = vec_add(z3, z5); // z3 += z5; + // z4 = vec_add(z4, z5); // z4 += z5; + + // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ + // Wow! It's actually more effecient to roll this multiply + // into the adds below, even thought the multiply gets done twice! + // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero); + + // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ + // Same with this one... + // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero); + + // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ + // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); + row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3)); + + // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ + // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); + row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4)); + + // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ + // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); + row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3)); + + // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ + // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); + row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4)); + + // Swap the row values with the alts. If this is the first half, + // this sets up the low values to be acted on in the second half. + // If this is the second half, it puts the high values back in + // the row values where they are expected to be when we're done. + SWAP(row0, alt0); + SWAP(row1, alt1); + SWAP(row2, alt2); + SWAP(row3, alt3); + SWAP(row4, alt4); + SWAP(row5, alt5); + SWAP(row6, alt6); + SWAP(row7, alt7); + } + + if (whichPass == 1) + { + // transpose the data for the second pass + + // First, block transpose the upper right with lower left. + SWAP(row4, alt0); + SWAP(row5, alt1); + SWAP(row6, alt2); + SWAP(row7, alt3); + + // Now, transpose each block of four + TRANSPOSE4(row0, row1, row2, row3); + TRANSPOSE4(row4, row5, row6, row7); + TRANSPOSE4(alt0, alt1, alt2, alt3); + TRANSPOSE4(alt4, alt5, alt6, alt7); + } + } + } + + // used after quantise step + int oldBaseValue = 0; + + // perform the quantise step, using the floating point data + // still in the row/alt registers + { + const int* biasAddr; + const vector signed int* qmat; + vector float bias, negBias; + + if (s->mb_intra) + { + vector signed int baseVector; + + // We must cache element 0 in the intra case + // (it needs special handling). + baseVector = vec_cts(vec_splat(row0, 0), 0); + vec_ste(baseVector, 0, &oldBaseValue); + + qmat = (vector signed int*)s->q_intra_matrix[qscale]; + biasAddr = &(s->intra_quant_bias); + } + else + { + qmat = (vector signed int*)s->q_inter_matrix[qscale]; + biasAddr = &(s->inter_quant_bias); + } + + // Load the bias vector (We add 0.5 to the bias so that we're + // rounding when we convert to int, instead of flooring.) + { + vector signed int biasInt; + const vector float negOneFloat = (vector float)(FOUR_INSTANCES(-1.0f)); + LOAD4(biasInt, biasAddr); + bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT); + negBias = vec_madd(bias, negOneFloat, zero); + } + + { + vector float q0, q1, q2, q3, q4, q5, q6, q7; + + q0 = vec_ctf(qmat[0], QMAT_SHIFT); + q1 = vec_ctf(qmat[2], QMAT_SHIFT); + q2 = vec_ctf(qmat[4], QMAT_SHIFT); + q3 = vec_ctf(qmat[6], QMAT_SHIFT); + q4 = vec_ctf(qmat[8], QMAT_SHIFT); + q5 = vec_ctf(qmat[10], QMAT_SHIFT); + q6 = vec_ctf(qmat[12], QMAT_SHIFT); + q7 = vec_ctf(qmat[14], QMAT_SHIFT); + + row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias), + vec_cmpgt(row0, zero)); + row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias), + vec_cmpgt(row1, zero)); + row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias), + vec_cmpgt(row2, zero)); + row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias), + vec_cmpgt(row3, zero)); + row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias), + vec_cmpgt(row4, zero)); + row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias), + vec_cmpgt(row5, zero)); + row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias), + vec_cmpgt(row6, zero)); + row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias), + vec_cmpgt(row7, zero)); + + q0 = vec_ctf(qmat[1], QMAT_SHIFT); + q1 = vec_ctf(qmat[3], QMAT_SHIFT); + q2 = vec_ctf(qmat[5], QMAT_SHIFT); + q3 = vec_ctf(qmat[7], QMAT_SHIFT); + q4 = vec_ctf(qmat[9], QMAT_SHIFT); + q5 = vec_ctf(qmat[11], QMAT_SHIFT); + q6 = vec_ctf(qmat[13], QMAT_SHIFT); + q7 = vec_ctf(qmat[15], QMAT_SHIFT); + + alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias), + vec_cmpgt(alt0, zero)); + alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias), + vec_cmpgt(alt1, zero)); + alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias), + vec_cmpgt(alt2, zero)); + alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias), + vec_cmpgt(alt3, zero)); + alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias), + vec_cmpgt(alt4, zero)); + alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias), + vec_cmpgt(alt5, zero)); + alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias), + vec_cmpgt(alt6, zero)); + alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias), + vec_cmpgt(alt7, zero)); + } + + + } + + // Store the data back into the original block + { + vector signed short data0, data1, data2, data3, data4, data5, data6, data7; + + data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0)); + data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0)); + data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0)); + data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0)); + data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0)); + data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0)); + data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0)); + data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0)); + + { + // Clamp for overflow + vector signed int max_q_int, min_q_int; + vector signed short max_q, min_q; + + LOAD4(max_q_int, &(s->max_qcoeff)); + LOAD4(min_q_int, &(s->min_qcoeff)); + + max_q = vec_pack(max_q_int, max_q_int); + min_q = vec_pack(min_q_int, min_q_int); + + data0 = vec_max(vec_min(data0, max_q), min_q); + data1 = vec_max(vec_min(data1, max_q), min_q); + data2 = vec_max(vec_min(data2, max_q), min_q); + data4 = vec_max(vec_min(data4, max_q), min_q); + data5 = vec_max(vec_min(data5, max_q), min_q); + data6 = vec_max(vec_min(data6, max_q), min_q); + data7 = vec_max(vec_min(data7, max_q), min_q); + } + + vector bool char zero_01, zero_23, zero_45, zero_67; + vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67; + vector signed char negOne = vec_splat_s8(-1); + vector signed char* scanPtr = + (vector signed char*)(s->intra_scantable.inverse); + + // Determine the largest non-zero index. + zero_01 = vec_pack(vec_cmpeq(data0, (vector short)zero), + vec_cmpeq(data1, (vector short)zero)); + zero_23 = vec_pack(vec_cmpeq(data2, (vector short)zero), + vec_cmpeq(data3, (vector short)zero)); + zero_45 = vec_pack(vec_cmpeq(data4, (vector short)zero), + vec_cmpeq(data5, (vector short)zero)); + zero_67 = vec_pack(vec_cmpeq(data6, (vector short)zero), + vec_cmpeq(data7, (vector short)zero)); + + // 64 biggest values + scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01); + scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23); + scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45); + scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67); + + // 32 largest values + scanIndices_01 = vec_max(scanIndices_01, scanIndices_23); + scanIndices_45 = vec_max(scanIndices_45, scanIndices_67); + + // 16 largest values + scanIndices_01 = vec_max(scanIndices_01, scanIndices_45); + + // 8 largest values + scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), + vec_mergel(scanIndices_01, negOne)); + + // 4 largest values + scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), + vec_mergel(scanIndices_01, negOne)); + + // 2 largest values + scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), + vec_mergel(scanIndices_01, negOne)); + + // largest value + scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), + vec_mergel(scanIndices_01, negOne)); + + scanIndices_01 = vec_splat(scanIndices_01, 0); + + signed char lastNonZeroChar; + + vec_ste(scanIndices_01, 0, &lastNonZeroChar); + + lastNonZero = lastNonZeroChar; + + // While the data is still in vectors we check for the transpose IDCT permute + // and handle it using the vector unit if we can. This is the permute used + // by the altivec idct, so it is common when using the altivec dct. + + if ((lastNonZero > 0) && (s->idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) + { + TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); + } + + vec_st(data0, 0, data); + vec_st(data1, 16, data); + vec_st(data2, 32, data); + vec_st(data3, 48, data); + vec_st(data4, 64, data); + vec_st(data5, 80, data); + vec_st(data6, 96, data); + vec_st(data7, 112, data); + } + + // special handling of block[0] + if (s->mb_intra) + { + if (!s->h263_aic) + { + if (n < 4) + oldBaseValue /= s->y_dc_scale; + else + oldBaseValue /= s->c_dc_scale; + } + + // Divide by 8, rounding the result + data[0] = (oldBaseValue + 4) >> 3; + } + + // We handled the tranpose permutation above and we don't + // need to permute the "no" permutation case. + if ((lastNonZero > 0) && + (s->idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) && + (s->idct_permutation_type != FF_NO_IDCT_PERM)) + { + ff_block_permute(data, s->idct_permutation, + s->intra_scantable.scantable, lastNonZero); + } + + return lastNonZero; +} + |