diff options
author | Rostislav Pehlivanov <atomnuker@gmail.com> | 2017-02-11 00:25:06 +0000 |
---|---|---|
committer | Rostislav Pehlivanov <atomnuker@gmail.com> | 2017-02-14 06:15:36 +0000 |
commit | e538108c219d7b3628a9ec33d85bf252ee70c957 (patch) | |
tree | 796c62422dbc5f3e555d84ce57557729c7a8c900 /libavcodec/opus_celt.c | |
parent | d2119f624d392f53f80c3d36ffaadca23aef8a10 (diff) | |
download | ffmpeg-e538108c219d7b3628a9ec33d85bf252ee70c957.tar.gz |
opus_celt: move quantization and band decoding to opus_pvq.c
A huge amount can be reused by the encoder, as the only thing
which needs to be done would be to add a 10 line celt_icwrsi,
a wrapper around it (celt_alg_quant) and templating the
ff_celt_decode_band to replace entropy decoding functions
with entropy encoding.
There is no performance loss but in fact a performance gain of
around 6% which is caused by the compiler being able to optimize
the decoding more efficiently.
Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
Diffstat (limited to 'libavcodec/opus_celt.c')
-rw-r--r-- | libavcodec/opus_celt.c | 828 |
1 files changed, 11 insertions, 817 deletions
diff --git a/libavcodec/opus_celt.c b/libavcodec/opus_celt.c index a0f018e664..71ef8965e2 100644 --- a/libavcodec/opus_celt.c +++ b/libavcodec/opus_celt.c @@ -24,109 +24,9 @@ * Opus CELT decoder */ -#include <stdint.h> - -#include "libavutil/float_dsp.h" -#include "libavutil/libm.h" - -#include "mdct15.h" -#include "opus.h" +#include "opus_celt.h" #include "opustab.h" - -enum CeltSpread { - CELT_SPREAD_NONE, - CELT_SPREAD_LIGHT, - CELT_SPREAD_NORMAL, - CELT_SPREAD_AGGRESSIVE -}; - -typedef struct CeltFrame { - float energy[CELT_MAX_BANDS]; - float prev_energy[2][CELT_MAX_BANDS]; - - uint8_t collapse_masks[CELT_MAX_BANDS]; - - /* buffer for mdct output + postfilter */ - DECLARE_ALIGNED(32, float, buf)[2048]; - - /* postfilter parameters */ - int pf_period_new; - float pf_gains_new[3]; - int pf_period; - float pf_gains[3]; - int pf_period_old; - float pf_gains_old[3]; - - float deemph_coeff; -} CeltFrame; - -struct CeltContext { - // constant values that do not change during context lifetime - AVCodecContext *avctx; - MDCT15Context *imdct[4]; - AVFloatDSPContext *dsp; - int output_channels; - - // values that have inter-frame effect and must be reset on flush - CeltFrame frame[2]; - uint32_t seed; - int flushed; - - // values that only affect a single frame - int coded_channels; - int framebits; - int duration; - - /* number of iMDCT blocks in the frame */ - int blocks; - /* size of each block */ - int blocksize; - - int startband; - int endband; - int codedbands; - - int anticollapse_bit; - - int intensitystereo; - int dualstereo; - enum CeltSpread spread; - - int remaining; - int remaining2; - int fine_bits [CELT_MAX_BANDS]; - int fine_priority[CELT_MAX_BANDS]; - int pulses [CELT_MAX_BANDS]; - int tf_change [CELT_MAX_BANDS]; - - DECLARE_ALIGNED(32, float, coeffs)[2][CELT_MAX_FRAME_SIZE]; - DECLARE_ALIGNED(32, float, scratch)[22 * 8]; // MAX(ff_celt_freq_range) * 1<<CELT_MAX_LOG_BLOCKS -}; - -static inline int16_t celt_cos(int16_t x) -{ - x = (MUL16(x, x) + 4096) >> 13; - x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x))))); - return 1+x; -} - -static inline int celt_log2tan(int isin, int icos) -{ - int lc, ls; - lc = opus_ilog(icos); - ls = opus_ilog(isin); - icos <<= 15 - lc; - isin <<= 15 - ls; - return (ls << 11) - (lc << 11) + - ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) - - ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932); -} - -static inline uint32_t celt_rng(CeltContext *s) -{ - s->seed = 1664525 * s->seed + 1013904223; - return s->seed; -} +#include "opus_pvq.h" static void celt_decode_coarse_energy(CeltContext *s, OpusRangeCoder *rc) { @@ -579,711 +479,6 @@ static void celt_decode_allocation(CeltContext *s, OpusRangeCoder *rc) } } -static inline int celt_bits2pulses(const uint8_t *cache, int bits) -{ - // TODO: Find the size of cache and make it into an array in the parameters list - int i, low = 0, high; - - high = cache[0]; - bits--; - - for (i = 0; i < 6; i++) { - int center = (low + high + 1) >> 1; - if (cache[center] >= bits) - high = center; - else - low = center; - } - - return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high; -} - -static inline int celt_pulses2bits(const uint8_t *cache, int pulses) -{ - // TODO: Find the size of cache and make it into an array in the parameters list - return (pulses == 0) ? 0 : cache[pulses] + 1; -} - -static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X, - int N, float g) -{ - int i; - for (i = 0; i < N; i++) - X[i] = g * iy[i]; -} - -static void celt_exp_rotation1(float *X, unsigned int len, unsigned int stride, - float c, float s) -{ - float *Xptr; - int i; - - Xptr = X; - for (i = 0; i < len - stride; i++) { - float x1, x2; - x1 = Xptr[0]; - x2 = Xptr[stride]; - Xptr[stride] = c * x2 + s * x1; - *Xptr++ = c * x1 - s * x2; - } - - Xptr = &X[len - 2 * stride - 1]; - for (i = len - 2 * stride - 1; i >= 0; i--) { - float x1, x2; - x1 = Xptr[0]; - x2 = Xptr[stride]; - Xptr[stride] = c * x2 + s * x1; - *Xptr-- = c * x1 - s * x2; - } -} - -static inline void celt_exp_rotation(float *X, unsigned int len, - unsigned int stride, unsigned int K, - enum CeltSpread spread) -{ - unsigned int stride2 = 0; - float c, s; - float gain, theta; - int i; - - if (2*K >= len || spread == CELT_SPREAD_NONE) - return; - - gain = (float)len / (len + (20 - 5*spread) * K); - theta = M_PI * gain * gain / 4; - - c = cos(theta); - s = sin(theta); - - if (len >= stride << 3) { - stride2 = 1; - /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding. - It's basically incrementing long as (stride2+0.5)^2 < len/stride. */ - while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len) - stride2++; - } - - /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for - extract_collapse_mask().*/ - len /= stride; - for (i = 0; i < stride; i++) { - if (stride2) - celt_exp_rotation1(X + i * len, len, stride2, s, c); - celt_exp_rotation1(X + i * len, len, 1, c, s); - } -} - -static inline unsigned int celt_extract_collapse_mask(const int *iy, - unsigned int N, - unsigned int B) -{ - unsigned int collapse_mask; - int N0; - int i, j; - - if (B <= 1) - return 1; - - /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for - exp_rotation().*/ - N0 = N/B; - collapse_mask = 0; - for (i = 0; i < B; i++) - for (j = 0; j < N0; j++) - collapse_mask |= (iy[i*N0+j]!=0)<<i; - return collapse_mask; -} - -static inline void celt_renormalize_vector(float *X, int N, float gain) -{ - int i; - float g = 1e-15f; - for (i = 0; i < N; i++) - g += X[i] * X[i]; - g = gain / sqrtf(g); - - for (i = 0; i < N; i++) - X[i] *= g; -} - -static inline void celt_stereo_merge(float *X, float *Y, float mid, int N) -{ - int i; - float xp = 0, side = 0; - float E[2]; - float mid2; - float t, gain[2]; - - /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ - for (i = 0; i < N; i++) { - xp += X[i] * Y[i]; - side += Y[i] * Y[i]; - } - - /* Compensating for the mid normalization */ - xp *= mid; - mid2 = mid; - E[0] = mid2 * mid2 + side - 2 * xp; - E[1] = mid2 * mid2 + side + 2 * xp; - if (E[0] < 6e-4f || E[1] < 6e-4f) { - for (i = 0; i < N; i++) - Y[i] = X[i]; - return; - } - - t = E[0]; - gain[0] = 1.0f / sqrtf(t); - t = E[1]; - gain[1] = 1.0f / sqrtf(t); - - for (i = 0; i < N; i++) { - float value[2]; - /* Apply mid scaling (side is already scaled) */ - value[0] = mid * X[i]; - value[1] = Y[i]; - X[i] = gain[0] * (value[0] - value[1]); - Y[i] = gain[1] * (value[0] + value[1]); - } -} - -static void celt_interleave_hadamard(float *tmp, float *X, int N0, - int stride, int hadamard) -{ - int i, j; - int N = N0*stride; - - if (hadamard) { - const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2; - for (i = 0; i < stride; i++) - for (j = 0; j < N0; j++) - tmp[j*stride+i] = X[ordery[i]*N0+j]; - } else { - for (i = 0; i < stride; i++) - for (j = 0; j < N0; j++) - tmp[j*stride+i] = X[i*N0+j]; - } - - for (i = 0; i < N; i++) - X[i] = tmp[i]; -} - -static void celt_deinterleave_hadamard(float *tmp, float *X, int N0, - int stride, int hadamard) -{ - int i, j; - int N = N0*stride; - - if (hadamard) { - const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2; - for (i = 0; i < stride; i++) - for (j = 0; j < N0; j++) - tmp[ordery[i]*N0+j] = X[j*stride+i]; - } else { - for (i = 0; i < stride; i++) - for (j = 0; j < N0; j++) - tmp[i*N0+j] = X[j*stride+i]; - } - - for (i = 0; i < N; i++) - X[i] = tmp[i]; -} - -static void celt_haar1(float *X, int N0, int stride) -{ - int i, j; - N0 >>= 1; - for (i = 0; i < stride; i++) { - for (j = 0; j < N0; j++) { - float x0 = X[stride * (2 * j + 0) + i]; - float x1 = X[stride * (2 * j + 1) + i]; - X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2; - X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2; - } - } -} - -static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap, - int dualstereo) -{ - int qn, qb; - int N2 = 2 * N - 1; - if (dualstereo && N == 2) - N2--; - - /* The upper limit ensures that in a stereo split with itheta==16384, we'll - * always have enough bits left over to code at least one pulse in the - * side; otherwise it would collapse, since it doesn't get folded. */ - qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3); - qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1; - return qn; -} - -// this code was adapted from libopus -static inline uint64_t celt_cwrsi(unsigned int N, unsigned int K, unsigned int i, int *y) -{ - uint64_t norm = 0; - uint32_t p; - int s, val; - int k0; - - while (N > 2) { - uint32_t q; - - /*Lots of pulses case:*/ - if (K >= N) { - const uint32_t *row = ff_celt_pvq_u_row[N]; - - /* Are the pulses in this dimension negative? */ - p = row[K + 1]; - s = -(i >= p); - i -= p & s; - - /*Count how many pulses were placed in this dimension.*/ - k0 = K; - q = row[N]; - if (q > i) { - K = N; - do { - p = ff_celt_pvq_u_row[--K][N]; - } while (p > i); - } else - for (p = row[K]; p > i; p = row[K]) - K--; - - i -= p; - val = (k0 - K + s) ^ s; - norm += val * val; - *y++ = val; - } else { /*Lots of dimensions case:*/ - /*Are there any pulses in this dimension at all?*/ - p = ff_celt_pvq_u_row[K ][N]; - q = ff_celt_pvq_u_row[K + 1][N]; - - if (p <= i && i < q) { - i -= p; - *y++ = 0; - } else { - /*Are the pulses in this dimension negative?*/ - s = -(i >= q); - i -= q & s; - - /*Count how many pulses were placed in this dimension.*/ - k0 = K; - do p = ff_celt_pvq_u_row[--K][N]; - while (p > i); - - i -= p; - val = (k0 - K + s) ^ s; - norm += val * val; - *y++ = val; - } - } - N--; - } - - /* N == 2 */ - p = 2 * K + 1; - s = -(i >= p); - i -= p & s; - k0 = K; - K = (i + 1) / 2; - - if (K) - i -= 2 * K - 1; - - val = (k0 - K + s) ^ s; - norm += val * val; - *y++ = val; - - /* N==1 */ - s = -i; - val = (K + s) ^ s; - norm += val * val; - *y = val; - - return norm; -} - -static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, unsigned int N, unsigned int K) -{ - unsigned int idx; -#define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)]) -#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1)) - idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K)); - return celt_cwrsi(N, K, idx, y); -} - -/** Decode pulse vector and combine the result with the pitch vector to produce - the final normalised signal in the current band. */ -static inline unsigned int celt_alg_unquant(OpusRangeCoder *rc, float *X, - unsigned int N, unsigned int K, - enum CeltSpread spread, - unsigned int blocks, float gain) -{ - int y[176]; - - gain /= sqrtf(celt_decode_pulses(rc, y, N, K)); - celt_normalize_residual(y, X, N, gain); - celt_exp_rotation(X, N, blocks, K, spread); - return celt_extract_collapse_mask(y, N, blocks); -} - -static unsigned int celt_decode_band(CeltContext *s, OpusRangeCoder *rc, - const int band, float *X, float *Y, - int N, int b, unsigned int blocks, - float *lowband, int duration, - float *lowband_out, int level, - float gain, float *lowband_scratch, - int fill) -{ - const uint8_t *cache; - int dualstereo, split; - int imid = 0, iside = 0; - unsigned int N0 = N; - int N_B; - int N_B0; - int B0 = blocks; - int time_divide = 0; - int recombine = 0; - int inv = 0; - float mid = 0, side = 0; - int longblocks = (B0 == 1); - unsigned int cm = 0; - - N_B0 = N_B = N / blocks; - split = dualstereo = (Y != NULL); - - if (N == 1) { - /* special case for one sample */ - int i; - float *x = X; - for (i = 0; i <= dualstereo; i++) { - int sign = 0; - if (s->remaining2 >= 1<<3) { - sign = ff_opus_rc_get_raw(rc, 1); - s->remaining2 -= 1 << 3; - b -= 1 << 3; - } - x[0] = sign ? -1.0f : 1.0f; - x = Y; - } - if (lowband_out) - lowband_out[0] = X[0]; - return 1; - } - - if (!dualstereo && level == 0) { - int tf_change = s->tf_change[band]; - int k; - if (tf_change > 0) - recombine = tf_change; - /* Band recombining to increase frequency resolution */ - - if (lowband && - (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) { - int j; - for (j = 0; j < N; j++) - lowband_scratch[j] = lowband[j]; - lowband = lowband_scratch; - } - - for (k = 0; k < recombine; k++) { - if (lowband) - celt_haar1(lowband, N >> k, 1 << k); - fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2; - } - blocks >>= recombine; - N_B <<= recombine; - - /* Increasing the time resolution */ - while ((N_B & 1) == 0 && tf_change < 0) { - if (lowband) - celt_haar1(lowband, N_B, blocks); - fill |= fill << blocks; - blocks <<= 1; - N_B >>= 1; - time_divide++; - tf_change++; - } - B0 = blocks; - N_B0 = N_B; - - /* Reorganize the samples in time order instead of frequency order */ - if (B0 > 1 && lowband) - celt_deinterleave_hadamard(s->scratch, lowband, N_B >> recombine, - B0 << recombine, longblocks); - } - - /* If we need 1.5 more bit than we can produce, split the band in two. */ - cache = ff_celt_cache_bits + - ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band]; - if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) { - N >>= 1; - Y = X + N; - split = 1; - duration -= 1; - if (blocks == 1) - fill = (fill & 1) | (fill << 1); - blocks = (blocks + 1) >> 1; - } - - if (split) { - int qn; - int itheta = 0; - int mbits, sbits, delta; - int qalloc; - int pulse_cap; - int offset; - int orig_fill; - int tell; - - /* Decide on the resolution to give to the split parameter theta */ - pulse_cap = ff_celt_log_freq_range[band] + duration * 8; - offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE : - CELT_QTHETA_OFFSET); - qn = (dualstereo && band >= s->intensitystereo) ? 1 : - celt_compute_qn(N, b, offset, pulse_cap, dualstereo); - tell = opus_rc_tell_frac(rc); - if (qn != 1) { - /* Entropy coding of the angle. We use a uniform pdf for the - time split, a step for stereo, and a triangular one for the rest. */ - if (dualstereo && N > 2) - itheta = ff_opus_rc_dec_uint_step(rc, qn/2); - else if (dualstereo || B0 > 1) - itheta = ff_opus_rc_dec_uint(rc, qn+1); - else - itheta = ff_opus_rc_dec_uint_tri(rc, qn); - itheta = itheta * 16384 / qn; - /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. - Let's do that at higher complexity */ - } else if (dualstereo) { - inv = (b > 2 << 3 && s->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0; - itheta = 0; - } - qalloc = opus_rc_tell_frac(rc) - tell; - b -= qalloc; - - orig_fill = fill; - if (itheta == 0) { - imid = 32767; - iside = 0; - fill = av_mod_uintp2(fill, blocks); - delta = -16384; - } else if (itheta == 16384) { - imid = 0; - iside = 32767; - fill &= ((1 << blocks) - 1) << blocks; - delta = 16384; - } else { - imid = celt_cos(itheta); - iside = celt_cos(16384-itheta); - /* This is the mid vs side allocation that minimizes squared error - in that band. */ - delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid)); - } - - mid = imid / 32768.0f; - side = iside / 32768.0f; - - /* This is a special case for N=2 that only works for stereo and takes - advantage of the fact that mid and side are orthogonal to encode - the side with just one bit. */ - if (N == 2 && dualstereo) { - int c; - int sign = 0; - float tmp; - float *x2, *y2; - mbits = b; - /* Only need one bit for the side */ - sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0; - mbits -= sbits; - c = (itheta > 8192); - s->remaining2 -= qalloc+sbits; - - x2 = c ? Y : X; - y2 = c ? X : Y; - if (sbits) - sign = ff_opus_rc_get_raw(rc, 1); - sign = 1 - 2 * sign; - /* We use orig_fill here because we want to fold the side, but if - itheta==16384, we'll have cleared the low bits of fill. */ - cm = celt_decode_band(s, rc, band, x2, NULL, N, mbits, blocks, - lowband, duration, lowband_out, level, gain, - lowband_scratch, orig_fill); - /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), - and there's no need to worry about mixing with the other channel. */ - y2[0] = -sign * x2[1]; - y2[1] = sign * x2[0]; - X[0] *= mid; - X[1] *= mid; - Y[0] *= side; - Y[1] *= side; - tmp = X[0]; - X[0] = tmp - Y[0]; - Y[0] = tmp + Y[0]; - tmp = X[1]; - X[1] = tmp - Y[1]; - Y[1] = tmp + Y[1]; - } else { - /* "Normal" split code */ - float *next_lowband2 = NULL; - float *next_lowband_out1 = NULL; - int next_level = 0; - int rebalance; - - /* Give more bits to low-energy MDCTs than they would - * otherwise deserve */ - if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) { - if (itheta > 8192) - /* Rough approximation for pre-echo masking */ - delta -= delta >> (4 - duration); - else - /* Corresponds to a forward-masking slope of - * 1.5 dB per 10 ms */ - delta = FFMIN(0, delta + (N << 3 >> (5 - duration))); - } - mbits = av_clip((b - delta) / 2, 0, b); - sbits = b - mbits; - s->remaining2 -= qalloc; - - if (lowband && !dualstereo) - next_lowband2 = lowband + N; /* >32-bit split case */ - - /* Only stereo needs to pass on lowband_out. - * Otherwise, it's handled at the end */ - if (dualstereo) - next_lowband_out1 = lowband_out; - else - next_level = level + 1; - - rebalance = s->remaining2; - if (mbits >= sbits) { - /* In stereo mode, we do not apply a scaling to the mid - * because we need the normalized mid for folding later */ - cm = celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks, - lowband, duration, next_lowband_out1, - next_level, dualstereo ? 1.0f : (gain * mid), - lowband_scratch, fill); - - rebalance = mbits - (rebalance - s->remaining2); - if (rebalance > 3 << 3 && itheta != 0) - sbits += rebalance - (3 << 3); - - /* For a stereo split, the high bits of fill are always zero, - * so no folding will be done to the side. */ - cm |= celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks, - next_lowband2, duration, NULL, - next_level, gain * side, NULL, - fill >> blocks) << ((B0 >> 1) & (dualstereo - 1)); - } else { - /* For a stereo split, the high bits of fill are always zero, - * so no folding will be done to the side. */ - cm = celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks, - next_lowband2, duration, NULL, - next_level, gain * side, NULL, - fill >> blocks) << ((B0 >> 1) & (dualstereo - 1)); - - rebalance = sbits - (rebalance - s->remaining2); - if (rebalance > 3 << 3 && itheta != 16384) - mbits += rebalance - (3 << 3); - - /* In stereo mode, we do not apply a scaling to the mid because - * we need the normalized mid for folding later */ - cm |= celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks, - lowband, duration, next_lowband_out1, - next_level, dualstereo ? 1.0f : (gain * mid), - lowband_scratch, fill); - } - } - } else { - /* This is the basic no-split case */ - unsigned int q = celt_bits2pulses(cache, b); - unsigned int curr_bits = celt_pulses2bits(cache, q); - s->remaining2 -= curr_bits; - - /* Ensures we can never bust the budget */ - while (s->remaining2 < 0 && q > 0) { - s->remaining2 += curr_bits; - curr_bits = celt_pulses2bits(cache, --q); - s->remaining2 -= curr_bits; - } - - if (q != 0) { - /* Finally do the actual quantization */ - cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), - s->spread, blocks, gain); - } else { - /* If there's no pulse, fill the band anyway */ - int j; - unsigned int cm_mask = (1 << blocks) - 1; - fill &= cm_mask; - if (!fill) { - for (j = 0; j < N; j++) - X[j] = 0.0f; - } else { - if (!lowband) { - /* Noise */ - for (j = 0; j < N; j++) - X[j] = (((int32_t)celt_rng(s)) >> 20); - cm = cm_mask; - } else { - /* Folded spectrum */ - for (j = 0; j < N; j++) { - /* About 48 dB below the "normal" folding level */ - X[j] = lowband[j] + (((celt_rng(s)) & 0x8000) ? 1.0f / 256 : -1.0f / 256); - } - cm = fill; - } - celt_renormalize_vector(X, N, gain); - } - } - } - - /* This code is used by the decoder and by the resynthesis-enabled encoder */ - if (dualstereo) { - int j; - if (N != 2) - celt_stereo_merge(X, Y, mid, N); - if (inv) { - for (j = 0; j < N; j++) - Y[j] *= -1; - } - } else if (level == 0) { - int k; - - /* Undo the sample reorganization going from time order to frequency order */ - if (B0 > 1) - celt_interleave_hadamard(s->scratch, X, N_B>>recombine, - B0<<recombine, longblocks); - - /* Undo time-freq changes that we did earlier */ - N_B = N_B0; - blocks = B0; - for (k = 0; k < time_divide; k++) { - blocks >>= 1; - N_B <<= 1; - cm |= cm >> blocks; - celt_haar1(X, N_B, blocks); - } - - for (k = 0; k < recombine; k++) { - cm = ff_celt_bit_deinterleave[cm]; - celt_haar1(X, N0>>k, 1<<k); - } - blocks <<= recombine; - - /* Scale output for later folding */ - if (lowband_out) { - int j; - float n = sqrtf(N0); - for (j = 0; j < N0; j++) - lowband_out[j] = n * X[j]; - } - cm = av_mod_uintp2(cm, blocks); - } - return cm; -} - static void celt_denormalize(CeltContext *s, CeltFrame *frame, float *data) { int i, j; @@ -1562,18 +757,17 @@ static void celt_decode_bands(CeltContext *s, OpusRangeCoder *rc) } if (s->dualstereo) { - cm[0] = celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks, - effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration, - norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]); + cm[0] = ff_celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks, + effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration, + norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]); - cm[1] = celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks, - effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration, - norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]); + cm[1] = ff_celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks, + effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration, + norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]); } else { - cm[0] = celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks, - effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration, - norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]); - + cm[0] = ff_celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks, + effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration, + norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]); cm[1] = cm[0]; } |