aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/opus_celt.c
diff options
context:
space:
mode:
authorAnton Khirnov <anton@khirnov.net>2014-04-17 12:51:03 +0200
committerAnton Khirnov <anton@khirnov.net>2014-05-15 06:49:34 +0200
commitb70d7a4ac72d23f3448f3b08b770fdf5f57de222 (patch)
tree5227a8698a1499744632d0c029d91200f5007520 /libavcodec/opus_celt.c
parent7e90133f6420b1c53652f972b9561600822881ee (diff)
downloadffmpeg-b70d7a4ac72d23f3448f3b08b770fdf5f57de222.tar.gz
lavc: add a native Opus decoder.
Initial implementation by Andrew D'Addesio <modchipv12@gmail.com> during GSoC 2012. Completion by Anton Khirnov <anton@khirnov.net>, sponsored by the Mozilla Corporation. Further contributions by: Christophe Gisquet <christophe.gisquet@gmail.com> Janne Grunau <janne-libav@jannau.net> Luca Barbato <lu_zero@gentoo.org>
Diffstat (limited to 'libavcodec/opus_celt.c')
-rw-r--r--libavcodec/opus_celt.c2220
1 files changed, 2220 insertions, 0 deletions
diff --git a/libavcodec/opus_celt.c b/libavcodec/opus_celt.c
new file mode 100644
index 0000000000..6757136a9c
--- /dev/null
+++ b/libavcodec/opus_celt.c
@@ -0,0 +1,2220 @@
+/*
+ * Copyright (c) 2012 Andrew D'Addesio
+ * Copyright (c) 2013-2014 Mozilla Corporation
+ *
+ * This file is part of Libav.
+ *
+ * Libav is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * Libav is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with Libav; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * Opus CELT decoder
+ */
+
+#include <stdint.h>
+
+#include "libavutil/float_dsp.h"
+
+#include "opus.h"
+
+enum CeltSpread {
+ CELT_SPREAD_NONE,
+ CELT_SPREAD_LIGHT,
+ CELT_SPREAD_NORMAL,
+ CELT_SPREAD_AGGRESSIVE
+};
+
+typedef struct CeltFrame {
+ float energy[CELT_MAX_BANDS];
+ float prev_energy[2][CELT_MAX_BANDS];
+
+ uint8_t collapse_masks[CELT_MAX_BANDS];
+
+ /* buffer for mdct output + postfilter */
+ DECLARE_ALIGNED(32, float, buf)[2048];
+
+ /* postfilter parameters */
+ int pf_period_new;
+ float pf_gains_new[3];
+ int pf_period;
+ float pf_gains[3];
+ int pf_period_old;
+ float pf_gains_old[3];
+
+ float deemph_coeff;
+} CeltFrame;
+
+struct CeltContext {
+ // constant values that do not change during context lifetime
+ AVCodecContext *avctx;
+ CeltIMDCTContext *imdct[4];
+ AVFloatDSPContext dsp;
+ int output_channels;
+
+ // values that have inter-frame effect and must be reset on flush
+ CeltFrame frame[2];
+ uint32_t seed;
+ int flushed;
+
+ // values that only affect a single frame
+ int coded_channels;
+ int framebits;
+ int duration;
+
+ /* number of iMDCT blocks in the frame */
+ int blocks;
+ /* size of each block */
+ int blocksize;
+
+ int startband;
+ int endband;
+ int codedbands;
+
+ int anticollapse_bit;
+
+ int intensitystereo;
+ int dualstereo;
+ enum CeltSpread spread;
+
+ int remaining;
+ int remaining2;
+ int fine_bits [CELT_MAX_BANDS];
+ int fine_priority[CELT_MAX_BANDS];
+ int pulses [CELT_MAX_BANDS];
+ int tf_change [CELT_MAX_BANDS];
+
+ DECLARE_ALIGNED(32, float, coeffs)[2][CELT_MAX_FRAME_SIZE];
+ DECLARE_ALIGNED(32, float, scratch)[22 * 8]; // MAX(celt_freq_range) * 1<<CELT_MAX_LOG_BLOCKS
+};
+
+static const uint16_t celt_model_tapset[] = { 4, 2, 3, 4 };
+
+static const uint16_t celt_model_spread[] = { 32, 7, 9, 30, 32 };
+
+static const uint16_t celt_model_alloc_trim[] = {
+ 128, 2, 4, 9, 19, 41, 87, 109, 119, 124, 126, 128
+};
+
+static const uint16_t celt_model_energy_small[] = { 4, 2, 3, 4 };
+
+static const uint8_t celt_freq_bands[] = { /* in steps of 200Hz */
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 34, 40, 48, 60, 78, 100
+};
+
+static const uint8_t celt_freq_range[] = {
+ 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 6, 6, 8, 12, 18, 22
+};
+
+static const uint8_t celt_log_freq_range[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 16, 16, 16, 21, 21, 24, 29, 34, 36
+};
+
+static const int8_t celt_tf_select[4][2][2][2] = {
+ { { { 0, -1 }, { 0, -1 } }, { { 0, -1 }, { 0, -1 } } },
+ { { { 0, -1 }, { 0, -2 } }, { { 1, 0 }, { 1, -1 } } },
+ { { { 0, -2 }, { 0, -3 } }, { { 2, 0 }, { 1, -1 } } },
+ { { { 0, -2 }, { 0, -3 } }, { { 3, 0 }, { 1, -1 } } }
+};
+
+static const float celt_mean_energy[] = {
+ 6.437500f, 6.250000f, 5.750000f, 5.312500f, 5.062500f,
+ 4.812500f, 4.500000f, 4.375000f, 4.875000f, 4.687500f,
+ 4.562500f, 4.437500f, 4.875000f, 4.625000f, 4.312500f,
+ 4.500000f, 4.375000f, 4.625000f, 4.750000f, 4.437500f,
+ 3.750000f, 3.750000f, 3.750000f, 3.750000f, 3.750000f
+};
+
+static const float celt_alpha_coef[] = {
+ 29440.0f/32768.0f, 26112.0f/32768.0f, 21248.0f/32768.0f, 16384.0f/32768.0f
+};
+
+static const float celt_beta_coef[] = { /* TODO: precompute 1 minus this if the code ends up neater */
+ 30147.0f/32768.0f, 22282.0f/32768.0f, 12124.0f/32768.0f, 6554.0f/32768.0f
+};
+
+static const uint8_t celt_coarse_energy_dist[4][2][42] = {
+ {
+ { // 120-sample inter
+ 72, 127, 65, 129, 66, 128, 65, 128, 64, 128, 62, 128, 64, 128,
+ 64, 128, 92, 78, 92, 79, 92, 78, 90, 79, 116, 41, 115, 40,
+ 114, 40, 132, 26, 132, 26, 145, 17, 161, 12, 176, 10, 177, 11
+ }, { // 120-sample intra
+ 24, 179, 48, 138, 54, 135, 54, 132, 53, 134, 56, 133, 55, 132,
+ 55, 132, 61, 114, 70, 96, 74, 88, 75, 88, 87, 74, 89, 66,
+ 91, 67, 100, 59, 108, 50, 120, 40, 122, 37, 97, 43, 78, 50
+ }
+ }, {
+ { // 240-sample inter
+ 83, 78, 84, 81, 88, 75, 86, 74, 87, 71, 90, 73, 93, 74,
+ 93, 74, 109, 40, 114, 36, 117, 34, 117, 34, 143, 17, 145, 18,
+ 146, 19, 162, 12, 165, 10, 178, 7, 189, 6, 190, 8, 177, 9
+ }, { // 240-sample intra
+ 23, 178, 54, 115, 63, 102, 66, 98, 69, 99, 74, 89, 71, 91,
+ 73, 91, 78, 89, 86, 80, 92, 66, 93, 64, 102, 59, 103, 60,
+ 104, 60, 117, 52, 123, 44, 138, 35, 133, 31, 97, 38, 77, 45
+ }
+ }, {
+ { // 480-sample inter
+ 61, 90, 93, 60, 105, 42, 107, 41, 110, 45, 116, 38, 113, 38,
+ 112, 38, 124, 26, 132, 27, 136, 19, 140, 20, 155, 14, 159, 16,
+ 158, 18, 170, 13, 177, 10, 187, 8, 192, 6, 175, 9, 159, 10
+ }, { // 480-sample intra
+ 21, 178, 59, 110, 71, 86, 75, 85, 84, 83, 91, 66, 88, 73,
+ 87, 72, 92, 75, 98, 72, 105, 58, 107, 54, 115, 52, 114, 55,
+ 112, 56, 129, 51, 132, 40, 150, 33, 140, 29, 98, 35, 77, 42
+ }
+ }, {
+ { // 960-sample inter
+ 42, 121, 96, 66, 108, 43, 111, 40, 117, 44, 123, 32, 120, 36,
+ 119, 33, 127, 33, 134, 34, 139, 21, 147, 23, 152, 20, 158, 25,
+ 154, 26, 166, 21, 173, 16, 184, 13, 184, 10, 150, 13, 139, 15
+ }, { // 960-sample intra
+ 22, 178, 63, 114, 74, 82, 84, 83, 92, 82, 103, 62, 96, 72,
+ 96, 67, 101, 73, 107, 72, 113, 55, 118, 52, 125, 52, 118, 52,
+ 117, 55, 135, 49, 137, 39, 157, 32, 145, 29, 97, 33, 77, 40
+ }
+ }
+};
+
+static const uint8_t celt_static_alloc[11][21] = { /* 1/32 bit/sample */
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+ { 90, 80, 75, 69, 63, 56, 49, 40, 34, 29, 20, 18, 10, 0, 0, 0, 0, 0, 0, 0, 0 },
+ { 110, 100, 90, 84, 78, 71, 65, 58, 51, 45, 39, 32, 26, 20, 12, 0, 0, 0, 0, 0, 0 },
+ { 118, 110, 103, 93, 86, 80, 75, 70, 65, 59, 53, 47, 40, 31, 23, 15, 4, 0, 0, 0, 0 },
+ { 126, 119, 112, 104, 95, 89, 83, 78, 72, 66, 60, 54, 47, 39, 32, 25, 17, 12, 1, 0, 0 },
+ { 134, 127, 120, 114, 103, 97, 91, 85, 78, 72, 66, 60, 54, 47, 41, 35, 29, 23, 16, 10, 1 },
+ { 144, 137, 130, 124, 113, 107, 101, 95, 88, 82, 76, 70, 64, 57, 51, 45, 39, 33, 26, 15, 1 },
+ { 152, 145, 138, 132, 123, 117, 111, 105, 98, 92, 86, 80, 74, 67, 61, 55, 49, 43, 36, 20, 1 },
+ { 162, 155, 148, 142, 133, 127, 121, 115, 108, 102, 96, 90, 84, 77, 71, 65, 59, 53, 46, 30, 1 },
+ { 172, 165, 158, 152, 143, 137, 131, 125, 118, 112, 106, 100, 94, 87, 81, 75, 69, 63, 56, 45, 20 },
+ { 200, 200, 200, 200, 200, 200, 200, 200, 198, 193, 188, 183, 178, 173, 168, 163, 158, 153, 148, 129, 104 }
+};
+
+static const uint8_t celt_static_caps[4][2][21] = {
+ { // 120-sample
+ {224, 224, 224, 224, 224, 224, 224, 224, 160, 160,
+ 160, 160, 185, 185, 185, 178, 178, 168, 134, 61, 37},
+ {224, 224, 224, 224, 224, 224, 224, 224, 240, 240,
+ 240, 240, 207, 207, 207, 198, 198, 183, 144, 66, 40},
+ }, { // 240-sample
+ {160, 160, 160, 160, 160, 160, 160, 160, 185, 185,
+ 185, 185, 193, 193, 193, 183, 183, 172, 138, 64, 38},
+ {240, 240, 240, 240, 240, 240, 240, 240, 207, 207,
+ 207, 207, 204, 204, 204, 193, 193, 180, 143, 66, 40},
+ }, { // 480-sample
+ {185, 185, 185, 185, 185, 185, 185, 185, 193, 193,
+ 193, 193, 193, 193, 193, 183, 183, 172, 138, 65, 39},
+ {207, 207, 207, 207, 207, 207, 207, 207, 204, 204,
+ 204, 204, 201, 201, 201, 188, 188, 176, 141, 66, 40},
+ }, { // 960-sample
+ {193, 193, 193, 193, 193, 193, 193, 193, 193, 193,
+ 193, 193, 194, 194, 194, 184, 184, 173, 139, 65, 39},
+ {204, 204, 204, 204, 204, 204, 204, 204, 201, 201,
+ 201, 201, 198, 198, 198, 187, 187, 175, 140, 66, 40}
+ }
+};
+
+static const uint8_t celt_cache_bits[392] = {
+ 40, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 40, 15, 23, 28,
+ 31, 34, 36, 38, 39, 41, 42, 43, 44, 45, 46, 47, 47, 49, 50,
+ 51, 52, 53, 54, 55, 55, 57, 58, 59, 60, 61, 62, 63, 63, 65,
+ 66, 67, 68, 69, 70, 71, 71, 40, 20, 33, 41, 48, 53, 57, 61,
+ 64, 66, 69, 71, 73, 75, 76, 78, 80, 82, 85, 87, 89, 91, 92,
+ 94, 96, 98, 101, 103, 105, 107, 108, 110, 112, 114, 117, 119, 121, 123,
+ 124, 126, 128, 40, 23, 39, 51, 60, 67, 73, 79, 83, 87, 91, 94,
+ 97, 100, 102, 105, 107, 111, 115, 118, 121, 124, 126, 129, 131, 135, 139,
+ 142, 145, 148, 150, 153, 155, 159, 163, 166, 169, 172, 174, 177, 179, 35,
+ 28, 49, 65, 78, 89, 99, 107, 114, 120, 126, 132, 136, 141, 145, 149,
+ 153, 159, 165, 171, 176, 180, 185, 189, 192, 199, 205, 211, 216, 220, 225,
+ 229, 232, 239, 245, 251, 21, 33, 58, 79, 97, 112, 125, 137, 148, 157,
+ 166, 174, 182, 189, 195, 201, 207, 217, 227, 235, 243, 251, 17, 35, 63,
+ 86, 106, 123, 139, 152, 165, 177, 187, 197, 206, 214, 222, 230, 237, 250,
+ 25, 31, 55, 75, 91, 105, 117, 128, 138, 146, 154, 161, 168, 174, 180,
+ 185, 190, 200, 208, 215, 222, 229, 235, 240, 245, 255, 16, 36, 65, 89,
+ 110, 128, 144, 159, 173, 185, 196, 207, 217, 226, 234, 242, 250, 11, 41,
+ 74, 103, 128, 151, 172, 191, 209, 225, 241, 255, 9, 43, 79, 110, 138,
+ 163, 186, 207, 227, 246, 12, 39, 71, 99, 123, 144, 164, 182, 198, 214,
+ 228, 241, 253, 9, 44, 81, 113, 142, 168, 192, 214, 235, 255, 7, 49,
+ 90, 127, 160, 191, 220, 247, 6, 51, 95, 134, 170, 203, 234, 7, 47,
+ 87, 123, 155, 184, 212, 237, 6, 52, 97, 137, 174, 208, 240, 5, 57,
+ 106, 151, 192, 231, 5, 59, 111, 158, 202, 243, 5, 55, 103, 147, 187,
+ 224, 5, 60, 113, 161, 206, 248, 4, 65, 122, 175, 224, 4, 67, 127,
+ 182, 234
+};
+
+static const int16_t celt_cache_index[105] = {
+ -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 41, 41, 41,
+ 82, 82, 123, 164, 200, 222, 0, 0, 0, 0, 0, 0, 0, 0, 41,
+ 41, 41, 41, 123, 123, 123, 164, 164, 240, 266, 283, 295, 41, 41, 41,
+ 41, 41, 41, 41, 41, 123, 123, 123, 123, 240, 240, 240, 266, 266, 305,
+ 318, 328, 336, 123, 123, 123, 123, 123, 123, 123, 123, 240, 240, 240, 240,
+ 305, 305, 305, 318, 318, 343, 351, 358, 364, 240, 240, 240, 240, 240, 240,
+ 240, 240, 305, 305, 305, 305, 343, 343, 343, 351, 351, 370, 376, 382, 387,
+};
+
+static const uint8_t celt_log2_frac[] = {
+ 0, 8, 13, 16, 19, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 32, 33, 34, 34, 35, 36, 36, 37, 37
+};
+
+static const uint8_t celt_bit_interleave[] = {
+ 0, 1, 1, 1, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3
+};
+
+static const uint8_t celt_bit_deinterleave[] = {
+ 0x00, 0x03, 0x0C, 0x0F, 0x30, 0x33, 0x3C, 0x3F,
+ 0xC0, 0xC3, 0xCC, 0xCF, 0xF0, 0xF3, 0xFC, 0xFF
+};
+
+static const uint8_t celt_hadamard_ordery[] = {
+ 1, 0,
+ 3, 0, 2, 1,
+ 7, 0, 4, 3, 6, 1, 5, 2,
+ 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5
+};
+
+static const uint16_t celt_qn_exp2[] = {
+ 16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048
+};
+
+static const uint32_t celt_pvq_u[1272] = {
+ /* N = 0, K = 0...176 */
+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ /* N = 1, K = 1...176 */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ /* N = 2, K = 2...176 */
+ 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
+ 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,
+ 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113,
+ 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143,
+ 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173,
+ 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203,
+ 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233,
+ 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263,
+ 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293,
+ 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323,
+ 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351,
+ /* N = 3, K = 3...176 */
+ 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613,
+ 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861,
+ 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785,
+ 3961, 4141, 4325, 4513, 4705, 4901, 5101, 5305, 5513, 5725, 5941, 6161, 6385,
+ 6613, 6845, 7081, 7321, 7565, 7813, 8065, 8321, 8581, 8845, 9113, 9385, 9661,
+ 9941, 10225, 10513, 10805, 11101, 11401, 11705, 12013, 12325, 12641, 12961,
+ 13285, 13613, 13945, 14281, 14621, 14965, 15313, 15665, 16021, 16381, 16745,
+ 17113, 17485, 17861, 18241, 18625, 19013, 19405, 19801, 20201, 20605, 21013,
+ 21425, 21841, 22261, 22685, 23113, 23545, 23981, 24421, 24865, 25313, 25765,
+ 26221, 26681, 27145, 27613, 28085, 28561, 29041, 29525, 30013, 30505, 31001,
+ 31501, 32005, 32513, 33025, 33541, 34061, 34585, 35113, 35645, 36181, 36721,
+ 37265, 37813, 38365, 38921, 39481, 40045, 40613, 41185, 41761, 42341, 42925,
+ 43513, 44105, 44701, 45301, 45905, 46513, 47125, 47741, 48361, 48985, 49613,
+ 50245, 50881, 51521, 52165, 52813, 53465, 54121, 54781, 55445, 56113, 56785,
+ 57461, 58141, 58825, 59513, 60205, 60901, 61601,
+ /* N = 4, K = 4...176 */
+ 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017,
+ 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775,
+ 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153,
+ 82239, 88641, 95367, 102425, 109823, 117569, 125671, 134137, 142975, 152193,
+ 161799, 171801, 182207, 193025, 204263, 215929, 228031, 240577, 253575,
+ 267033, 280959, 295361, 310247, 325625, 341503, 357889, 374791, 392217,
+ 410175, 428673, 447719, 467321, 487487, 508225, 529543, 551449, 573951,
+ 597057, 620775, 645113, 670079, 695681, 721927, 748825, 776383, 804609,
+ 833511, 863097, 893375, 924353, 956039, 988441, 1021567, 1055425, 1090023,
+ 1125369, 1161471, 1198337, 1235975, 1274393, 1313599, 1353601, 1394407,
+ 1436025, 1478463, 1521729, 1565831, 1610777, 1656575, 1703233, 1750759,
+ 1799161, 1848447, 1898625, 1949703, 2001689, 2054591, 2108417, 2163175,
+ 2218873, 2275519, 2333121, 2391687, 2451225, 2511743, 2573249, 2635751,
+ 2699257, 2763775, 2829313, 2895879, 2963481, 3032127, 3101825, 3172583,
+ 3244409, 3317311, 3391297, 3466375, 3542553, 3619839, 3698241, 3777767,
+ 3858425, 3940223, 4023169, 4107271, 4192537, 4278975, 4366593, 4455399,
+ 4545401, 4636607, 4729025, 4822663, 4917529, 5013631, 5110977, 5209575,
+ 5309433, 5410559, 5512961, 5616647, 5721625, 5827903, 5935489, 6044391,
+ 6154617, 6266175, 6379073, 6493319, 6608921, 6725887, 6844225, 6963943,
+ 7085049, 7207551,
+ /* N = 5, K = 5...176 */
+ 321, 681, 1289, 2241, 3649, 5641, 8361, 11969, 16641, 22569, 29961, 39041,
+ 50049, 63241, 78889, 97281, 118721, 143529, 172041, 204609, 241601, 283401,
+ 330409, 383041, 441729, 506921, 579081, 658689, 746241, 842249, 947241,
+ 1061761, 1186369, 1321641, 1468169, 1626561, 1797441, 1981449, 2179241,
+ 2391489, 2618881, 2862121, 3121929, 3399041, 3694209, 4008201, 4341801,
+ 4695809, 5071041, 5468329, 5888521, 6332481, 6801089, 7295241, 7815849,
+ 8363841, 8940161, 9545769, 10181641, 10848769, 11548161, 12280841, 13047849,
+ 13850241, 14689089, 15565481, 16480521, 17435329, 18431041, 19468809,
+ 20549801, 21675201, 22846209, 24064041, 25329929, 26645121, 28010881,
+ 29428489, 30899241, 32424449, 34005441, 35643561, 37340169, 39096641,
+ 40914369, 42794761, 44739241, 46749249, 48826241, 50971689, 53187081,
+ 55473921, 57833729, 60268041, 62778409, 65366401, 68033601, 70781609,
+ 73612041, 76526529, 79526721, 82614281, 85790889, 89058241, 92418049,
+ 95872041, 99421961, 103069569, 106816641, 110664969, 114616361, 118672641,
+ 122835649, 127107241, 131489289, 135983681, 140592321, 145317129, 150160041,
+ 155123009, 160208001, 165417001, 170752009, 176215041, 181808129, 187533321,
+ 193392681, 199388289, 205522241, 211796649, 218213641, 224775361, 231483969,
+ 238341641, 245350569, 252512961, 259831041, 267307049, 274943241, 282741889,
+ 290705281, 298835721, 307135529, 315607041, 324252609, 333074601, 342075401,
+ 351257409, 360623041, 370174729, 379914921, 389846081, 399970689, 410291241,
+ 420810249, 431530241, 442453761, 453583369, 464921641, 476471169, 488234561,
+ 500214441, 512413449, 524834241, 537479489, 550351881, 563454121, 576788929,
+ 590359041, 604167209, 618216201, 632508801,
+ /* N = 6, K = 6...96 (technically V(109,5) fits in 32 bits, but that can't be
+ achieved by splitting an Opus band) */
+ 1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047,
+ 335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409,
+ 2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793,
+ 11326283, 13115773, 15124775, 17372905, 19880915, 22670725, 25765455,
+ 29189457, 32968347, 37129037, 41699767, 46710137, 52191139, 58175189,
+ 64696159, 71789409, 79491819, 87841821, 96879431, 106646281, 117185651,
+ 128542501, 140763503, 153897073, 167993403, 183104493, 199284183, 216588185,
+ 235074115, 254801525, 275831935, 298228865, 322057867, 347386557, 374284647,
+ 402823977, 433078547, 465124549, 499040399, 534906769, 572806619, 612825229,
+ 655050231, 699571641, 746481891, 795875861, 847850911, 902506913, 959946283,
+ 1020274013, 1083597703, 1150027593, 1219676595, 1292660325, 1369097135,
+ 1449108145, 1532817275, 1620351277, 1711839767, 1807415257, 1907213187,
+ 2011371957, 2120032959,
+ /* N = 7, K = 7...54 (technically V(60,6) fits in 32 bits, but that can't be
+ achieved by splitting an Opus band) */
+ 8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777,
+ 1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233,
+ 19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013,
+ 88043969, 106114625, 127178701, 151620757, 179861305, 212358985, 249612805,
+ 292164445, 340600625, 395555537, 457713341, 527810725, 606639529, 695049433,
+ 793950709, 904317037, 1027188385, 1163673953, 1314955181, 1482288821,
+ 1667010073, 1870535785, 2094367717,
+ /* N = 8, K = 8...37 (technically V(40,7) fits in 32 bits, but that can't be
+ achieved by splitting an Opus band) */
+ 48639, 108545, 224143, 433905, 795455, 1392065, 2340495, 3800305, 5984767,
+ 9173505, 13726991, 20103025, 28875327, 40754369, 56610575, 77500017,
+ 104692735, 139703809, 184327311, 240673265, 311207743, 398796225, 506750351,
+ 638878193, 799538175, 993696769, 1226990095, 1505789553, 1837271615,
+ 2229491905,
+ /* N = 9, K = 9...28 (technically V(29,8) fits in 32 bits, but that can't be
+ achieved by splitting an Opus band) */
+ 265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777,
+ 39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145,
+ 628496897, 872893441, 1196924561, 1621925137, 2173806145,
+ /* N = 10, K = 10...24 */
+ 1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073,
+ 254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629,
+ 3375210671,
+ /* N = 11, K = 11...19 (technically V(20,10) fits in 32 bits, but that can't be
+ achieved by splitting an Opus band) */
+ 8097453, 18474633, 39753273, 81270333, 158819253, 298199265, 540279585,
+ 948062325, 1616336765,
+ /* N = 12, K = 12...18 */
+ 45046719, 103274625, 224298231, 464387817, 921406335, 1759885185,
+ 3248227095,
+ /* N = 13, K = 13...16 */
+ 251595969, 579168825, 1267854873, 2653649025,
+ /* N = 14, K = 14 */
+ 1409933619
+};
+
+DECLARE_ALIGNED(32, static const float, celt_window)[120] = {
+ 6.7286966e-05f, 0.00060551348f, 0.0016815970f, 0.0032947962f, 0.0054439943f,
+ 0.0081276923f, 0.011344001f, 0.015090633f, 0.019364886f, 0.024163635f,
+ 0.029483315f, 0.035319905f, 0.041668911f, 0.048525347f, 0.055883718f,
+ 0.063737999f, 0.072081616f, 0.080907428f, 0.090207705f, 0.099974111f,
+ 0.11019769f, 0.12086883f, 0.13197729f, 0.14351214f, 0.15546177f,
+ 0.16781389f, 0.18055550f, 0.19367290f, 0.20715171f, 0.22097682f,
+ 0.23513243f, 0.24960208f, 0.26436860f, 0.27941419f, 0.29472040f,
+ 0.31026818f, 0.32603788f, 0.34200931f, 0.35816177f, 0.37447407f,
+ 0.39092462f, 0.40749142f, 0.42415215f, 0.44088423f, 0.45766484f,
+ 0.47447104f, 0.49127978f, 0.50806798f, 0.52481261f, 0.54149077f,
+ 0.55807973f, 0.57455701f, 0.59090049f, 0.60708841f, 0.62309951f,
+ 0.63891306f, 0.65450896f, 0.66986776f, 0.68497077f, 0.69980010f,
+ 0.71433873f, 0.72857055f, 0.74248043f, 0.75605424f, 0.76927895f,
+ 0.78214257f, 0.79463430f, 0.80674445f, 0.81846456f, 0.82978733f,
+ 0.84070669f, 0.85121779f, 0.86131698f, 0.87100183f, 0.88027111f,
+ 0.88912479f, 0.89756398f, 0.90559094f, 0.91320904f, 0.92042270f,
+ 0.92723738f, 0.93365955f, 0.93969656f, 0.94535671f, 0.95064907f,
+ 0.95558353f, 0.96017067f, 0.96442171f, 0.96834849f, 0.97196334f,
+ 0.97527906f, 0.97830883f, 0.98106616f, 0.98356480f, 0.98581869f,
+ 0.98784191f, 0.98964856f, 0.99125274f, 0.99266849f, 0.99390969f,
+ 0.99499004f, 0.99592297f, 0.99672162f, 0.99739874f, 0.99796667f,
+ 0.99843728f, 0.99882195f, 0.99913147f, 0.99937606f, 0.99956527f,
+ 0.99970802f, 0.99981248f, 0.99988613f, 0.99993565f, 0.99996697f,
+ 0.99998518f, 0.99999457f, 0.99999859f, 0.99999982f, 1.0000000f,
+};
+
+/* square of the window, used for the postfilter */
+const float ff_celt_window2[120] = {
+ 4.5275357e-09f, 3.66647e-07f, 2.82777e-06f, 1.08557e-05f, 2.96371e-05f, 6.60594e-05f,
+ 0.000128686f, 0.000227727f, 0.000374999f, 0.000583881f, 0.000869266f, 0.0012475f,
+ 0.0017363f, 0.00235471f, 0.00312299f, 0.00406253f, 0.00519576f, 0.00654601f,
+ 0.00813743f, 0.00999482f, 0.0121435f, 0.0146093f, 0.017418f, 0.0205957f, 0.0241684f,
+ 0.0281615f, 0.0326003f, 0.0375092f, 0.0429118f, 0.0488308f, 0.0552873f, 0.0623012f,
+ 0.0698908f, 0.0780723f, 0.0868601f, 0.0962664f, 0.106301f, 0.11697f, 0.12828f,
+ 0.140231f, 0.152822f, 0.166049f, 0.179905f, 0.194379f, 0.209457f, 0.225123f, 0.241356f,
+ 0.258133f, 0.275428f, 0.293212f, 0.311453f, 0.330116f, 0.349163f, 0.368556f, 0.388253f,
+ 0.40821f, 0.428382f, 0.448723f, 0.469185f, 0.48972f, 0.51028f, 0.530815f, 0.551277f,
+ 0.571618f, 0.59179f, 0.611747f, 0.631444f, 0.650837f, 0.669884f, 0.688547f, 0.706788f,
+ 0.724572f, 0.741867f, 0.758644f, 0.774877f, 0.790543f, 0.805621f, 0.820095f, 0.833951f,
+ 0.847178f, 0.859769f, 0.87172f, 0.88303f, 0.893699f, 0.903734f, 0.91314f, 0.921928f,
+ 0.930109f, 0.937699f, 0.944713f, 0.951169f, 0.957088f, 0.962491f, 0.9674f, 0.971838f,
+ 0.975832f, 0.979404f, 0.982582f, 0.985391f, 0.987857f, 0.990005f, 0.991863f, 0.993454f,
+ 0.994804f, 0.995937f, 0.996877f, 0.997645f, 0.998264f, 0.998753f, 0.999131f, 0.999416f,
+ 0.999625f, 0.999772f, 0.999871f, 0.999934f, 0.99997f, 0.999989f, 0.999997f, 0.99999964f, 1.0f,
+};
+
+static const uint32_t * const celt_pvq_u_row[15] = {
+ celt_pvq_u + 0, celt_pvq_u + 176, celt_pvq_u + 351,
+ celt_pvq_u + 525, celt_pvq_u + 698, celt_pvq_u + 870,
+ celt_pvq_u + 1041, celt_pvq_u + 1131, celt_pvq_u + 1178,
+ celt_pvq_u + 1207, celt_pvq_u + 1226, celt_pvq_u + 1240,
+ celt_pvq_u + 1248, celt_pvq_u + 1254, celt_pvq_u + 1257
+};
+
+static inline int16_t celt_cos(int16_t x)
+{
+ x = (MUL16(x, x) + 4096) >> 13;
+ x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
+ return 1+x;
+}
+
+static inline int celt_log2tan(int isin, int icos)
+{
+ int lc, ls;
+ lc = opus_ilog(icos);
+ ls = opus_ilog(isin);
+ icos <<= 15 - lc;
+ isin <<= 15 - ls;
+ return (ls << 11) - (lc << 11) +
+ ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
+ ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
+}
+
+static inline uint32_t celt_rng(CeltContext *s)
+{
+ s->seed = 1664525 * s->seed + 1013904223;
+ return s->seed;
+}
+
+static void celt_decode_coarse_energy(CeltContext *s, OpusRangeCoder *rc)
+{
+ int i, j;
+ float prev[2] = {0};
+ float alpha, beta;
+ const uint8_t *model;
+
+ /* use the 2D z-transform to apply prediction in both */
+ /* the time domain (alpha) and the frequency domain (beta) */
+
+ if (opus_rc_tell(rc)+3 <= s->framebits && opus_rc_p2model(rc, 3)) {
+ /* intra frame */
+ alpha = 0;
+ beta = 1.0f - 4915.0f/32768.0f;
+ model = celt_coarse_energy_dist[s->duration][1];
+ } else {
+ alpha = celt_alpha_coef[s->duration];
+ beta = 1.0f - celt_beta_coef[s->duration];
+ model = celt_coarse_energy_dist[s->duration][0];
+ }
+
+ for (i = 0; i < CELT_MAX_BANDS; i++) {
+ for (j = 0; j < s->coded_channels; j++) {
+ CeltFrame *frame = &s->frame[j];
+ float value;
+ int available;
+
+ if (i < s->startband || i >= s->endband) {
+ frame->energy[i] = 0.0;
+ continue;
+ }
+
+ available = s->framebits - opus_rc_tell(rc);
+ if (available >= 15) {
+ /* decode using a Laplace distribution */
+ int k = FFMIN(i, 20) << 1;
+ value = opus_rc_laplace(rc, model[k] << 7, model[k+1] << 6);
+ } else if (available >= 2) {
+ int x = opus_rc_getsymbol(rc, celt_model_energy_small);
+ value = (x>>1) ^ -(x&1);
+ } else if (available >= 1) {
+ value = -(float)opus_rc_p2model(rc, 1);
+ } else value = -1;
+
+ frame->energy[i] = FFMAX(-9.0f, frame->energy[i]) * alpha + prev[j] + value;
+ prev[j] += beta * value;
+ }
+ }
+}
+
+static void celt_decode_fine_energy(CeltContext *s, OpusRangeCoder *rc)
+{
+ int i;
+ for (i = s->startband; i < s->endband; i++) {
+ int j;
+ if (!s->fine_bits[i])
+ continue;
+
+ for (j = 0; j < s->coded_channels; j++) {
+ CeltFrame *frame = &s->frame[j];
+ int q2;
+ float offset;
+ q2 = opus_getrawbits(rc, s->fine_bits[i]);
+ offset = (q2 + 0.5f) * (1 << (14 - s->fine_bits[i])) / 16384.0f - 0.5f;
+ frame->energy[i] += offset;
+ }
+ }
+}
+
+static void celt_decode_final_energy(CeltContext *s, OpusRangeCoder *rc,
+ int bits_left)
+{
+ int priority, i, j;
+
+ for (priority = 0; priority < 2; priority++) {
+ for (i = s->startband; i < s->endband && bits_left >= s->coded_channels; i++) {
+ if (s->fine_priority[i] != priority || s->fine_bits[i] >= CELT_MAX_FINE_BITS)
+ continue;
+
+ for (j = 0; j < s->coded_channels; j++) {
+ int q2;
+ float offset;
+ q2 = opus_getrawbits(rc, 1);
+ offset = (q2 - 0.5f) * (1 << (14 - s->fine_bits[i] - 1)) / 16384.0f;
+ s->frame[j].energy[i] += offset;
+ bits_left--;
+ }
+ }
+ }
+}
+
+static void celt_decode_tf_changes(CeltContext *s, OpusRangeCoder *rc,
+ int transient)
+{
+ int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit;
+ int consumed, bits = transient ? 2 : 4;
+
+ consumed = opus_rc_tell(rc);
+ tf_select_bit = (s->duration != 0 && consumed+bits+1 <= s->framebits);
+
+ for (i = s->startband; i < s->endband; i++) {
+ if (consumed+bits+tf_select_bit <= s->framebits) {
+ diff ^= opus_rc_p2model(rc, bits);
+ consumed = opus_rc_tell(rc);
+ tf_changed |= diff;
+ }
+ s->tf_change[i] = diff;
+ bits = transient ? 4 : 5;
+ }
+
+ if (tf_select_bit && celt_tf_select[s->duration][transient][0][tf_changed] !=
+ celt_tf_select[s->duration][transient][1][tf_changed])
+ tf_select = opus_rc_p2model(rc, 1);
+
+ for (i = s->startband; i < s->endband; i++) {
+ s->tf_change[i] = celt_tf_select[s->duration][transient][tf_select][s->tf_change[i]];
+ }
+}
+
+static void celt_decode_allocation(CeltContext *s, OpusRangeCoder *rc)
+{
+ // approx. maximum bit allocation for each band before boost/trim
+ int cap[CELT_MAX_BANDS];
+ int boost[CELT_MAX_BANDS];
+ int threshold[CELT_MAX_BANDS];
+ int bits1[CELT_MAX_BANDS];
+ int bits2[CELT_MAX_BANDS];
+ int trim_offset[CELT_MAX_BANDS];
+
+ int skip_startband = s->startband;
+ int dynalloc = 6;
+ int alloctrim = 5;
+ int extrabits = 0;
+
+ int skip_bit = 0;
+ int intensitystereo_bit = 0;
+ int dualstereo_bit = 0;
+
+ int remaining, bandbits;
+ int low, high, total, done;
+ int totalbits;
+ int consumed;
+ int i, j;
+
+ consumed = opus_rc_tell(rc);
+
+ /* obtain spread flag */
+ s->spread = CELT_SPREAD_NORMAL;
+ if (consumed + 4 <= s->framebits)
+ s->spread = opus_rc_getsymbol(rc, celt_model_spread);
+
+ /* generate static allocation caps */
+ for (i = 0; i < CELT_MAX_BANDS; i++) {
+ cap[i] = (celt_static_caps[s->duration][s->coded_channels - 1][i] + 64)
+ * celt_freq_range[i] << (s->coded_channels - 1) << s->duration >> 2;
+ }
+
+ /* obtain band boost */
+ totalbits = s->framebits << 3; // convert to 1/8 bits
+ consumed = opus_rc_tell_frac(rc);
+ for (i = s->startband; i < s->endband; i++) {
+ int quanta, band_dynalloc;
+
+ boost[i] = 0;
+
+ quanta = celt_freq_range[i] << (s->coded_channels - 1) << s->duration;
+ quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
+ band_dynalloc = dynalloc;
+ while (consumed + (band_dynalloc<<3) < totalbits && boost[i] < cap[i]) {
+ int add = opus_rc_p2model(rc, band_dynalloc);
+ consumed = opus_rc_tell_frac(rc);
+ if (!add)
+ break;
+
+ boost[i] += quanta;
+ totalbits -= quanta;
+ band_dynalloc = 1;
+ }
+ /* dynalloc is more likely to occur if it's already been used for earlier bands */
+ if (boost[i])
+ dynalloc = FFMAX(2, dynalloc - 1);
+ }
+
+ /* obtain allocation trim */
+ if (consumed + (6 << 3) <= totalbits)
+ alloctrim = opus_rc_getsymbol(rc, celt_model_alloc_trim);
+
+ /* anti-collapse bit reservation */
+ totalbits = (s->framebits << 3) - opus_rc_tell_frac(rc) - 1;
+ s->anticollapse_bit = 0;
+ if (s->blocks > 1 && s->duration >= 2 &&
+ totalbits >= ((s->duration + 2) << 3))
+ s->anticollapse_bit = 1 << 3;
+ totalbits -= s->anticollapse_bit;
+
+ /* band skip bit reservation */
+ if (totalbits >= 1 << 3)
+ skip_bit = 1 << 3;
+ totalbits -= skip_bit;
+
+ /* intensity/dual stereo bit reservation */
+ if (s->coded_channels == 2) {
+ intensitystereo_bit = celt_log2_frac[s->endband - s->startband];
+ if (intensitystereo_bit <= totalbits) {
+ totalbits -= intensitystereo_bit;
+ if (totalbits >= 1 << 3) {
+ dualstereo_bit = 1 << 3;
+ totalbits -= 1 << 3;
+ }
+ } else
+ intensitystereo_bit = 0;
+ }
+
+ for (i = s->startband; i < s->endband; i++) {
+ int trim = alloctrim - 5 - s->duration;
+ int band = celt_freq_range[i] * (s->endband - i - 1);
+ int duration = s->duration + 3;
+ int scale = duration + s->coded_channels - 1;
+
+ /* PVQ minimum allocation threshold, below this value the band is
+ * skipped */
+ threshold[i] = FFMAX(3 * celt_freq_range[i] << duration >> 4,
+ s->coded_channels << 3);
+
+ trim_offset[i] = trim * (band << scale) >> 6;
+
+ if (celt_freq_range[i] << s->duration == 1)
+ trim_offset[i] -= s->coded_channels << 3;
+ }
+
+ /* bisection */
+ low = 1;
+ high = CELT_VECTORS - 1;
+ while (low <= high) {
+ int center = (low + high) >> 1;
+ done = total = 0;
+
+ for (i = s->endband - 1; i >= s->startband; i--) {
+ bandbits = celt_freq_range[i] * celt_static_alloc[center][i]
+ << (s->coded_channels - 1) << s->duration >> 2;
+
+ if (bandbits)
+ bandbits = FFMAX(0, bandbits + trim_offset[i]);
+ bandbits += boost[i];
+
+ if (bandbits >= threshold[i] || done) {
+ done = 1;
+ total += FFMIN(bandbits, cap[i]);
+ } else if (bandbits >= s->coded_channels << 3)
+ total += s->coded_channels << 3;
+ }
+
+ if (total > totalbits)
+ high = center - 1;
+ else
+ low = center + 1;
+ }
+ high = low--;
+
+ for (i = s->startband; i < s->endband; i++) {
+ bits1[i] = celt_freq_range[i] * celt_static_alloc[low][i]
+ << (s->coded_channels - 1) << s->duration >> 2;
+ bits2[i] = high >= CELT_VECTORS ? cap[i] :
+ celt_freq_range[i] * celt_static_alloc[high][i]
+ << (s->coded_channels - 1) << s->duration >> 2;
+
+ if (bits1[i])
+ bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]);
+ if (bits2[i])
+ bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]);
+ if (low)
+ bits1[i] += boost[i];
+ bits2[i] += boost[i];
+
+ if (boost[i])
+ skip_startband = i;
+ bits2[i] = FFMAX(0, bits2[i] - bits1[i]);
+ }
+
+ /* bisection */
+ low = 0;
+ high = 1 << CELT_ALLOC_STEPS;
+ for (i = 0; i < CELT_ALLOC_STEPS; i++) {
+ int center = (low + high) >> 1;
+ done = total = 0;
+
+ for (j = s->endband - 1; j >= s->startband; j--) {
+ bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
+
+ if (bandbits >= threshold[j] || done) {
+ done = 1;
+ total += FFMIN(bandbits, cap[j]);
+ } else if (bandbits >= s->coded_channels << 3)
+ total += s->coded_channels << 3;
+ }
+ if (total > totalbits)
+ high = center;
+ else
+ low = center;
+ }
+
+ done = total = 0;
+ for (i = s->endband - 1; i >= s->startband; i--) {
+ bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
+
+ if (bandbits >= threshold[i] || done)
+ done = 1;
+ else
+ bandbits = (bandbits >= s->coded_channels << 3) ?
+ s->coded_channels << 3 : 0;
+
+ bandbits = FFMIN(bandbits, cap[i]);
+ s->pulses[i] = bandbits;
+ total += bandbits;
+ }
+
+ /* band skipping */
+ for (s->codedbands = s->endband; ; s->codedbands--) {
+ int allocation;
+ j = s->codedbands - 1;
+
+ if (j == skip_startband) {
+ /* all remaining bands are not skipped */
+ totalbits += skip_bit;
+ break;
+ }
+
+ /* determine the number of bits available for coding "do not skip" markers */
+ remaining = totalbits - total;
+ bandbits = remaining / (celt_freq_bands[j+1] - celt_freq_bands[s->startband]);
+ remaining -= bandbits * (celt_freq_bands[j+1] - celt_freq_bands[s->startband]);
+ allocation = s->pulses[j] + bandbits * celt_freq_range[j]
+ + FFMAX(0, remaining - (celt_freq_bands[j] - celt_freq_bands[s->startband]));
+
+ /* a "do not skip" marker is only coded if the allocation is
+ above the chosen threshold */
+ if (allocation >= FFMAX(threshold[j], (s->coded_channels + 1) <<3 )) {
+ if (opus_rc_p2model(rc, 1))
+ break;
+
+ total += 1 << 3;
+ allocation -= 1 << 3;
+ }
+
+ /* the band is skipped, so reclaim its bits */
+ total -= s->pulses[j];
+ if (intensitystereo_bit) {
+ total -= intensitystereo_bit;
+ intensitystereo_bit = celt_log2_frac[j - s->startband];
+ total += intensitystereo_bit;
+ }
+
+ total += s->pulses[j] = (allocation >= s->coded_channels << 3) ?
+ s->coded_channels << 3 : 0;
+ }
+
+ /* obtain stereo flags */
+ s->intensitystereo = 0;
+ s->dualstereo = 0;
+ if (intensitystereo_bit)
+ s->intensitystereo = s->startband +
+ opus_rc_unimodel(rc, s->codedbands + 1 - s->startband);
+ if (s->intensitystereo <= s->startband)
+ totalbits += dualstereo_bit; /* no intensity stereo means no dual stereo */
+ else if (dualstereo_bit)
+ s->dualstereo = opus_rc_p2model(rc, 1);
+
+ /* supply the remaining bits in this frame to lower bands */
+ remaining = totalbits - total;
+ bandbits = remaining / (celt_freq_bands[s->codedbands] - celt_freq_bands[s->startband]);
+ remaining -= bandbits * (celt_freq_bands[s->codedbands] - celt_freq_bands[s->startband]);
+ for (i = s->startband; i < s->codedbands; i++) {
+ int bits = FFMIN(remaining, celt_freq_range[i]);
+
+ s->pulses[i] += bits + bandbits * celt_freq_range[i];
+ remaining -= bits;
+ }
+
+ for (i = s->startband; i < s->codedbands; i++) {
+ int N = celt_freq_range[i] << s->duration;
+ int prev_extra = extrabits;
+ s->pulses[i] += extrabits;
+
+ if (N > 1) {
+ int dof; // degrees of freedom
+ int temp; // dof * channels * log(dof)
+ int offset; // fine energy quantization offset, i.e.
+ // extra bits assigned over the standard
+ // totalbits/dof
+ int fine_bits, max_bits;
+
+ extrabits = FFMAX(0, s->pulses[i] - cap[i]);
+ s->pulses[i] -= extrabits;
+
+ /* intensity stereo makes use of an extra degree of freedom */
+ dof = N * s->coded_channels
+ + (s->coded_channels == 2 && N > 2 && !s->dualstereo && i < s->intensitystereo);
+ temp = dof * (celt_log_freq_range[i] + (s->duration<<3));
+ offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
+ if (N == 2) /* dof=2 is the only case that doesn't fit the model */
+ offset += dof<<1;
+
+ /* grant an additional bias for the first and second pulses */
+ if (s->pulses[i] + offset < 2 * (dof << 3))
+ offset += temp >> 2;
+ else if (s->pulses[i] + offset < 3 * (dof << 3))
+ offset += temp >> 3;
+
+ fine_bits = (s->pulses[i] + offset + (dof << 2)) / (dof << 3);
+ max_bits = FFMIN((s->pulses[i]>>3) >> (s->coded_channels - 1),
+ CELT_MAX_FINE_BITS);
+
+ max_bits = FFMAX(max_bits, 0);
+
+ s->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
+
+ /* if fine_bits was rounded down or capped,
+ give priority for the final fine energy pass */
+ s->fine_priority[i] = (s->fine_bits[i] * (dof<<3) >= s->pulses[i] + offset);
+
+ /* the remaining bits are assigned to PVQ */
+ s->pulses[i] -= s->fine_bits[i] << (s->coded_channels - 1) << 3;
+ } else {
+ /* all bits go to fine energy except for the sign bit */
+ extrabits = FFMAX(0, s->pulses[i] - (s->coded_channels << 3));
+ s->pulses[i] -= extrabits;
+ s->fine_bits[i] = 0;
+ s->fine_priority[i] = 1;
+ }
+
+ /* hand back a limited number of extra fine energy bits to this band */
+ if (extrabits > 0) {
+ int fineextra = FFMIN(extrabits >> (s->coded_channels + 2),
+ CELT_MAX_FINE_BITS - s->fine_bits[i]);
+ s->fine_bits[i] += fineextra;
+
+ fineextra <<= s->coded_channels + 2;
+ s->fine_priority[i] = (fineextra >= extrabits - prev_extra);
+ extrabits -= fineextra;
+ }
+ }
+ s->remaining = extrabits;
+
+ /* skipped bands dedicate all of their bits for fine energy */
+ for (; i < s->endband; i++) {
+ s->fine_bits[i] = s->pulses[i] >> (s->coded_channels - 1) >> 3;
+ s->pulses[i] = 0;
+ s->fine_priority[i] = s->fine_bits[i] < 1;
+ }
+}
+
+static inline int celt_bits2pulses(const uint8_t *cache, int bits)
+{
+ // TODO: Find the size of cache and make it into an array in the parameters list
+ int i, low = 0, high;
+
+ high = cache[0];
+ bits--;
+
+ for (i = 0; i < 6; i++) {
+ int center = (low + high + 1) >> 1;
+ if (cache[center] >= bits)
+ high = center;
+ else
+ low = center;
+ }
+
+ return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
+}
+
+static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
+{
+ // TODO: Find the size of cache and make it into an array in the parameters list
+ return (pulses == 0) ? 0 : cache[pulses] + 1;
+}
+
+static inline void celt_normalize_residual(const int * restrict iy, float * restrict X,
+ int N, float g)
+{
+ int i;
+ for (i = 0; i < N; i++)
+ X[i] = g * iy[i];
+}
+
+static void celt_exp_rotation1(float *X, unsigned int len, unsigned int stride,
+ float c, float s)
+{
+ float *Xptr;
+ int i;
+
+ Xptr = X;
+ for (i = 0; i < len - stride; i++) {
+ float x1, x2;
+ x1 = Xptr[0];
+ x2 = Xptr[stride];
+ Xptr[stride] = c * x2 + s * x1;
+ *Xptr++ = c * x1 - s * x2;
+ }
+
+ Xptr = &X[len - 2 * stride - 1];
+ for (i = len - 2 * stride - 1; i >= 0; i--) {
+ float x1, x2;
+ x1 = Xptr[0];
+ x2 = Xptr[stride];
+ Xptr[stride] = c * x2 + s * x1;
+ *Xptr-- = c * x1 - s * x2;
+ }
+}
+
+static inline void celt_exp_rotation(float *X, unsigned int len,
+ unsigned int stride, unsigned int K,
+ enum CeltSpread spread)
+{
+ unsigned int stride2 = 0;
+ float c, s;
+ float gain, theta;
+ int i;
+
+ if (2*K >= len || spread == CELT_SPREAD_NONE)
+ return;
+
+ gain = (float)len / (len + (20 - 5*spread) * K);
+ theta = M_PI * gain * gain / 4;
+
+ c = cos(theta);
+ s = sin(theta);
+
+ if (len >= stride << 3) {
+ stride2 = 1;
+ /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
+ It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
+ while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
+ stride2++;
+ }
+
+ /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
+ extract_collapse_mask().*/
+ len /= stride;
+ for (i = 0; i < stride; i++) {
+ if (stride2)
+ celt_exp_rotation1(X + i * len, len, stride2, s, c);
+ celt_exp_rotation1(X + i * len, len, 1, c, s);
+ }
+}
+
+static inline unsigned int celt_extract_collapse_mask(const int *iy,
+ unsigned int N,
+ unsigned int B)
+{
+ unsigned int collapse_mask;
+ int N0;
+ int i, j;
+
+ if (B <= 1)
+ return 1;
+
+ /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
+ exp_rotation().*/
+ N0 = N/B;
+ collapse_mask = 0;
+ for (i = 0; i < B; i++)
+ for (j = 0; j < N0; j++)
+ collapse_mask |= (iy[i*N0+j]!=0)<<i;
+ return collapse_mask;
+}
+
+static inline void celt_renormalize_vector(float *X, int N, float gain)
+{
+ int i;
+ float g = 1e-15f;
+ for (i = 0; i < N; i++)
+ g += X[i] * X[i];
+ g = gain / sqrtf(g);
+
+ for (i = 0; i < N; i++)
+ X[i] *= g;
+}
+
+static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
+{
+ int i;
+ float xp = 0, side = 0;
+ float E[2];
+ float mid2;
+ float t, gain[2];
+
+ /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
+ for (i = 0; i < N; i++) {
+ xp += X[i] * Y[i];
+ side += Y[i] * Y[i];
+ }
+
+ /* Compensating for the mid normalization */
+ xp *= mid;
+ mid2 = mid;
+ E[0] = mid2 * mid2 + side - 2 * xp;
+ E[1] = mid2 * mid2 + side + 2 * xp;
+ if (E[0] < 6e-4f || E[1] < 6e-4f) {
+ for (i = 0; i < N; i++)
+ Y[i] = X[i];
+ return;
+ }
+
+ t = E[0];
+ gain[0] = 1.0f / sqrtf(t);
+ t = E[1];
+ gain[1] = 1.0f / sqrtf(t);
+
+ for (i = 0; i < N; i++) {
+ float value[2];
+ /* Apply mid scaling (side is already scaled) */
+ value[0] = mid * X[i];
+ value[1] = Y[i];
+ X[i] = gain[0] * (value[0] - value[1]);
+ Y[i] = gain[1] * (value[0] + value[1]);
+ }
+}
+
+static void celt_interleave_hadamard(float *tmp, float *X, int N0,
+ int stride, int hadamard)
+{
+ int i, j;
+ int N = N0*stride;
+
+ if (hadamard) {
+ const uint8_t *ordery = celt_hadamard_ordery + stride - 2;
+ for (i = 0; i < stride; i++)
+ for (j = 0; j < N0; j++)
+ tmp[j*stride+i] = X[ordery[i]*N0+j];
+ } else {
+ for (i = 0; i < stride; i++)
+ for (j = 0; j < N0; j++)
+ tmp[j*stride+i] = X[i*N0+j];
+ }
+
+ for (i = 0; i < N; i++)
+ X[i] = tmp[i];
+}
+
+static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
+ int stride, int hadamard)
+{
+ int i, j;
+ int N = N0*stride;
+
+ if (hadamard) {
+ const uint8_t *ordery = celt_hadamard_ordery + stride - 2;
+ for (i = 0; i < stride; i++)
+ for (j = 0; j < N0; j++)
+ tmp[ordery[i]*N0+j] = X[j*stride+i];
+ } else {
+ for (i = 0; i < stride; i++)
+ for (j = 0; j < N0; j++)
+ tmp[i*N0+j] = X[j*stride+i];
+ }
+
+ for (i = 0; i < N; i++)
+ X[i] = tmp[i];
+}
+
+static void celt_haar1(float *X, int N0, int stride)
+{
+ int i, j;
+ N0 >>= 1;
+ for (i = 0; i < stride; i++) {
+ for (j = 0; j < N0; j++) {
+ float x0 = X[stride * (2 * j + 0) + i];
+ float x1 = X[stride * (2 * j + 1) + i];
+ X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
+ X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
+ }
+ }
+}
+
+static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
+ int dualstereo)
+{
+ int qn, qb;
+ int N2 = 2 * N - 1;
+ if (dualstereo && N == 2)
+ N2--;
+
+ /* The upper limit ensures that in a stereo split with itheta==16384, we'll
+ * always have enough bits left over to code at least one pulse in the
+ * side; otherwise it would collapse, since it doesn't get folded. */
+ qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
+ qn = (qb < (1 << 3 >> 1)) ? 1 : ((celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
+ return qn;
+}
+
+// this code was adapted from libopus
+static inline uint64_t celt_cwrsi(unsigned int N, unsigned int K, unsigned int i, int *y)
+{
+ uint64_t norm = 0;
+ uint32_t p;
+ int s, val;
+ int k0;
+
+ while (N > 2) {
+ uint32_t q;
+
+ /*Lots of pulses case:*/
+ if (K >= N) {
+ const uint32_t *row = celt_pvq_u_row[N];
+
+ /* Are the pulses in this dimension negative? */
+ p = row[K + 1];
+ s = -(i >= p);
+ i -= p & s;
+
+ /*Count how many pulses were placed in this dimension.*/
+ k0 = K;
+ q = row[N];
+ if (q > i) {
+ K = N;
+ do {
+ p = celt_pvq_u_row[--K][N];
+ } while (p > i);
+ } else
+ for (p = row[K]; p > i; p = row[K])
+ K--;
+
+ i -= p;
+ val = (k0 - K + s) ^ s;
+ norm += val * val;
+ *y++ = val;
+ } else { /*Lots of dimensions case:*/
+ /*Are there any pulses in this dimension at all?*/
+ p = celt_pvq_u_row[K ][N];
+ q = celt_pvq_u_row[K + 1][N];
+
+ if (p <= i && i < q) {
+ i -= p;
+ *y++ = 0;
+ } else {
+ /*Are the pulses in this dimension negative?*/
+ s = -(i >= q);
+ i -= q & s;
+
+ /*Count how many pulses were placed in this dimension.*/
+ k0 = K;
+ do p = celt_pvq_u_row[--K][N];
+ while (p > i);
+
+ i -= p;
+ val = (k0 - K + s) ^ s;
+ norm += val * val;
+ *y++ = val;
+ }
+ }
+ N--;
+ }
+
+ /* N == 2 */
+ p = 2 * K + 1;
+ s = -(i >= p);
+ i -= p & s;
+ k0 = K;
+ K = (i + 1) / 2;
+
+ if (K)
+ i -= 2 * K - 1;
+
+ val = (k0 - K + s) ^ s;
+ norm += val * val;
+ *y++ = val;
+
+ /* N==1 */
+ s = -i;
+ val = (K + s) ^ s;
+ norm += val * val;
+ *y = val;
+
+ return norm;
+}
+
+static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, unsigned int N, unsigned int K)
+{
+ unsigned int idx;
+#define CELT_PVQ_U(n, k) (celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
+#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, k + 1))
+ idx = opus_rc_unimodel(rc, CELT_PVQ_V(N, K));
+ return celt_cwrsi(N, K, idx, y);
+}
+
+/** Decode pulse vector and combine the result with the pitch vector to produce
+ the final normalised signal in the current band. */
+static inline unsigned int celt_alg_unquant(OpusRangeCoder *rc, float *X,
+ unsigned int N, unsigned int K,
+ enum CeltSpread spread,
+ unsigned int blocks, float gain)
+{
+ int y[176];
+
+ gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
+ celt_normalize_residual(y, X, N, gain);
+ celt_exp_rotation(X, N, blocks, K, spread);
+ return celt_extract_collapse_mask(y, N, blocks);
+}
+
+static unsigned int celt_decode_band(CeltContext *s, OpusRangeCoder *rc,
+ const int band, float *X, float *Y,
+ int N, int b, unsigned int blocks,
+ float *lowband, int duration,
+ float *lowband_out, int level,
+ float gain, float *lowband_scratch,
+ int fill)
+{
+ const uint8_t *cache;
+ int dualstereo, split;
+ int imid = 0, iside = 0;
+ unsigned int N0 = N;
+ int N_B;
+ int N_B0;
+ int B0 = blocks;
+ int time_divide = 0;
+ int recombine = 0;
+ int inv = 0;
+ float mid = 0, side = 0;
+ int longblocks = (B0 == 1);
+ unsigned int cm = 0;
+
+ N_B0 = N_B = N / blocks;
+ split = dualstereo = (Y != NULL);
+
+ if (N == 1) {
+ /* special case for one sample */
+ int i;
+ float *x = X;
+ for (i = 0; i <= dualstereo; i++) {
+ int sign = 0;
+ if (s->remaining2 >= 1<<3) {
+ sign = opus_getrawbits(rc, 1);
+ s->remaining2 -= 1 << 3;
+ b -= 1 << 3;
+ }
+ x[0] = sign ? -1.0f : 1.0f;
+ x = Y;
+ }
+ if (lowband_out)
+ lowband_out[0] = X[0];
+ return 1;
+ }
+
+ if (!dualstereo && level == 0) {
+ int tf_change = s->tf_change[band];
+ int k;
+ if (tf_change > 0)
+ recombine = tf_change;
+ /* Band recombining to increase frequency resolution */
+
+ if (lowband &&
+ (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
+ int j;
+ for (j = 0; j < N; j++)
+ lowband_scratch[j] = lowband[j];
+ lowband = lowband_scratch;
+ }
+
+ for (k = 0; k < recombine; k++) {
+ if (lowband)
+ celt_haar1(lowband, N >> k, 1 << k);
+ fill = celt_bit_interleave[fill & 0xF] | celt_bit_interleave[fill >> 4] << 2;
+ }
+ blocks >>= recombine;
+ N_B <<= recombine;
+
+ /* Increasing the time resolution */
+ while ((N_B & 1) == 0 && tf_change < 0) {
+ if (lowband)
+ celt_haar1(lowband, N_B, blocks);
+ fill |= fill << blocks;
+ blocks <<= 1;
+ N_B >>= 1;
+ time_divide++;
+ tf_change++;
+ }
+ B0 = blocks;
+ N_B0 = N_B;
+
+ /* Reorganize the samples in time order instead of frequency order */
+ if (B0 > 1 && lowband)
+ celt_deinterleave_hadamard(s->scratch, lowband, N_B >> recombine,
+ B0 << recombine, longblocks);
+ }
+
+ /* If we need 1.5 more bit than we can produce, split the band in two. */
+ cache = celt_cache_bits +
+ celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
+ if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
+ N >>= 1;
+ Y = X + N;
+ split = 1;
+ duration -= 1;
+ if (blocks == 1)
+ fill = (fill & 1) | (fill << 1);
+ blocks = (blocks + 1) >> 1;
+ }
+
+ if (split) {
+ int qn;
+ int itheta = 0;
+ int mbits, sbits, delta;
+ int qalloc;
+ int pulse_cap;
+ int offset;
+ int orig_fill;
+ int tell;
+
+ /* Decide on the resolution to give to the split parameter theta */
+ pulse_cap = celt_log_freq_range[band] + duration * 8;
+ offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
+ CELT_QTHETA_OFFSET);
+ qn = (dualstereo && band >= s->intensitystereo) ? 1 :
+ celt_compute_qn(N, b, offset, pulse_cap, dualstereo);
+ tell = opus_rc_tell_frac(rc);
+ if (qn != 1) {
+ /* Entropy coding of the angle. We use a uniform pdf for the
+ time split, a step for stereo, and a triangular one for the rest. */
+ if (dualstereo && N > 2)
+ itheta = opus_rc_stepmodel(rc, qn/2);
+ else if (dualstereo || B0 > 1)
+ itheta = opus_rc_unimodel(rc, qn+1);
+ else
+ itheta = opus_rc_trimodel(rc, qn);
+ itheta = itheta * 16384 / qn;
+ /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
+ Let's do that at higher complexity */
+ } else if (dualstereo) {
+ inv = (b > 2 << 3 && s->remaining2 > 2 << 3) ? opus_rc_p2model(rc, 2) : 0;
+ itheta = 0;
+ }
+ qalloc = opus_rc_tell_frac(rc) - tell;
+ b -= qalloc;
+
+ orig_fill = fill;
+ if (itheta == 0) {
+ imid = 32767;
+ iside = 0;
+ fill &= (1 << blocks) - 1;
+ delta = -16384;
+ } else if (itheta == 16384) {
+ imid = 0;
+ iside = 32767;
+ fill &= ((1 << blocks) - 1) << blocks;
+ delta = 16384;
+ } else {
+ imid = celt_cos(itheta);
+ iside = celt_cos(16384-itheta);
+ /* This is the mid vs side allocation that minimizes squared error
+ in that band. */
+ delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
+ }
+
+ mid = imid / 32768.0f;
+ side = iside / 32768.0f;
+
+ /* This is a special case for N=2 that only works for stereo and takes
+ advantage of the fact that mid and side are orthogonal to encode
+ the side with just one bit. */
+ if (N == 2 && dualstereo) {
+ int c;
+ int sign = 0;
+ float tmp;
+ float *x2, *y2;
+ mbits = b;
+ /* Only need one bit for the side */
+ sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
+ mbits -= sbits;
+ c = (itheta > 8192);
+ s->remaining2 -= qalloc+sbits;
+
+ x2 = c ? Y : X;
+ y2 = c ? X : Y;
+ if (sbits)
+ sign = opus_getrawbits(rc, 1);
+ sign = 1 - 2 * sign;
+ /* We use orig_fill here because we want to fold the side, but if
+ itheta==16384, we'll have cleared the low bits of fill. */
+ cm = celt_decode_band(s, rc, band, x2, NULL, N, mbits, blocks,
+ lowband, duration, lowband_out, level, gain,
+ lowband_scratch, orig_fill);
+ /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
+ and there's no need to worry about mixing with the other channel. */
+ y2[0] = -sign * x2[1];
+ y2[1] = sign * x2[0];
+ X[0] *= mid;
+ X[1] *= mid;
+ Y[0] *= side;
+ Y[1] *= side;
+ tmp = X[0];
+ X[0] = tmp - Y[0];
+ Y[0] = tmp + Y[0];
+ tmp = X[1];
+ X[1] = tmp - Y[1];
+ Y[1] = tmp + Y[1];
+ } else {
+ /* "Normal" split code */
+ float *next_lowband2 = NULL;
+ float *next_lowband_out1 = NULL;
+ int next_level = 0;
+ int rebalance;
+
+ /* Give more bits to low-energy MDCTs than they would
+ * otherwise deserve */
+ if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) {
+ if (itheta > 8192)
+ /* Rough approximation for pre-echo masking */
+ delta -= delta >> (4 - duration);
+ else
+ /* Corresponds to a forward-masking slope of
+ * 1.5 dB per 10 ms */
+ delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
+ }
+ mbits = av_clip((b - delta) / 2, 0, b);
+ sbits = b - mbits;
+ s->remaining2 -= qalloc;
+
+ if (lowband && !dualstereo)
+ next_lowband2 = lowband + N; /* >32-bit split case */
+
+ /* Only stereo needs to pass on lowband_out.
+ * Otherwise, it's handled at the end */
+ if (dualstereo)
+ next_lowband_out1 = lowband_out;
+ else
+ next_level = level + 1;
+
+ rebalance = s->remaining2;
+ if (mbits >= sbits) {
+ /* In stereo mode, we do not apply a scaling to the mid
+ * because we need the normalized mid for folding later */
+ cm = celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
+ lowband, duration, next_lowband_out1,
+ next_level, dualstereo ? 1.0f : (gain * mid),
+ lowband_scratch, fill);
+
+ rebalance = mbits - (rebalance - s->remaining2);
+ if (rebalance > 3 << 3 && itheta != 0)
+ sbits += rebalance - (3 << 3);
+
+ /* For a stereo split, the high bits of fill are always zero,
+ * so no folding will be done to the side. */
+ cm |= celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
+ next_lowband2, duration, NULL,
+ next_level, gain * side, NULL,
+ fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
+ } else {
+ /* For a stereo split, the high bits of fill are always zero,
+ * so no folding will be done to the side. */
+ cm = celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
+ next_lowband2, duration, NULL,
+ next_level, gain * side, NULL,
+ fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
+
+ rebalance = sbits - (rebalance - s->remaining2);
+ if (rebalance > 3 << 3 && itheta != 16384)
+ mbits += rebalance - (3 << 3);
+
+ /* In stereo mode, we do not apply a scaling to the mid because
+ * we need the normalized mid for folding later */
+ cm |= celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
+ lowband, duration, next_lowband_out1,
+ next_level, dualstereo ? 1.0f : (gain * mid),
+ lowband_scratch, fill);
+ }
+ }
+ } else {
+ /* This is the basic no-split case */
+ unsigned int q = celt_bits2pulses(cache, b);
+ unsigned int curr_bits = celt_pulses2bits(cache, q);
+ s->remaining2 -= curr_bits;
+
+ /* Ensures we can never bust the budget */
+ while (s->remaining2 < 0 && q > 0) {
+ s->remaining2 += curr_bits;
+ curr_bits = celt_pulses2bits(cache, --q);
+ s->remaining2 -= curr_bits;
+ }
+
+ if (q != 0) {
+ /* Finally do the actual quantization */
+ cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
+ s->spread, blocks, gain);
+ } else {
+ /* If there's no pulse, fill the band anyway */
+ int j;
+ unsigned int cm_mask = (1 << blocks) - 1;
+ fill &= cm_mask;
+ if (!fill) {
+ for (j = 0; j < N; j++)
+ X[j] = 0.0f;
+ } else {
+ if (lowband == NULL) {
+ /* Noise */
+ for (j = 0; j < N; j++)
+ X[j] = (((int32_t)celt_rng(s)) >> 20);
+ cm = cm_mask;
+ } else {
+ /* Folded spectrum */
+ for (j = 0; j < N; j++) {
+ /* About 48 dB below the "normal" folding level */
+ X[j] = lowband[j] + (((celt_rng(s)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
+ }
+ cm = fill;
+ }
+ celt_renormalize_vector(X, N, gain);
+ }
+ }
+ }
+
+ /* This code is used by the decoder and by the resynthesis-enabled encoder */
+ if (dualstereo) {
+ int j;
+ if (N != 2)
+ celt_stereo_merge(X, Y, mid, N);
+ if (inv) {
+ for (j = 0; j < N; j++)
+ Y[j] *= -1;
+ }
+ } else if (level == 0) {
+ int k;
+
+ /* Undo the sample reorganization going from time order to frequency order */
+ if (B0 > 1)
+ celt_interleave_hadamard(s->scratch, X, N_B>>recombine,
+ B0<<recombine, longblocks);
+
+ /* Undo time-freq changes that we did earlier */
+ N_B = N_B0;
+ blocks = B0;
+ for (k = 0; k < time_divide; k++) {
+ blocks >>= 1;
+ N_B <<= 1;
+ cm |= cm >> blocks;
+ celt_haar1(X, N_B, blocks);
+ }
+
+ for (k = 0; k < recombine; k++) {
+ cm = celt_bit_deinterleave[cm];
+ celt_haar1(X, N0>>k, 1<<k);
+ }
+ blocks <<= recombine;
+
+ /* Scale output for later folding */
+ if (lowband_out) {
+ int j;
+ float n = sqrtf(N0);
+ for (j = 0; j < N0; j++)
+ lowband_out[j] = n * X[j];
+ }
+ cm &= (1 << blocks) - 1;
+ }
+ return cm;
+}
+
+static void celt_denormalize(CeltContext *s, CeltFrame *frame, float *data)
+{
+ int i, j;
+
+ for (i = s->startband; i < s->endband; i++) {
+ float *dst = data + (celt_freq_bands[i] << s->duration);
+ float norm = pow(2, frame->energy[i] + celt_mean_energy[i]);
+
+ for (j = 0; j < celt_freq_range[i] << s->duration; j++)
+ dst[j] *= norm;
+ }
+}
+
+static void celt_postfilter_apply_transition(CeltFrame *frame, float *data)
+{
+ const int T0 = frame->pf_period_old;
+ const int T1 = frame->pf_period;
+
+ float g00, g01, g02;
+ float g10, g11, g12;
+
+ float x0, x1, x2, x3, x4;
+
+ int i;
+
+ if (frame->pf_gains[0] == 0.0 &&
+ frame->pf_gains_old[0] == 0.0)
+ return;
+
+ g00 = frame->pf_gains_old[0];
+ g01 = frame->pf_gains_old[1];
+ g02 = frame->pf_gains_old[2];
+ g10 = frame->pf_gains[0];
+ g11 = frame->pf_gains[1];
+ g12 = frame->pf_gains[2];
+
+ x1 = data[-T1 + 1];
+ x2 = data[-T1];
+ x3 = data[-T1 - 1];
+ x4 = data[-T1 - 2];
+
+ for (i = 0; i < CELT_OVERLAP; i++) {
+ float w = ff_celt_window2[i];
+ x0 = data[i - T1 + 2];
+
+ data[i] += (1.0 - w) * g00 * data[i - T0] +
+ (1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) +
+ (1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) +
+ w * g10 * x2 +
+ w * g11 * (x1 + x3) +
+ w * g12 * (x0 + x4);
+ x4 = x3;
+ x3 = x2;
+ x2 = x1;
+ x1 = x0;
+ }
+}
+
+static void celt_postfilter_apply(CeltFrame *frame,
+ float *data, int len)
+{
+ const int T = frame->pf_period;
+ float g0, g1, g2;
+ float x0, x1, x2, x3, x4;
+ int i;
+
+ if (frame->pf_gains[0] == 0.0 || len <= 0)
+ return;
+
+ g0 = frame->pf_gains[0];
+ g1 = frame->pf_gains[1];
+ g2 = frame->pf_gains[2];
+
+ x4 = data[-T - 2];
+ x3 = data[-T - 1];
+ x2 = data[-T];
+ x1 = data[-T + 1];
+
+ for (i = 0; i < len; i++) {
+ x0 = data[i - T + 2];
+ data[i] += g0 * x2 +
+ g1 * (x1 + x3) +
+ g2 * (x0 + x4);
+ x4 = x3;
+ x3 = x2;
+ x2 = x1;
+ x1 = x0;
+ }
+}
+
+static void celt_postfilter(CeltContext *s, CeltFrame *frame)
+{
+ int len = s->blocksize * s->blocks;
+
+ celt_postfilter_apply_transition(frame, frame->buf + 1024);
+
+ frame->pf_period_old = frame->pf_period;
+ memcpy(frame->pf_gains_old, frame->pf_gains, sizeof(frame->pf_gains));
+
+ frame->pf_period = frame->pf_period_new;
+ memcpy(frame->pf_gains, frame->pf_gains_new, sizeof(frame->pf_gains));
+
+ if (len > CELT_OVERLAP) {
+ celt_postfilter_apply_transition(frame, frame->buf + 1024 + CELT_OVERLAP);
+ celt_postfilter_apply(frame, frame->buf + 1024 + 2 * CELT_OVERLAP,
+ len - 2 * CELT_OVERLAP);
+
+ frame->pf_period_old = frame->pf_period;
+ memcpy(frame->pf_gains_old, frame->pf_gains, sizeof(frame->pf_gains));
+ }
+
+ memmove(frame->buf, frame->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float));
+}
+
+static int parse_postfilter(CeltContext *s, OpusRangeCoder *rc, int consumed)
+{
+ static const float postfilter_taps[3][3] = {
+ { 0.3066406250f, 0.2170410156f, 0.1296386719f },
+ { 0.4638671875f, 0.2680664062f, 0.0 },
+ { 0.7998046875f, 0.1000976562f, 0.0 }
+ };
+ int i;
+
+ memset(s->frame[0].pf_gains_new, 0, sizeof(s->frame[0].pf_gains_new));
+ memset(s->frame[1].pf_gains_new, 0, sizeof(s->frame[1].pf_gains_new));
+
+ if (s->startband == 0 && consumed + 16 <= s->framebits) {
+ int has_postfilter = opus_rc_p2model(rc, 1);
+ if (has_postfilter) {
+ float gain;
+ int tapset, octave, period;
+
+ octave = opus_rc_unimodel(rc, 6);
+ period = (16 << octave) + opus_getrawbits(rc, 4 + octave) - 1;
+ gain = 0.09375f * (opus_getrawbits(rc, 3) + 1);
+ tapset = (opus_rc_tell(rc) + 2 <= s->framebits) ?
+ opus_rc_getsymbol(rc, celt_model_tapset) : 0;
+
+ for (i = 0; i < 2; i++) {
+ CeltFrame *frame = &s->frame[i];
+
+ frame->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
+ frame->pf_gains_new[0] = gain * postfilter_taps[tapset][0];
+ frame->pf_gains_new[1] = gain * postfilter_taps[tapset][1];
+ frame->pf_gains_new[2] = gain * postfilter_taps[tapset][2];
+ }
+ }
+
+ consumed = opus_rc_tell(rc);
+ }
+
+ return consumed;
+}
+
+static void process_anticollapse(CeltContext *s, CeltFrame *frame, float *X)
+{
+ int i, j, k;
+
+ for (i = s->startband; i < s->endband; i++) {
+ int renormalize = 0;
+ float *xptr;
+ float prev[2];
+ float Ediff, r;
+ float thresh, sqrt_1;
+ int depth;
+
+ /* depth in 1/8 bits */
+ depth = (1 + s->pulses[i]) / (celt_freq_range[i] << s->duration);
+ thresh = pow(2, -1.0 - 0.125f * depth);
+ sqrt_1 = 1.0f / sqrtf(celt_freq_range[i] << s->duration);
+
+ xptr = X + (celt_freq_bands[i] << s->duration);
+
+ prev[0] = frame->prev_energy[0][i];
+ prev[1] = frame->prev_energy[1][i];
+ if (s->coded_channels == 1) {
+ CeltFrame *frame1 = &s->frame[1];
+
+ prev[0] = FFMAX(prev[0], frame1->prev_energy[0][i]);
+ prev[1] = FFMAX(prev[1], frame1->prev_energy[1][i]);
+ }
+ Ediff = frame->energy[i] - FFMIN(prev[0], prev[1]);
+ Ediff = FFMAX(0, Ediff);
+
+ /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
+ short blocks don't have the same energy as long */
+ r = pow(2, 1 - Ediff);
+ if (s->duration == 3)
+ r *= M_SQRT2;
+ r = FFMIN(thresh, r) * sqrt_1;
+ for (k = 0; k < 1 << s->duration; k++) {
+ /* Detect collapse */
+ if (!(frame->collapse_masks[i] & 1 << k)) {
+ /* Fill with noise */
+ for (j = 0; j < celt_freq_range[i]; j++)
+ xptr[(j << s->duration) + k] = (celt_rng(s) & 0x8000) ? r : -r;
+ renormalize = 1;
+ }
+ }
+
+ /* We just added some energy, so we need to renormalize */
+ if (renormalize)
+ celt_renormalize_vector(xptr, celt_freq_range[i] << s->duration, 1.0f);
+ }
+}
+
+static void celt_decode_bands(CeltContext *s, OpusRangeCoder *rc)
+{
+ float lowband_scratch[8 * 22];
+ float norm[2 * 8 * 100];
+
+ int totalbits = (s->framebits << 3) - s->anticollapse_bit;
+
+ int update_lowband = 1;
+ int lowband_offset = 0;
+
+ int i, j;
+
+ memset(s->coeffs, 0, sizeof(s->coeffs));
+
+ for (i = s->startband; i < s->endband; i++) {
+ int band_offset = celt_freq_bands[i] << s->duration;
+ int band_size = celt_freq_range[i] << s->duration;
+ float *X = s->coeffs[0] + band_offset;
+ float *Y = (s->coded_channels == 2) ? s->coeffs[1] + band_offset : NULL;
+
+ int consumed = opus_rc_tell_frac(rc);
+ float *norm2 = norm + 8 * 100;
+ int effective_lowband = -1;
+ unsigned int cm[2];
+ int b;
+
+ /* Compute how many bits we want to allocate to this band */
+ if (i != s->startband)
+ s->remaining -= consumed;
+ s->remaining2 = totalbits - consumed - 1;
+ if (i <= s->codedbands - 1) {
+ int curr_balance = s->remaining / FFMIN(3, s->codedbands-i);
+ b = av_clip(FFMIN(s->remaining2 + 1, s->pulses[i] + curr_balance), 0, 16383);
+ } else
+ b = 0;
+
+ if (celt_freq_bands[i] - celt_freq_range[i] >= celt_freq_bands[s->startband] &&
+ (update_lowband || lowband_offset == 0))
+ lowband_offset = i;
+
+ /* Get a conservative estimate of the collapse_mask's for the bands we're
+ going to be folding from. */
+ if (lowband_offset != 0 && (s->spread != CELT_SPREAD_AGGRESSIVE ||
+ s->blocks > 1 || s->tf_change[i] < 0)) {
+ int foldstart, foldend;
+
+ /* This ensures we never repeat spectral content within one band */
+ effective_lowband = FFMAX(celt_freq_bands[s->startband],
+ celt_freq_bands[lowband_offset] - celt_freq_range[i]);
+ foldstart = lowband_offset;
+ while (celt_freq_bands[--foldstart] > effective_lowband);
+ foldend = lowband_offset - 1;
+ while (celt_freq_bands[++foldend] < effective_lowband + celt_freq_range[i]);
+
+ cm[0] = cm[1] = 0;
+ for (j = foldstart; j < foldend; j++) {
+ cm[0] |= s->frame[0].collapse_masks[j];
+ cm[1] |= s->frame[s->coded_channels - 1].collapse_masks[j];
+ }
+ } else
+ /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost
+ always) be non-zero.*/
+ cm[0] = cm[1] = (1 << s->blocks) - 1;
+
+ if (s->dualstereo && i == s->intensitystereo) {
+ /* Switch off dual stereo to do intensity */
+ s->dualstereo = 0;
+ for (j = celt_freq_bands[s->startband] << s->duration; j < band_offset; j++)
+ norm[j] = (norm[j] + norm2[j]) / 2;
+ }
+
+ if (s->dualstereo) {
+ cm[0] = celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks,
+ effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
+ norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
+
+ cm[1] = celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks,
+ effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration,
+ norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
+ } else {
+ cm[0] = celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks,
+ effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
+ norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
+
+ cm[1] = cm[0];
+ }
+
+ s->frame[0].collapse_masks[i] = (uint8_t)cm[0];
+ s->frame[s->coded_channels - 1].collapse_masks[i] = (uint8_t)cm[1];
+ s->remaining += s->pulses[i] + consumed;
+
+ /* Update the folding position only as long as we have 1 bit/sample depth */
+ update_lowband = (b > band_size << 3);
+ }
+}
+
+int ff_celt_decode_frame(CeltContext *s, OpusRangeCoder *rc,
+ float **output, int coded_channels, int frame_size,
+ int startband, int endband)
+{
+ int i, j;
+
+ int consumed; // bits of entropy consumed thus far for this frame
+ int silence = 0;
+ int transient = 0;
+ int anticollapse = 0;
+ CeltIMDCTContext *imdct;
+ float imdct_scale = 1.0;
+
+ if (coded_channels != 1 && coded_channels != 2) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n",
+ coded_channels);
+ return AVERROR_INVALIDDATA;
+ }
+ if (startband < 0 || startband > endband || endband > CELT_MAX_BANDS) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n",
+ startband, endband);
+ return AVERROR_INVALIDDATA;
+ }
+
+ s->flushed = 0;
+ s->coded_channels = coded_channels;
+ s->startband = startband;
+ s->endband = endband;
+ s->framebits = rc->rb.bytes * 8;
+
+ s->duration = av_log2(frame_size / CELT_SHORT_BLOCKSIZE);
+ if (s->duration > CELT_MAX_LOG_BLOCKS ||
+ frame_size != CELT_SHORT_BLOCKSIZE * (1 << s->duration)) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n",
+ frame_size);
+ return AVERROR_INVALIDDATA;
+ }
+
+ if (!s->output_channels)
+ s->output_channels = coded_channels;
+
+ memset(s->frame[0].collapse_masks, 0, sizeof(s->frame[0].collapse_masks));
+ memset(s->frame[1].collapse_masks, 0, sizeof(s->frame[1].collapse_masks));
+
+ consumed = opus_rc_tell(rc);
+
+ /* obtain silence flag */
+ if (consumed >= s->framebits)
+ silence = 1;
+ else if (consumed == 1)
+ silence = opus_rc_p2model(rc, 15);
+
+
+ if (silence) {
+ consumed = s->framebits;
+ rc->total_read_bits += s->framebits - opus_rc_tell(rc);
+ }
+
+ /* obtain post-filter options */
+ consumed = parse_postfilter(s, rc, consumed);
+
+ /* obtain transient flag */
+ if (s->duration != 0 && consumed+3 <= s->framebits)
+ transient = opus_rc_p2model(rc, 3);
+
+ s->blocks = transient ? 1 << s->duration : 1;
+ s->blocksize = frame_size / s->blocks;
+
+ imdct = s->imdct[transient ? 0 : s->duration];
+
+ if (coded_channels == 1) {
+ for (i = 0; i < CELT_MAX_BANDS; i++)
+ s->frame[0].energy[i] = FFMAX(s->frame[0].energy[i], s->frame[1].energy[i]);
+ }
+
+ celt_decode_coarse_energy(s, rc);
+ celt_decode_tf_changes (s, rc, transient);
+ celt_decode_allocation (s, rc);
+ celt_decode_fine_energy (s, rc);
+ celt_decode_bands (s, rc);
+
+ if (s->anticollapse_bit)
+ anticollapse = opus_getrawbits(rc, 1);
+
+ celt_decode_final_energy(s, rc, s->framebits - opus_rc_tell(rc));
+
+ /* apply anti-collapse processing and denormalization to
+ * each coded channel */
+ for (i = 0; i < s->coded_channels; i++) {
+ CeltFrame *frame = &s->frame[i];
+
+ if (anticollapse)
+ process_anticollapse(s, frame, s->coeffs[i]);
+
+ celt_denormalize(s, frame, s->coeffs[i]);
+ }
+
+ /* stereo -> mono downmix */
+ if (s->output_channels < s->coded_channels) {
+ s->dsp.vector_fmac_scalar(s->coeffs[0], s->coeffs[1], 1.0, FFALIGN(frame_size, 16));
+ imdct_scale = 0.5;
+ } else if (s->output_channels > s->coded_channels)
+ memcpy(s->coeffs[1], s->coeffs[0], frame_size * sizeof(float));
+
+ if (silence) {
+ for (i = 0; i < 2; i++) {
+ CeltFrame *frame = &s->frame[i];
+
+ for (j = 0; j < FF_ARRAY_ELEMS(frame->energy); j++)
+ frame->energy[j] = CELT_ENERGY_SILENCE;
+ }
+ memset(s->coeffs, 0, sizeof(s->coeffs));
+ }
+
+ /* transform and output for each output channel */
+ for (i = 0; i < s->output_channels; i++) {
+ CeltFrame *frame = &s->frame[i];
+ float m = frame->deemph_coeff;
+
+ /* iMDCT and overlap-add */
+ for (j = 0; j < s->blocks; j++) {
+ float *dst = frame->buf + 1024 + j * s->blocksize;
+
+ ff_celt_imdct_half(imdct, dst + CELT_OVERLAP / 2, s->coeffs[i] + j,
+ s->blocks, imdct_scale);
+ s->dsp.vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2,
+ celt_window, CELT_OVERLAP / 2);
+ }
+
+ /* postfilter */
+ celt_postfilter(s, frame);
+
+ /* deemphasis and output scaling */
+ for (j = 0; j < frame_size; j++) {
+ float tmp = frame->buf[1024 - frame_size + j] + m;
+ m = tmp * CELT_DEEMPH_COEFF;
+ output[i][j] = tmp / 32768.;
+ }
+ frame->deemph_coeff = m;
+ }
+
+ if (coded_channels == 1)
+ memcpy(s->frame[1].energy, s->frame[0].energy, sizeof(s->frame[0].energy));
+
+ for (i = 0; i < 2; i++ ) {
+ CeltFrame *frame = &s->frame[i];
+
+ if (!transient) {
+ memcpy(frame->prev_energy[1], frame->prev_energy[0], sizeof(frame->prev_energy[0]));
+ memcpy(frame->prev_energy[0], frame->energy, sizeof(frame->prev_energy[0]));
+ } else {
+ for (j = 0; j < CELT_MAX_BANDS; j++)
+ frame->prev_energy[0][j] = FFMIN(frame->prev_energy[0][j], frame->energy[j]);
+ }
+
+ for (j = 0; j < s->startband; j++) {
+ frame->prev_energy[0][j] = CELT_ENERGY_SILENCE;
+ frame->energy[j] = 0.0;
+ }
+ for (j = s->endband; j < CELT_MAX_BANDS; j++) {
+ frame->prev_energy[0][j] = CELT_ENERGY_SILENCE;
+ frame->energy[j] = 0.0;
+ }
+ }
+
+ s->seed = rc->range;
+
+ return 0;
+}
+
+void ff_celt_flush(CeltContext *s)
+{
+ int i, j;
+
+ if (s->flushed)
+ return;
+
+ for (i = 0; i < 2; i++) {
+ CeltFrame *frame = &s->frame[i];
+
+ for (j = 0; j < CELT_MAX_BANDS; j++)
+ frame->prev_energy[0][j] = frame->prev_energy[1][j] = CELT_ENERGY_SILENCE;
+
+ memset(frame->energy, 0, sizeof(frame->energy));
+ memset(frame->buf, 0, sizeof(frame->buf));
+
+ memset(frame->pf_gains, 0, sizeof(frame->pf_gains));
+ memset(frame->pf_gains_old, 0, sizeof(frame->pf_gains_old));
+ memset(frame->pf_gains_new, 0, sizeof(frame->pf_gains_new));
+
+ frame->deemph_coeff = 0.0;
+ }
+ s->seed = 0;
+
+ s->flushed = 1;
+}
+
+void ff_celt_free(CeltContext **ps)
+{
+ CeltContext *s = *ps;
+ int i;
+
+ if (!s)
+ return;
+
+ for (i = 0; i < FF_ARRAY_ELEMS(s->imdct); i++)
+ ff_celt_imdct_uninit(&s->imdct[i]);
+
+ av_freep(ps);
+}
+
+int ff_celt_init(AVCodecContext *avctx, CeltContext **ps, int output_channels)
+{
+ CeltContext *s;
+ int i, ret;
+
+ if (output_channels != 1 && output_channels != 2) {
+ av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n",
+ output_channels);
+ return AVERROR(EINVAL);
+ }
+
+ s = av_mallocz(sizeof(*s));
+ if (!s)
+ return AVERROR(ENOMEM);
+
+ s->avctx = avctx;
+ s->output_channels = output_channels;
+
+ for (i = 0; i < FF_ARRAY_ELEMS(s->imdct); i++) {
+ ret = ff_celt_imdct_init(&s->imdct[i], i + 3);
+ if (ret < 0)
+ goto fail;
+ }
+
+ avpriv_float_dsp_init(&s->dsp, avctx->flags & CODEC_FLAG_BITEXACT);
+
+ ff_celt_flush(s);
+
+ *ps = s;
+
+ return 0;
+fail:
+ ff_celt_free(&s);
+ return ret;
+}