diff options
author | Fabrice Bellard <fabrice@bellard.org> | 2001-09-15 22:40:28 +0000 |
---|---|---|
committer | Fabrice Bellard <fabrice@bellard.org> | 2001-09-15 22:40:28 +0000 |
commit | 239c2f4cd0a488617d2a49e0c317748dd3f8fddc (patch) | |
tree | 5dd6271aea217d0a5c955a68f82aa06b90079f6f /libavcodec/mpegaudiodec.c | |
parent | c8fbc22deea1a0498b212943ff4e1d0c08e384e2 (diff) | |
download | ffmpeg-239c2f4cd0a488617d2a49e0c317748dd3f8fddc.tar.gz |
added completely new mpeg audio decoder (integer only, free format support, lsf/mpeg25 support, high/low precision support, simpler code)
Originally committed as revision 117 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/mpegaudiodec.c')
-rw-r--r-- | libavcodec/mpegaudiodec.c | 2328 |
1 files changed, 2208 insertions, 120 deletions
diff --git a/libavcodec/mpegaudiodec.c b/libavcodec/mpegaudiodec.c index f3fa90af55..ca610d65ef 100644 --- a/libavcodec/mpegaudiodec.c +++ b/libavcodec/mpegaudiodec.c @@ -16,76 +16,934 @@ * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ -#include <stdlib.h> -#include <stdio.h> -#include <string.h> +//#define DEBUG #include "avcodec.h" -#include "mpglib/mpg123.h" +#include <math.h> +#include "mpegaudio.h" /* - * TODO: - * - add free format - * - do not rely anymore on mpglib (first step: implement dct64 and decoding filter) + * TODO: + * - in low precision mode, use more 16 bit multiplies in synth filter + * - test lsf / mpeg25 extensively. */ +/* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg + audio decoder */ +//#define USE_HIGHPRECISION + +#ifdef USE_HIGHPRECISION +#define FRAC_BITS 23 /* fractional bits for sb_samples and dct */ +#define WFRAC_BITS 16 /* fractional bits for window */ +#else +#define FRAC_BITS 15 /* fractional bits for sb_samples and dct */ +#define WFRAC_BITS 14 /* fractional bits for window */ +#endif + +#define FRAC_ONE (1 << FRAC_BITS) + +#define MULL(a,b) (((INT64)(a) * (INT64)(b)) >> FRAC_BITS) +#define MUL64(a,b) ((INT64)(a) * (INT64)(b)) +#define FIX(a) ((int)((a) * FRAC_ONE)) +/* WARNING: only correct for posititive numbers */ +#define FIXR(a) ((int)((a) * FRAC_ONE + 0.5)) +#define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS) + +#if FRAC_BITS <= 15 +typedef INT16 MPA_INT; +#else +typedef INT32 MPA_INT; +#endif + +/****************/ + #define HEADER_SIZE 4 #define BACKSTEP_SIZE 512 typedef struct MPADecodeContext { - struct mpstr mpstr; - UINT8 inbuf1[2][MAXFRAMESIZE + BACKSTEP_SIZE]; /* input buffer */ + UINT8 inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */ int inbuf_index; UINT8 *inbuf_ptr, *inbuf; int frame_size; + int free_format_frame_size; /* frame size in case of free format + (zero if currently unknown) */ + /* next header (used in free format parsing) */ + UINT32 free_format_next_header; int error_protection; int layer; int sample_rate; + int sample_rate_index; /* between 0 and 8 */ int bit_rate; int old_frame_size; GetBitContext gb; + int nb_channels; + int mode; + int mode_ext; + int lsf; + MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2]; + int synth_buf_offset[MPA_MAX_CHANNELS]; + INT32 sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT]; + INT32 mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */ +#ifdef DEBUG + int frame_count; +#endif } MPADecodeContext; -/* XXX: suppress that mess */ -struct mpstr *gmp; -GetBitContext *gmp_gb; -static MPADecodeContext *gmp_s; +/* layer 3 "granule" */ +typedef struct GranuleDef { + UINT8 scfsi; + int part2_3_length; + int big_values; + int global_gain; + int scalefac_compress; + UINT8 block_type; + UINT8 switch_point; + int table_select[3]; + int subblock_gain[3]; + UINT8 scalefac_scale; + UINT8 count1table_select; + int region_size[3]; /* number of huffman codes in each region */ + int preflag; + int short_start, long_end; /* long/short band indexes */ + UINT8 scale_factors[40]; + INT32 sb_hybrid[SBLIMIT * 18]; /* 576 samples */ +} GranuleDef; -/* XXX: merge constants with encoder */ -static const unsigned short mp_bitrate_tab[2][3][15] = { - { {0, 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416, 448 }, - {0, 32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384 }, - {0, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320 } }, - { {0, 32, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256}, - {0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160}, - {0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160} - } +#define MODE_EXT_MS_STEREO 2 +#define MODE_EXT_I_STEREO 1 + +/* layer 3 huffman tables */ +typedef struct HuffTable { + int xsize; + const UINT8 *bits; + const UINT16 *codes; +} HuffTable; + +#include "mpegaudiodectab.h" + +/* vlc structure for decoding layer 3 huffman tables */ +static VLC huff_vlc[16]; +static UINT8 *huff_code_table[16]; +static VLC huff_quad_vlc[2]; +/* computed from band_size_long */ +static UINT16 band_index_long[9][23]; +/* XXX: free when all decoders are closed */ +#define TABLE_4_3_SIZE (8191 + 16) +static UINT8 *table_4_3_exp; +#if FRAC_BITS <= 15 +static UINT16 *table_4_3_value; +#else +static UINT32 *table_4_3_value; +#endif +/* intensity stereo coef table */ +static INT32 is_table[2][16]; +static INT32 is_table_lsf[2][2][16]; +static INT32 csa_table[8][2]; +static INT32 mdct_win[8][36]; + +/* lower 2 bits: modulo 3, higher bits: shift */ +static UINT16 scale_factor_modshift[64]; +/* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */ +static INT32 scale_factor_mult[15][3]; +/* mult table for layer 2 group quantization */ + +#define SCALE_GEN(v) \ +{ FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) } + +static INT32 scale_factor_mult2[3][3] = { + SCALE_GEN(1.0 / 3.0), /* 3 steps */ + SCALE_GEN(1.0 / 5.0), /* 5 steps */ + SCALE_GEN(1.0 / 9.0), /* 9 steps */ +}; + +/* 2^(n/4) */ +static UINT32 scale_factor_mult3[4] = { + FIXR(1.0), + FIXR(1.18920711500272106671), + FIXR(1.41421356237309504880), + FIXR(1.68179283050742908605), }; -static unsigned short mp_freq_tab[3] = { 44100, 48000, 32000 }; +static MPA_INT window[512]; + +/* layer 1 unscaling */ +/* n = number of bits of the mantissa minus 1 */ +static inline int l1_unscale(int n, int mant, int scale_factor) +{ + int shift, mod; + INT64 val; + + shift = scale_factor_modshift[scale_factor]; + mod = shift & 3; + shift >>= 2; + val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]); + shift += n; + return (int)((val + (1 << (shift - 1))) >> shift); +} + +static inline int l2_unscale_group(int steps, int mant, int scale_factor) +{ + int shift, mod, val; + + shift = scale_factor_modshift[scale_factor]; + mod = shift & 3; + shift >>= 2; + /* XXX: store the result directly */ + val = (2 * (mant - (steps >> 1))) * scale_factor_mult2[steps >> 2][mod]; + return (val + (1 << (shift - 1))) >> shift; +} + +/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */ +static inline int l3_unscale(int value, int exponent) +{ +#if FRAC_BITS <= 15 + unsigned int m; +#else + UINT64 m; +#endif + int e; + + e = table_4_3_exp[value]; + e += (exponent >> 2); + e = FRAC_BITS - e; +#if FRAC_BITS <= 15 + if (e > 31) + e = 31; +#endif + m = table_4_3_value[value]; +#if FRAC_BITS <= 15 + m = (m * scale_factor_mult3[exponent & 3]); + m = (m + (1 << (e-1))) >> e; + return m; +#else + m = MUL64(m, scale_factor_mult3[exponent & 3]); + m = (m + (UINT64_C(1) << (e-1))) >> e; + return m; +#endif +} + static int decode_init(AVCodecContext * avctx) { MPADecodeContext *s = avctx->priv_data; - struct mpstr *mp = &s->mpstr; static int init; - - mp->fr.single = -1; - mp->synth_bo = 1; + int i, j, k; if(!init) { + /* scale factors table for layer 1/2 */ + for(i=0;i<64;i++) { + int shift, mod; + /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */ + shift = (i / 3) - 1; + mod = i % 3; +#if FRAC_BITS <= 15 + if (shift > 31) + shift = 31; +#endif + scale_factor_modshift[i] = mod | (shift << 2); + } + + /* scale factor multiply for layer 1 */ + for(i=0;i<15;i++) { + int n, norm; + n = i + 2; + norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1); + scale_factor_mult[i][0] = MULL(FIXR(1.0), norm); + scale_factor_mult[i][1] = MULL(FIXR(0.7937005259), norm); + scale_factor_mult[i][2] = MULL(FIXR(0.6299605249), norm); + dprintf("%d: norm=%x s=%x %x %x\n", + i, norm, + scale_factor_mult[i][0], + scale_factor_mult[i][1], + scale_factor_mult[i][2]); + } + + /* window */ + /* max = 18760, max sum over all 16 coefs : 44736 */ + for(i=0;i<257;i++) { + int v; + v = mpa_enwindow[i]; +#if WFRAC_BITS < 16 + v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS); +#endif + window[i] = v; + if ((i & 63) != 0) + v = -v; + if (i != 0) + window[512 - i] = v; + } + + /* huffman decode tables */ + huff_code_table[0] = NULL; + for(i=1;i<16;i++) { + const HuffTable *h = &mpa_huff_tables[i]; + int xsize, n, x, y; + UINT8 *code_table; + + xsize = h->xsize; + n = xsize * xsize; + /* XXX: fail test */ + init_vlc(&huff_vlc[i], 8, n, + h->bits, 1, 1, h->codes, 2, 2); + + code_table = av_mallocz(n); + j = 0; + for(x=0;x<xsize;x++) { + for(y=0;y<xsize;y++) + code_table[j++] = (x << 4) | y; + } + huff_code_table[i] = code_table; + } + for(i=0;i<2;i++) { + init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16, + mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1); + } + + for(i=0;i<9;i++) { + k = 0; + for(j=0;j<22;j++) { + band_index_long[i][j] = k; + k += band_size_long[i][j]; + } + band_index_long[i][22] = k; + } + + /* compute n ^ (4/3) and store it in mantissa/exp format */ + table_4_3_exp = av_mallocz(TABLE_4_3_SIZE * + sizeof(table_4_3_exp[0])); + if (!table_4_3_exp) + return -1; + table_4_3_value = av_mallocz(TABLE_4_3_SIZE * + sizeof(table_4_3_value[0])); + if (!table_4_3_value) { + free(table_4_3_exp); + return -1; + } + + for(i=1;i<TABLE_4_3_SIZE;i++) { + double f, fm; + int e, m; + f = pow((double)i, 4.0 / 3.0); + fm = frexp(f, &e); + m = FIXR(2 * fm); +#if FRAC_BITS <= 15 + if ((unsigned short)m != m) + m = 65535; +#endif + /* normalized to FRAC_BITS */ + table_4_3_value[i] = m; + table_4_3_exp[i] = e - 1; + } + + + for(i=0;i<7;i++) { + float f; + int v; + if (i != 6) { + f = tan((double)i * M_PI / 12.0); + v = FIXR(f / (1.0 + f)); + } else { + v = FIXR(1.0); + } + is_table[0][i] = v; + is_table[1][6 - i] = v; + } + /* invalid values */ + for(i=7;i<16;i++) + is_table[0][i] = is_table[1][i] = 0.0; + + for(i=0;i<16;i++) { + double f; + int e, k; + + for(j=0;j<2;j++) { + e = -(j + 1) * ((i + 1) >> 1); + f = pow(2.0, e / 4.0); + k = i & 1; + is_table_lsf[j][k ^ 1][i] = FIXR(f); + is_table_lsf[j][k][i] = FIXR(1.0); + dprintf("is_table_lsf %d %d: %x %x\n", + i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]); + } + } + + for(i=0;i<8;i++) { + float ci, cs, ca; + ci = ci_table[i]; + cs = 1.0 / sqrt(1.0 + ci * ci); + ca = cs * ci; + csa_table[i][0] = FIX(cs); + csa_table[i][1] = FIX(ca); + } + + /* compute mdct windows */ + for(i=0;i<36;i++) { + int v; + v = FIXR(sin(M_PI * (i + 0.5) / 36.0)); + mdct_win[0][i] = v; + mdct_win[1][i] = v; + mdct_win[3][i] = v; + } + for(i=0;i<6;i++) { + mdct_win[1][18 + i] = FIXR(1.0); + mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0)); + mdct_win[1][30 + i] = FIXR(0.0); + + mdct_win[3][i] = FIXR(0.0); + mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0)); + mdct_win[3][12 + i] = FIXR(1.0); + } + + for(i=0;i<12;i++) + mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0)); + + /* NOTE: we do frequency inversion adter the MDCT by changing + the sign of the right window coefs */ + for(j=0;j<4;j++) { + for(i=0;i<36;i+=2) { + mdct_win[j + 4][i] = mdct_win[j][i]; + mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1]; + } + } + +#if defined(DEBUG) + for(j=0;j<8;j++) { + printf("win%d=\n", j); + for(i=0;i<36;i++) + printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE); + printf("\n"); + } +#endif init = 1; - make_decode_tables(32767); - init_layer2(); - init_layer3(SBLIMIT); } s->inbuf_index = 0; s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE]; s->inbuf_ptr = s->inbuf; - +#ifdef DEBUG + s->frame_count = 0; +#endif return 0; } +/* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */; + +/* cos(i*pi/64) */ + +#define COS0_0 FIXR(0.50060299823519630134) +#define COS0_1 FIXR(0.50547095989754365998) +#define COS0_2 FIXR(0.51544730992262454697) +#define COS0_3 FIXR(0.53104259108978417447) +#define COS0_4 FIXR(0.55310389603444452782) +#define COS0_5 FIXR(0.58293496820613387367) +#define COS0_6 FIXR(0.62250412303566481615) +#define COS0_7 FIXR(0.67480834145500574602) +#define COS0_8 FIXR(0.74453627100229844977) +#define COS0_9 FIXR(0.83934964541552703873) +#define COS0_10 FIXR(0.97256823786196069369) +#define COS0_11 FIXR(1.16943993343288495515) +#define COS0_12 FIXR(1.48416461631416627724) +#define COS0_13 FIXR(2.05778100995341155085) +#define COS0_14 FIXR(3.40760841846871878570) +#define COS0_15 FIXR(10.19000812354805681150) + +#define COS1_0 FIXR(0.50241928618815570551) +#define COS1_1 FIXR(0.52249861493968888062) +#define COS1_2 FIXR(0.56694403481635770368) +#define COS1_3 FIXR(0.64682178335999012954) +#define COS1_4 FIXR(0.78815462345125022473) +#define COS1_5 FIXR(1.06067768599034747134) +#define COS1_6 FIXR(1.72244709823833392782) +#define COS1_7 FIXR(5.10114861868916385802) + +#define COS2_0 FIXR(0.50979557910415916894) +#define COS2_1 FIXR(0.60134488693504528054) +#define COS2_2 FIXR(0.89997622313641570463) +#define COS2_3 FIXR(2.56291544774150617881) + +#define COS3_0 FIXR(0.54119610014619698439) +#define COS3_1 FIXR(1.30656296487637652785) + +#define COS4_0 FIXR(0.70710678118654752439) + +/* butterfly operator */ +#define BF(a, b, c)\ +{\ + tmp0 = tab[a] + tab[b];\ + tmp1 = tab[a] - tab[b];\ + tab[a] = tmp0;\ + tab[b] = MULL(tmp1, c);\ +} + +#define BF1(a, b, c, d)\ +{\ + BF(a, b, COS4_0);\ + BF(c, d, -COS4_0);\ + tab[c] += tab[d];\ +} + +#define BF2(a, b, c, d)\ +{\ + BF(a, b, COS4_0);\ + BF(c, d, -COS4_0);\ + tab[c] += tab[d];\ + tab[a] += tab[c];\ + tab[c] += tab[b];\ + tab[b] += tab[d];\ +} + +#define ADD(a, b) tab[a] += tab[b] + +/* DCT32 without 1/sqrt(2) coef zero scaling. */ +static void dct32(INT32 *out, INT32 *tab) +{ + int tmp0, tmp1; + + /* pass 1 */ + BF(0, 31, COS0_0); + BF(1, 30, COS0_1); + BF(2, 29, COS0_2); + BF(3, 28, COS0_3); + BF(4, 27, COS0_4); + BF(5, 26, COS0_5); + BF(6, 25, COS0_6); + BF(7, 24, COS0_7); + BF(8, 23, COS0_8); + BF(9, 22, COS0_9); + BF(10, 21, COS0_10); + BF(11, 20, COS0_11); + BF(12, 19, COS0_12); + BF(13, 18, COS0_13); + BF(14, 17, COS0_14); + BF(15, 16, COS0_15); + + /* pass 2 */ + BF(0, 15, COS1_0); + BF(1, 14, COS1_1); + BF(2, 13, COS1_2); + BF(3, 12, COS1_3); + BF(4, 11, COS1_4); + BF(5, 10, COS1_5); + BF(6, 9, COS1_6); + BF(7, 8, COS1_7); + + BF(16, 31, -COS1_0); + BF(17, 30, -COS1_1); + BF(18, 29, -COS1_2); + BF(19, 28, -COS1_3); + BF(20, 27, -COS1_4); + BF(21, 26, -COS1_5); + BF(22, 25, -COS1_6); + BF(23, 24, -COS1_7); + + /* pass 3 */ + BF(0, 7, COS2_0); + BF(1, 6, COS2_1); + BF(2, 5, COS2_2); + BF(3, 4, COS2_3); + + BF(8, 15, -COS2_0); + BF(9, 14, -COS2_1); + BF(10, 13, -COS2_2); + BF(11, 12, -COS2_3); + + BF(16, 23, COS2_0); + BF(17, 22, COS2_1); + BF(18, 21, COS2_2); + BF(19, 20, COS2_3); + + BF(24, 31, -COS2_0); + BF(25, 30, -COS2_1); + BF(26, 29, -COS2_2); + BF(27, 28, -COS2_3); + + /* pass 4 */ + BF(0, 3, COS3_0); + BF(1, 2, COS3_1); + + BF(4, 7, -COS3_0); + BF(5, 6, -COS3_1); + + BF(8, 11, COS3_0); + BF(9, 10, COS3_1); + + BF(12, 15, -COS3_0); + BF(13, 14, -COS3_1); + + BF(16, 19, COS3_0); + BF(17, 18, COS3_1); + + BF(20, 23, -COS3_0); + BF(21, 22, -COS3_1); + + BF(24, 27, COS3_0); + BF(25, 26, COS3_1); + + BF(28, 31, -COS3_0); + BF(29, 30, -COS3_1); + + /* pass 5 */ + BF1(0, 1, 2, 3); + BF2(4, 5, 6, 7); + BF1(8, 9, 10, 11); + BF2(12, 13, 14, 15); + BF1(16, 17, 18, 19); + BF2(20, 21, 22, 23); + BF1(24, 25, 26, 27); + BF2(28, 29, 30, 31); + + /* pass 6 */ + + ADD( 8, 12); + ADD(12, 10); + ADD(10, 14); + ADD(14, 9); + ADD( 9, 13); + ADD(13, 11); + ADD(11, 15); + + out[ 0] = tab[0]; + out[16] = tab[1]; + out[ 8] = tab[2]; + out[24] = tab[3]; + out[ 4] = tab[4]; + out[20] = tab[5]; + out[12] = tab[6]; + out[28] = tab[7]; + out[ 2] = tab[8]; + out[18] = tab[9]; + out[10] = tab[10]; + out[26] = tab[11]; + out[ 6] = tab[12]; + out[22] = tab[13]; + out[14] = tab[14]; + out[30] = tab[15]; + + ADD(24, 28); + ADD(28, 26); + ADD(26, 30); + ADD(30, 25); + ADD(25, 29); + ADD(29, 27); + ADD(27, 31); + + out[ 1] = tab[16] + tab[24]; + out[17] = tab[17] + tab[25]; + out[ 9] = tab[18] + tab[26]; + out[25] = tab[19] + tab[27]; + out[ 5] = tab[20] + tab[28]; + out[21] = tab[21] + tab[29]; + out[13] = tab[22] + tab[30]; + out[29] = tab[23] + tab[31]; + out[ 3] = tab[24] + tab[20]; + out[19] = tab[25] + tab[21]; + out[11] = tab[26] + tab[22]; + out[27] = tab[27] + tab[23]; + out[ 7] = tab[28] + tab[18]; + out[23] = tab[29] + tab[19]; + out[15] = tab[30] + tab[17]; + out[31] = tab[31]; +} + +#define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15) + +#if FRAC_BITS <= 15 + +#define OUT_SAMPLE(sum)\ +{\ + int sum1;\ + sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT;\ + if (sum1 < -32768)\ + sum1 = -32768;\ + else if (sum1 > 32767)\ + sum1 = 32767;\ + *samples = sum1;\ + samples += incr;\ +} + +#define SUM8(off, op) \ +{ \ + sum op w[0 * 64 + off] * p[0 * 64];\ + sum op w[1 * 64 + off] * p[1 * 64];\ + sum op w[2 * 64 + off] * p[2 * 64];\ + sum op w[3 * 64 + off] * p[3 * 64];\ + sum op w[4 * 64 + off] * p[4 * 64];\ + sum op w[5 * 64 + off] * p[5 * 64];\ + sum op w[6 * 64 + off] * p[6 * 64];\ + sum op w[7 * 64 + off] * p[7 * 64];\ +} + +#else + +#define OUT_SAMPLE(sum)\ +{\ + int sum1;\ + sum1 = (int)((sum + (INT64_C(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT);\ + if (sum1 < -32768)\ + sum1 = -32768;\ + else if (sum1 > 32767)\ + sum1 = 32767;\ + *samples = sum1;\ + samples += incr;\ +} + +#define SUM8(off, op) \ +{ \ + sum op MUL64(w[0 * 64 + off], p[0 * 64]);\ + sum op MUL64(w[1 * 64 + off], p[1 * 64]);\ + sum op MUL64(w[2 * 64 + off], p[2 * 64]);\ + sum op MUL64(w[3 * 64 + off], p[3 * 64]);\ + sum op MUL64(w[4 * 64 + off], p[4 * 64]);\ + sum op MUL64(w[5 * 64 + off], p[5 * 64]);\ + sum op MUL64(w[6 * 64 + off], p[6 * 64]);\ + sum op MUL64(w[7 * 64 + off], p[7 * 64]);\ +} + +#endif + +/* 32 sub band synthesis filter. Input: 32 sub band samples, Output: + 32 samples. */ +/* XXX: optimize by avoiding ring buffer usage */ +static void synth_filter(MPADecodeContext *s1, + int ch, INT16 *samples, int incr, + INT32 sb_samples[SBLIMIT]) +{ + INT32 tmp[32]; + register MPA_INT *synth_buf, *p; + register MPA_INT *w; + int j, offset, v; +#if FRAC_BITS <= 15 + int sum; +#else + INT64 sum; +#endif + + dct32(tmp, sb_samples); + + offset = s1->synth_buf_offset[ch]; + synth_buf = s1->synth_buf[ch] + offset; + + for(j=0;j<32;j++) { + v = tmp[j]; +#if FRAC_BITS <= 15 + if (v > 32767) + v = 32767; + else if (v < -32768) + v = -32768; +#endif + synth_buf[j] = v; + } + /* copy to avoid wrap */ + memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT)); + + w = window; + for(j=0;j<16;j++) { + sum = 0; + p = synth_buf + 16 + j; /* 0-15 */ + SUM8(0, +=); + p = synth_buf + 48 - j; /* 32-47 */ + SUM8(32, -=); + OUT_SAMPLE(sum); + w++; + } + + p = synth_buf + 32; /* 48 */ + sum = 0; + SUM8(32, -=); + OUT_SAMPLE(sum); + w++; + + for(j=17;j<32;j++) { + sum = 0; + p = synth_buf + 48 - j; /* 17-31 */ + SUM8(0, -=); + p = synth_buf + 16 + j; /* 49-63 */ + SUM8(32, -=); + OUT_SAMPLE(sum); + w++; + } + offset = (offset - 32) & 511; + s1->synth_buf_offset[ch] = offset; +} + +/* cos(pi*i/24) */ +#define C1 FIXR(0.99144486137381041114) +#define C3 FIXR(0.92387953251128675612) +#define C5 FIXR(0.79335334029123516458) +#define C7 FIXR(0.60876142900872063941) +#define C9 FIXR(0.38268343236508977173) +#define C11 FIXR(0.13052619222005159154) + +/* 12 points IMDCT. We compute it "by hand" by factorizing obvious + cases. */ +static void imdct12(int *out, int *in) +{ + int tmp; + INT64 in1_3, in1_9, in4_3, in4_9; + + in1_3 = MUL64(in[1], C3); + in1_9 = MUL64(in[1], C9); + in4_3 = MUL64(in[4], C3); + in4_9 = MUL64(in[4], C9); + + tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) + + MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5)); + out[0] = tmp; + out[5] = -tmp; + tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 + + MUL64(in[2] + in[5], C3) - in4_9); + out[1] = tmp; + out[4] = -tmp; + tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) - + MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1)); + out[2] = tmp; + out[3] = -tmp; + tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) + + MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7)); + out[6] = tmp; + out[11] = tmp; + tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 + + MUL64(in[2] + in[5], C9) + in4_3); + out[7] = tmp; + out[10] = tmp; + tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) - + MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11)); + out[8] = tmp; + out[9] = tmp; +} + +#undef C1 +#undef C3 +#undef C5 +#undef C7 +#undef C9 +#undef C11 + +/* cos(pi*i/18) */ +#define C1 FIXR(0.98480775301220805936) +#define C2 FIXR(0.93969262078590838405) +#define C3 FIXR(0.86602540378443864676) +#define C4 FIXR(0.76604444311897803520) +#define C5 FIXR(0.64278760968653932632) +#define C6 FIXR(0.5) +#define C7 FIXR(0.34202014332566873304) +#define C8 FIXR(0.17364817766693034885) + +/* 0.5 / cos(pi*(2*i+1)/36) */ +static const int icos36[9] = { + FIXR(0.50190991877167369479), + FIXR(0.51763809020504152469), + FIXR(0.55168895948124587824), + FIXR(0.61038729438072803416), + FIXR(0.70710678118654752439), + FIXR(0.87172339781054900991), + FIXR(1.18310079157624925896), + FIXR(1.93185165257813657349), + FIXR(5.73685662283492756461), +}; + +static const int icos72[18] = { + /* 0.5 / cos(pi*(2*i+19)/72) */ + FIXR(0.74009361646113053152), + FIXR(0.82133981585229078570), + FIXR(0.93057949835178895673), + FIXR(1.08284028510010010928), + FIXR(1.30656296487637652785), + FIXR(1.66275476171152078719), + FIXR(2.31011315767264929558), + FIXR(3.83064878777019433457), + FIXR(11.46279281302667383546), + + /* 0.5 / cos(pi*(2*(i + 18) +19)/72) */ + FIXR(-0.67817085245462840086), + FIXR(-0.63023620700513223342), + FIXR(-0.59284452371708034528), + FIXR(-0.56369097343317117734), + FIXR(-0.54119610014619698439), + FIXR(-0.52426456257040533932), + FIXR(-0.51213975715725461845), + FIXR(-0.50431448029007636036), + FIXR(-0.50047634258165998492), +}; + +/* using Lee like decomposition followed by hand coded 9 points DCT */ +static void imdct36(int *out, int *in) +{ + int i, j, t0, t1, t2, t3, s0, s1, s2, s3; + int tmp[18], *tmp1, *in1; + INT64 in3_3, in6_6; + + for(i=17;i>=1;i--) + in[i] += in[i-1]; + for(i=17;i>=3;i-=2) + in[i] += in[i-2]; + + for(j=0;j<2;j++) { + tmp1 = tmp + j; + in1 = in + j; + + in3_3 = MUL64(in1[2*3], C3); + in6_6 = MUL64(in1[2*6], C6); + + tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 + + MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7)); + tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) + + MUL64(in1[2*4], C4) + in6_6 + + MUL64(in1[2*8], C8)); + tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3)); + tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) - + in1[2*6] + in1[2*0]; + tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 - + MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1)); + tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) - + MUL64(in1[2*4], C2) + in6_6 + + MUL64(in1[2*8], C4)); + tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 + + MUL64(in1[2*5], C1) - + MUL64(in1[2*7], C5)); + tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) + + MUL64(in1[2*4], C8) + in6_6 - + MUL64(in1[2*8], C2)); + tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8]; + } + + i = 0; + for(j=0;j<4;j++) { + t0 = tmp[i]; + t1 = tmp[i + 2]; + s0 = t1 + t0; + s2 = t1 - t0; + + t2 = tmp[i + 1]; + t3 = tmp[i + 3]; + s1 = MULL(t3 + t2, icos36[j]); + s3 = MULL(t3 - t2, icos36[8 - j]); + + t0 = MULL(s0 + s1, icos72[9 + 8 - j]); + t1 = MULL(s0 - s1, icos72[8 - j]); + out[18 + 9 + j] = t0; + out[18 + 8 - j] = t0; + out[9 + j] = -t1; + out[8 - j] = t1; + + t0 = MULL(s2 + s3, icos72[9+j]); + t1 = MULL(s2 - s3, icos72[j]); + out[18 + 9 + (8 - j)] = t0; + out[18 + j] = t0; + out[9 + (8 - j)] = -t1; + out[j] = t1; + i += 4; + } + + s0 = tmp[16]; + s1 = MULL(tmp[17], icos36[4]); + t0 = MULL(s0 + s1, icos72[9 + 4]); + t1 = MULL(s0 - s1, icos72[4]); + out[18 + 9 + 4] = t0; + out[18 + 8 - 4] = t0; + out[9 + 4] = -t1; + out[8 - 4] = t1; +} + /* fast header check for resync */ static int check_header(UINT32 header) { @@ -95,9 +953,8 @@ static int check_header(UINT32 header) /* layer check */ if (((header >> 17) & 3) == 0) return -1; - /* bit rate : currently no free format supported */ - if (((header >> 12) & 0xf) == 0xf || - ((header >> 12) & 0xf) == 0x0) + /* bit rate */ + if (((header >> 12) & 0xf) == 0xf) return -1; /* frequency */ if (((header >> 10) & 3) == 3) @@ -105,123 +962,1281 @@ static int check_header(UINT32 header) return 0; } +/* header + layer + bitrate + freq + lsf/mpeg25 */ +#define SAME_HEADER_MASK \ + (0xffe00000 | (3 << 17) | (0xf << 12) | (3 << 10) | (3 << 19)) + /* header decoding. MUST check the header before because no - consistency check is done there */ -static void decode_header(MPADecodeContext *s, UINT32 header) + consistency check is done there. Return 1 if free format found and + that the frame size must be computed externally */ +static int decode_header(MPADecodeContext *s, UINT32 header) { - struct frame *fr = &s->mpstr.fr; - int sample_rate, frame_size; - + int sample_rate, frame_size, mpeg25, padding; + int sample_rate_index, bitrate_index; if (header & (1<<20)) { - fr->lsf = (header & (1<<19)) ? 0 : 1; - fr->mpeg25 = 0; + s->lsf = (header & (1<<19)) ? 0 : 1; + mpeg25 = 0; } else { - fr->lsf = 1; - fr->mpeg25 = 1; + s->lsf = 1; + mpeg25 = 1; } s->layer = 4 - ((header >> 17) & 3); /* extract frequency */ - fr->sampling_frequency = ((header >> 10) & 3); - sample_rate = mp_freq_tab[fr->sampling_frequency] >> (fr->lsf + fr->mpeg25); - fr->sampling_frequency += 3 * (fr->lsf + fr->mpeg25); - - s->error_protection = ((header>>16) & 1) ^ 1; + sample_rate_index = (header >> 10) & 3; + sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25); + sample_rate_index += 3 * (s->lsf + mpeg25); + s->sample_rate_index = sample_rate_index; + s->error_protection = ((header >> 16) & 1) ^ 1; - fr->bitrate_index = ((header>>12)&0xf); - fr->padding = ((header>>9)&0x1); - fr->extension = ((header>>8)&0x1); - fr->mode = ((header>>6)&0x3); - fr->mode_ext = ((header>>4)&0x3); - fr->copyright = ((header>>3)&0x1); - fr->original = ((header>>2)&0x1); - fr->emphasis = header & 0x3; - - fr->stereo = (fr->mode == MPG_MD_MONO) ? 1 : 2; + bitrate_index = (header >> 12) & 0xf; + padding = (header >> 9) & 1; + //extension = (header >> 8) & 1; + s->mode = (header >> 6) & 3; + s->mode_ext = (header >> 4) & 3; + //copyright = (header >> 3) & 1; + //original = (header >> 2) & 1; + //emphasis = header & 3; + if (s->mode == MPA_MONO) + s->nb_channels = 1; + else + s->nb_channels = 2; - frame_size = mp_bitrate_tab[fr->lsf][s->layer - 1][fr->bitrate_index]; - s->bit_rate = frame_size * 1000; - switch(s->layer) { - case 1: - frame_size = (frame_size * 12000) / sample_rate; - frame_size = ((frame_size + fr->padding) << 2); - break; - case 2: - frame_size = (frame_size * 144000) / sample_rate; - frame_size += fr->padding; - break; - case 3: - frame_size = (frame_size * 144000) / (sample_rate << fr->lsf); - frame_size += fr->padding; - break; + if (bitrate_index != 0) { + frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index]; + s->bit_rate = frame_size * 1000; + switch(s->layer) { + case 1: + frame_size = (frame_size * 12000) / sample_rate; + frame_size = (frame_size + padding) * 4; + break; + case 2: + frame_size = (frame_size * 144000) / sample_rate; + frame_size += padding; + break; + default: + case 3: + frame_size = (frame_size * 144000) / (sample_rate << s->lsf); + frame_size += padding; + break; + } + s->frame_size = frame_size; + } else { + /* if no frame size computed, signal it */ + if (!s->free_format_frame_size) + return 1; + /* free format: compute bitrate and real frame size from the + frame size we extracted by reading the bitstream */ + s->frame_size = s->free_format_frame_size; + switch(s->layer) { + case 1: + s->frame_size += padding * 4; + s->bit_rate = (s->frame_size * sample_rate) / 48000; + break; + case 2: + s->frame_size += padding; + s->bit_rate = (s->frame_size * sample_rate) / 144000; + break; + default: + case 3: + s->frame_size += padding; + s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000; + break; + } } - s->frame_size = frame_size; s->sample_rate = sample_rate; - -#if 0 - printf("layer%d, %d Hz, %d kbits/s, %s\n", - s->layer, s->sample_rate, s->bit_rate, fr->stereo ? "stereo" : "mono"); + +#ifdef DEBUG + printf("layer%d, %d Hz, %d kbits/s, ", + s->layer, s->sample_rate, s->bit_rate); + if (s->nb_channels == 2) { + if (s->layer == 3) { + if (s->mode_ext & MODE_EXT_MS_STEREO) + printf("ms-"); + if (s->mode_ext & MODE_EXT_I_STEREO) + printf("i-"); + } + printf("stereo"); + } else { + printf("mono"); + } + printf("\n"); #endif + return 0; } -static int mp_decode_frame(MPADecodeContext *s, - short *samples) +/* return the number of decoded frames */ +static int mp_decode_layer1(MPADecodeContext *s) { - int nb_bytes; + int bound, i, v, n, ch, j, mant; + UINT8 allocation[MPA_MAX_CHANNELS][SBLIMIT]; + UINT8 scale_factors[MPA_MAX_CHANNELS][SBLIMIT]; + + if (s->mode == MPA_JSTEREO) + bound = (s->mode_ext + 1) * 4; + else + bound = SBLIMIT; + + /* allocation bits */ + for(i=0;i<bound;i++) { + for(ch=0;ch<s->nb_channels;ch++) { + allocation[ch][i] = get_bits(&s->gb, 4); + } + } + for(i=bound;i<SBLIMIT;i++) { + allocation[0][i] = get_bits(&s->gb, 4); + } + + /* scale factors */ + for(i=0;i<bound;i++) { + for(ch=0;ch<s->nb_channels;ch++) { + if (allocation[ch][i]) + scale_factors[ch][i] = get_bits(&s->gb, 6); + } + } + for(i=bound;i<SBLIMIT;i++) { + if (allocation[0][i]) { + scale_factors[0][i] = get_bits(&s->gb, 6); + scale_factors[1][i] = get_bits(&s->gb, 6); + } + } - init_get_bits(&s->gb, s->inbuf + HEADER_SIZE, s->inbuf_ptr - s->inbuf - HEADER_SIZE); + /* compute samples */ + for(j=0;j<12;j++) { + for(i=0;i<bound;i++) { + for(ch=0;ch<s->nb_channels;ch++) { + n = allocation[ch][i]; + if (n) { + mant = get_bits(&s->gb, n + 1); + v = l1_unscale(n, mant, scale_factors[ch][i]); + } else { + v = 0; + } + s->sb_samples[ch][j][i] = v; + } + } + for(i=bound;i<SBLIMIT;i++) { + n = allocation[0][i]; + if (n) { + mant = get_bits(&s->gb, n + 1); + v = l1_unscale(n, mant, scale_factors[0][i]); + s->sb_samples[0][j][i] = v; + v = l1_unscale(n, mant, scale_factors[1][i]); + s->sb_samples[1][j][i] = v; + } else { + s->sb_samples[0][j][i] = 0; + s->sb_samples[1][j][i] = 0; + } + } + } + return 12; +} + +/* bitrate is in kb/s */ +int l2_select_table(int bitrate, int nb_channels, int freq, int lsf) +{ + int ch_bitrate, table; - /* skip error protection field */ - if (s->error_protection) - get_bits(&s->gb, 16); + ch_bitrate = bitrate / nb_channels; + if (!lsf) { + if ((freq == 48000 && ch_bitrate >= 56) || + (ch_bitrate >= 56 && ch_bitrate <= 80)) + table = 0; + else if (freq != 48000 && ch_bitrate >= 96) + table = 1; + else if (freq != 32000 && ch_bitrate <= 48) + table = 2; + else + table = 3; + } else { + table = 4; + } + return table; +} - /* XXX: horrible: global! */ - gmp = &s->mpstr; - gmp_s = s; - gmp_gb = &s->gb; +static int mp_decode_layer2(MPADecodeContext *s) +{ + int sblimit; /* number of used subbands */ + const unsigned char *alloc_table; + int table, bit_alloc_bits, i, j, ch, bound, v; + unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; + unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]; + unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf; + int scale, qindex, bits, steps, k, l, m, b; - nb_bytes = 0; - switch(s->layer) { - case 1: - do_layer1(&s->mpstr.fr,(unsigned char *)samples, &nb_bytes); - break; - case 2: - do_layer2(&s->mpstr.fr,(unsigned char *)samples, &nb_bytes); - break; - case 3: - do_layer3(&s->mpstr.fr,(unsigned char *)samples, &nb_bytes); - s->inbuf_index ^= 1; - s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE]; - s->old_frame_size = s->frame_size; - break; - default: - break; + /* select decoding table */ + table = l2_select_table(s->bit_rate / 1000, s->nb_channels, + s->sample_rate, s->lsf); + sblimit = sblimit_table[table]; + alloc_table = alloc_tables[table]; + + if (s->mode == MPA_JSTEREO) + bound = (s->mode_ext + 1) * 4; + else + bound = sblimit; + + dprintf("bound=%d sblimit=%d\n", bound, sblimit); + /* parse bit allocation */ + j = 0; + for(i=0;i<bound;i++) { + bit_alloc_bits = alloc_table[j]; + for(ch=0;ch<s->nb_channels;ch++) { + bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits); + } + j += 1 << bit_alloc_bits; + } + for(i=bound;i<sblimit;i++) { + bit_alloc_bits = alloc_table[j]; + v = get_bits(&s->gb, bit_alloc_bits); + bit_alloc[0][i] = v; + bit_alloc[1][i] = v; + j += 1 << bit_alloc_bits; } - return nb_bytes; + +#ifdef DEBUG + { + for(ch=0;ch<s->nb_channels;ch++) { + for(i=0;i<sblimit;i++) + printf(" %d", bit_alloc[ch][i]); + printf("\n"); + } + } +#endif + + /* scale codes */ + for(i=0;i<sblimit;i++) { + for(ch=0;ch<s->nb_channels;ch++) { + if (bit_alloc[ch][i]) + scale_code[ch][i] = get_bits(&s->gb, 2); + } + } + + /* scale factors */ + for(i=0;i<sblimit;i++) { + for(ch=0;ch<s->nb_channels;ch++) { + if (bit_alloc[ch][i]) { + sf = scale_factors[ch][i]; + switch(scale_code[ch][i]) { + default: + case 0: + sf[0] = get_bits(&s->gb, 6); + sf[1] = get_bits(&s->gb, 6); + sf[2] = get_bits(&s->gb, 6); + break; + case 2: + sf[0] = get_bits(&s->gb, 6); + sf[1] = sf[0]; + sf[2] = sf[0]; + break; + case 1: + sf[0] = get_bits(&s->gb, 6); + sf[2] = get_bits(&s->gb, 6); + sf[1] = sf[0]; + break; + case 3: + sf[0] = get_bits(&s->gb, 6); + sf[2] = get_bits(&s->gb, 6); + sf[1] = sf[2]; + break; + } + } + } + } + +#ifdef DEBUG + for(ch=0;ch<s->nb_channels;ch++) { + for(i=0;i<sblimit;i++) { + if (bit_alloc[ch][i]) { + sf = scale_factors[ch][i]; + printf(" %d %d %d", sf[0], sf[1], sf[2]); + } else { + printf(" -"); + } + } + printf("\n"); + } +#endif + + /* samples */ + for(k=0;k<3;k++) { + for(l=0;l<12;l+=3) { + j = 0; + for(i=0;i<bound;i++) { + bit_alloc_bits = alloc_table[j]; + for(ch=0;ch<s->nb_channels;ch++) { + b = bit_alloc[ch][i]; + if (b) { + scale = scale_factors[ch][i][k]; + qindex = alloc_table[j+b]; + bits = quant_bits[qindex]; + if (bits < 0) { + /* 3 values at the same time */ + v = get_bits(&s->gb, -bits); + steps = quant_steps[qindex]; + s->sb_samples[ch][k * 12 + l + 0][i] = + l2_unscale_group(steps, v % steps, scale); + v = v / steps; + s->sb_samples[ch][k * 12 + l + 1][i] = + l2_unscale_group(steps, v % steps, scale); + v = v / steps; + s->sb_samples[ch][k * 12 + l + 2][i] = + l2_unscale_group(steps, v, scale); + } else { + for(m=0;m<3;m++) { + v = get_bits(&s->gb, bits); + v = l1_unscale(bits - 1, v, scale); + s->sb_samples[ch][k * 12 + l + m][i] = v; + } + } + } else { + s->sb_samples[ch][k * 12 + l + 0][i] = 0; + s->sb_samples[ch][k * 12 + l + 1][i] = 0; + s->sb_samples[ch][k * 12 + l + 2][i] = 0; + } + } + /* next subband in alloc table */ + j += 1 << bit_alloc_bits; + } + /* XXX: find a way to avoid this duplication of code */ + for(i=bound;i<sblimit;i++) { + bit_alloc_bits = alloc_table[j]; + b = bit_alloc[0][i]; + if (b) { + int mant, scale0, scale1; + scale0 = scale_factors[0][i][k]; + scale1 = scale_factors[1][i][k]; + qindex = alloc_table[j+b]; + bits = quant_bits[qindex]; + if (bits < 0) { + /* 3 values at the same time */ + v = get_bits(&s->gb, -bits); + steps = quant_steps[qindex]; + mant = v % steps; + v = v / steps; + s->sb_samples[0][k * 12 + l + 0][i] = + l2_unscale_group(steps, mant, scale0); + s->sb_samples[1][k * 12 + l + 0][i] = + l2_unscale_group(steps, mant, scale1); + mant = v % steps; + v = v / steps; + s->sb_samples[0][k * 12 + l + 1][i] = + l2_unscale_group(steps, mant, scale0); + s->sb_samples[1][k * 12 + l + 1][i] = + l2_unscale_group(steps, mant, scale1); + s->sb_samples[0][k * 12 + l + 2][i] = + l2_unscale_group(steps, v, scale0); + s->sb_samples[1][k * 12 + l + 2][i] = + l2_unscale_group(steps, v, scale1); + } else { + for(m=0;m<3;m++) { + mant = get_bits(&s->gb, bits); + s->sb_samples[0][k * 12 + l + m][i] = + l1_unscale(bits - 1, mant, scale0); + s->sb_samples[1][k * 12 + l + m][i] = + l1_unscale(bits - 1, mant, scale1); + } + } + } else { + s->sb_samples[0][k * 12 + l + 0][i] = 0; + s->sb_samples[0][k * 12 + l + 1][i] = 0; + s->sb_samples[0][k * 12 + l + 2][i] = 0; + s->sb_samples[1][k * 12 + l + 0][i] = 0; + s->sb_samples[1][k * 12 + l + 1][i] = 0; + s->sb_samples[1][k * 12 + l + 2][i] = 0; + } + /* next subband in alloc table */ + j += 1 << bit_alloc_bits; + } + /* fill remaining samples to zero */ + for(i=sblimit;i<SBLIMIT;i++) { + for(ch=0;ch<s->nb_channels;ch++) { + s->sb_samples[ch][k * 12 + l + 0][i] = 0; + s->sb_samples[ch][k * 12 + l + 1][i] = 0; + s->sb_samples[ch][k * 12 + l + 2][i] = 0; + } + } + } + } + return 3 * 12; } /* - * seek back in the stream for backstep bytes (at most 511 bytes, and - * at most in last frame). Note that this is slightly incorrect (data - * can span more than one block!) + * Seek back in the stream for backstep bytes (at most 511 bytes) */ -int set_pointer(long backstep) +static void seek_to_maindata(MPADecodeContext *s, long backstep) { UINT8 *ptr; /* compute current position in stream */ - ptr = gmp_gb->buf_ptr - (gmp_gb->bit_cnt >> 3); + ptr = s->gb.buf_ptr - (s->gb.bit_cnt >> 3); /* copy old data before current one */ ptr -= backstep; - memcpy(ptr, gmp_s->inbuf1[gmp_s->inbuf_index ^ 1] + - BACKSTEP_SIZE + gmp_s->old_frame_size - backstep, backstep); + memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] + + BACKSTEP_SIZE + s->old_frame_size - backstep, backstep); /* init get bits again */ - init_get_bits(gmp_gb, ptr, gmp_s->frame_size + backstep); + init_get_bits(&s->gb, ptr, s->frame_size + backstep); + /* prepare next buffer */ + s->inbuf_index ^= 1; + s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE]; + s->old_frame_size = s->frame_size; +} + +static inline void lsf_sf_expand(int *slen, + int sf, int n1, int n2, int n3) +{ + if (n3) { + slen[3] = sf % n3; + sf /= n3; + } else { + slen[3] = 0; + } + if (n2) { + slen[2] = sf % n2; + sf /= n2; + } else { + slen[2] = 0; + } + slen[1] = sf % n1; + sf /= n1; + slen[0] = sf; +} + +static void exponents_from_scale_factors(MPADecodeContext *s, + GranuleDef *g, + INT16 *exponents) +{ + const UINT8 *bstab, *pretab; + int len, i, j, k, l, v0, shift, gain, gains[3]; + INT16 *exp_ptr; + + exp_ptr = exponents; + gain = g->global_gain - 210; + shift = g->scalefac_scale + 1; + + bstab = band_size_long[s->sample_rate_index]; + pretab = mpa_pretab[g->preflag]; + for(i=0;i<g->long_end;i++) { + v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift); + len = bstab[i]; + for(j=len;j>0;j--) + *exp_ptr++ = v0; + } + + if (g->short_start < 13) { + bstab = band_size_short[s->sample_rate_index]; + gains[0] = gain - (g->subblock_gain[0] << 3); + gains[1] = gain - (g->subblock_gain[1] << 3); + gains[2] = gain - (g->subblock_gain[2] << 3); + k = g->long_end; + for(i=g->short_start;i<13;i++) { + len = bstab[i]; + for(l=0;l<3;l++) { + v0 = gains[l] - (g->scale_factors[k++] << shift); + for(j=len;j>0;j--) + *exp_ptr++ = v0; + } + } + } +} + +/* handle n = 0 too */ +static inline int get_bitsz(GetBitContext *s, int n) +{ + if (n == 0) + return 0; + else + return get_bits(s, n); +} + +static int huffman_decode(MPADecodeContext *s, GranuleDef *g, + INT16 *exponents, int end_pos) +{ + int s_index; + int linbits, code, x, y, l, v, i, j, k, pos; + UINT8 *last_buf_ptr; + UINT32 last_bit_buf; + int last_bit_cnt; + VLC *vlc; + UINT8 *code_table; + + /* low frequencies (called big values) */ + s_index = 0; + for(i=0;i<3;i++) { + j = g->region_size[i]; + if (j == 0) + continue; + /* select vlc table */ + k = g->table_select[i]; + l = mpa_huff_data[k][0]; + linbits = mpa_huff_data[k][1]; + vlc = &huff_vlc[l]; + code_table = huff_code_table[l]; + + /* read huffcode and compute each couple */ + for(;j>0;j--) { + if (get_bits_count(&s->gb) >= end_pos) + break; + if (code_table) { + code = get_vlc(&s->gb, vlc); + if (code < 0) + return -1; + y = code_table[code]; + x = y >> 4; + y = y & 0x0f; + } else { + x = 0; + y = 0; + } + dprintf("region=%d n=%d x=%d y=%d exp=%d\n", + i, g->region_size[i] - j, x, y, exponents[s_index]); + if (x) { + if (x == 15) + x += get_bitsz(&s->gb, linbits); + v = l3_unscale(x, exponents[s_index]); + if (get_bits1(&s->gb)) + v = -v; + } else { + v = 0; + } + g->sb_hybrid[s_index++] = v; + if (y) { + if (y == 15) + y += get_bitsz(&s->gb, linbits); + v = l3_unscale(y, exponents[s_index]); + if (get_bits1(&s->gb)) + v = -v; + } else { + v = 0; + } + g->sb_hybrid[s_index++] = v; + } + } + + /* high frequencies */ + vlc = &huff_quad_vlc[g->count1table_select]; + last_buf_ptr = NULL; + last_bit_buf = 0; + last_bit_cnt = 0; + while (s_index <= 572) { + pos = get_bits_count(&s->gb); + if (pos >= end_pos) { + if (pos > end_pos && last_buf_ptr != NULL) { + /* some encoders generate an incorrect size for this + part. We must go back into the data */ + s_index -= 4; + s->gb.buf_ptr = last_buf_ptr; + s->gb.bit_buf = last_bit_buf; + s->gb.bit_cnt = last_bit_cnt; + } + break; + } + last_buf_ptr = s->gb.buf_ptr; + last_bit_buf = s->gb.bit_buf; + last_bit_cnt = s->gb.bit_cnt; + + code = get_vlc(&s->gb, vlc); + dprintf("t=%d code=%d\n", g->count1table_select, code); + if (code < 0) + return -1; + for(i=0;i<4;i++) { + if (code & (8 >> i)) { + /* non zero value. Could use a hand coded function for + 'one' value */ + v = l3_unscale(1, exponents[s_index]); + if(get_bits1(&s->gb)) + v = -v; + } else { + v = 0; + } + g->sb_hybrid[s_index++] = v; + } + } + while (s_index < 576) + g->sb_hybrid[s_index++] = 0; return 0; } +/* Reorder short blocks from bitstream order to interleaved order. It + would be faster to do it in parsing, but the code would be far more + complicated */ +static void reorder_block(MPADecodeContext *s, GranuleDef *g) +{ + int i, j, k, len; + INT32 *ptr, *dst, *ptr1; + INT32 tmp[576]; + + if (g->block_type != 2) + return; + + if (g->switch_point) { + if (s->sample_rate_index != 8) { + ptr = g->sb_hybrid + 36; + } else { + ptr = g->sb_hybrid + 48; + } + } else { + ptr = g->sb_hybrid; + } + + for(i=g->short_start;i<13;i++) { + len = band_size_short[s->sample_rate_index][i]; + ptr1 = ptr; + for(k=0;k<3;k++) { + dst = tmp + k; + for(j=len;j>0;j--) { + *dst = *ptr++; + dst += 3; + } + } + memcpy(ptr1, tmp, len * 3 * sizeof(INT32)); + } +} + +#define ISQRT2 FIXR(0.70710678118654752440) + +static void compute_stereo(MPADecodeContext *s, + GranuleDef *g0, GranuleDef *g1) +{ + int i, j, k, l; + INT32 v1, v2; + int sf_max, tmp0, tmp1, sf, len, non_zero_found; + INT32 (*is_tab)[16]; + INT32 *tab0, *tab1; + int non_zero_found_short[3]; + + /* intensity stereo */ + if (s->mode_ext & MODE_EXT_I_STEREO) { + if (!s->lsf) { + is_tab = is_table; + sf_max = 7; + } else { + is_tab = is_table_lsf[g1->scalefac_compress & 1]; + sf_max = 16; + } + + tab0 = g0->sb_hybrid + 576; + tab1 = g1->sb_hybrid + 576; + + non_zero_found_short[0] = 0; + non_zero_found_short[1] = 0; + non_zero_found_short[2] = 0; + k = (13 - g1->short_start) * 3 + g1->long_end - 3; + for(i = 12;i >= g1->short_start;i--) { + /* for last band, use previous scale factor */ + if (i != 11) + k -= 3; + len = band_size_short[s->sample_rate_index][i]; + for(l=2;l>=0;l--) { + tab0 -= len; + tab1 -= len; + if (!non_zero_found_short[l]) { + /* test if non zero band. if so, stop doing i-stereo */ + for(j=0;j<len;j++) { + if (tab1[j] != 0) { + non_zero_found_short[l] = 1; + goto found1; + } + } + sf = g1->scale_factors[k + l]; + if (sf >= sf_max) + goto found1; + + v1 = is_tab[0][sf]; + v2 = is_tab[1][sf]; + for(j=0;j<len;j++) { + tmp0 = tab0[j]; + tab0[j] = MULL(tmp0, v1); + tab1[j] = MULL(tmp0, v2); + } + } else { + found1: + if (s->mode_ext & MODE_EXT_MS_STEREO) { + /* lower part of the spectrum : do ms stereo + if enabled */ + for(j=0;j<len;j++) { + tmp0 = tab0[j]; + tmp1 = tab1[j]; + tab0[j] = MULL(tmp0 + tmp1, ISQRT2); + tab1[j] = MULL(tmp0 - tmp1, ISQRT2); + } + } + } + } + } + + non_zero_found = non_zero_found_short[0] | + non_zero_found_short[1] | + non_zero_found_short[2]; + + for(i = g1->long_end - 1;i >= 0;i--) { + len = band_size_long[s->sample_rate_index][i]; + tab0 -= len; + tab1 -= len; + /* test if non zero band. if so, stop doing i-stereo */ + if (!non_zero_found) { + for(j=0;j<len;j++) { + if (tab1[j] != 0) { + non_zero_found = 1; + goto found2; + } + } + /* for last band, use previous scale factor */ + k = (i == 21) ? 20 : i; + sf = g1->scale_factors[k]; + if (sf >= sf_max) + goto found2; + v1 = is_tab[0][sf]; + v2 = is_tab[1][sf]; + for(j=0;j<len;j++) { + tmp0 = tab0[j]; + tab0[j] = MULL(tmp0, v1); + tab1[j] = MULL(tmp0, v2); + } + } else { + found2: + if (s->mode_ext & MODE_EXT_MS_STEREO) { + /* lower part of the spectrum : do ms stereo + if enabled */ + for(j=0;j<len;j++) { + tmp0 = tab0[j]; + tmp1 = tab1[j]; + tab0[j] = MULL(tmp0 + tmp1, ISQRT2); + tab1[j] = MULL(tmp0 - tmp1, ISQRT2); + } + } + } + } + } else if (s->mode_ext & MODE_EXT_MS_STEREO) { + /* ms stereo ONLY */ + /* NOTE: the 1/sqrt(2) normalization factor is included in the + global gain */ + tab0 = g0->sb_hybrid; + tab1 = g1->sb_hybrid; + for(i=0;i<576;i++) { + tmp0 = tab0[i]; + tmp1 = tab1[i]; + tab0[i] = tmp0 + tmp1; + tab1[i] = tmp0 - tmp1; + } + } +} + +static void compute_antialias(MPADecodeContext *s, + GranuleDef *g) +{ + INT32 *ptr, *p0, *p1, *csa; + int n, tmp0, tmp1, i, j; + + /* we antialias only "long" bands */ + if (g->block_type == 2) { + if (!g->switch_point) + return; + /* XXX: check this for 8000Hz case */ + n = 1; + } else { + n = SBLIMIT - 1; + } + + ptr = g->sb_hybrid + 18; + for(i = n;i > 0;i--) { + p0 = ptr - 1; + p1 = ptr; + csa = &csa_table[0][0]; + for(j=0;j<8;j++) { + tmp0 = *p0; + tmp1 = *p1; + *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1])); + *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0])); + p0--; + p1++; + csa += 2; + } + ptr += 18; + } +} + +static void compute_imdct(MPADecodeContext *s, + GranuleDef *g, + INT32 *sb_samples, + INT32 *mdct_buf) +{ + INT32 *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1; + INT32 in[6]; + INT32 out[36]; + INT32 out2[12]; + int i, j, k, mdct_long_end, v, sblimit; + + /* find last non zero block */ + ptr = g->sb_hybrid + 576; + ptr1 = g->sb_hybrid + 2 * 18; + while (ptr >= ptr1) { + ptr -= 6; + v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5]; + if (v != 0) + break; + } + sblimit = ((ptr - g->sb_hybrid) / 18) + 1; + + if (g->block_type == 2) { + /* XXX: check for 8000 Hz */ + if (g->switch_point) + mdct_long_end = 2; + else + mdct_long_end = 0; + } else { + mdct_long_end = sblimit; + } + + buf = mdct_buf; + ptr = g->sb_hybrid; + for(j=0;j<mdct_long_end;j++) { + imdct36(out, ptr); + /* apply window & overlap with previous buffer */ + out_ptr = sb_samples + j; + /* select window */ + if (g->switch_point && j < 2) + win1 = mdct_win[0]; + else + win1 = mdct_win[g->block_type]; + /* select frequency inversion */ + win = win1 + ((4 * 36) & -(j & 1)); + for(i=0;i<18;i++) { + *out_ptr = MULL(out[i], win[i]) + buf[i]; + buf[i] = MULL(out[i + 18], win[i + 18]); + out_ptr += SBLIMIT; + } + ptr += 18; + buf += 18; + } + for(j=mdct_long_end;j<sblimit;j++) { + for(i=0;i<6;i++) { + out[i] = 0; + out[6 + i] = 0; + out[30+i] = 0; + } + /* select frequency inversion */ + win = mdct_win[2] + ((4 * 36) & -(j & 1)); + buf2 = out + 6; + for(k=0;k<3;k++) { + /* reorder input for short mdct */ + ptr1 = ptr + k; + for(i=0;i<6;i++) { + in[i] = *ptr1; + ptr1 += 3; + } + imdct12(out2, in); + /* apply 12 point window and do small overlap */ + for(i=0;i<6;i++) { + buf2[i] = MULL(out2[i], win[i]) + buf2[i]; + buf2[i + 6] = MULL(out2[i + 6], win[i + 6]); + } + buf2 += 6; + } + /* overlap */ + out_ptr = sb_samples + j; + for(i=0;i<18;i++) { + *out_ptr = out[i] + buf[i]; + buf[i] = out[i + 18]; + out_ptr += SBLIMIT; + } + ptr += 18; + buf += 18; + } + /* zero bands */ + for(j=sblimit;j<SBLIMIT;j++) { + /* overlap */ + out_ptr = sb_samples + j; + for(i=0;i<18;i++) { + *out_ptr = buf[i]; + buf[i] = 0; + out_ptr += SBLIMIT; + } + buf += 18; + } +} + +#ifdef DEBUG +void sample_dump(int fnum, INT32 *tab, int n) +{ + static FILE *files[16], *f; + char buf[512]; + + f = files[fnum]; + if (!f) { + sprintf(buf, "/tmp/out%d.pcm", fnum); + f = fopen(buf, "w"); + if (!f) + return; + files[fnum] = f; + } + + if (fnum == 0) { + int i; + static int pos = 0; + printf("pos=%d\n", pos); + for(i=0;i<n;i++) { + printf(" %f", (double)tab[i] / 32768.0); + if ((i % 18) == 17) + printf("\n"); + } + pos += n; + } + + fwrite(tab, 1, n * sizeof(INT32), f); +} +#endif + + +/* main layer3 decoding function */ +static int mp_decode_layer3(MPADecodeContext *s) +{ + int nb_granules, main_data_begin, private_bits; + int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left; + GranuleDef granules[2][2], *g; + INT16 exponents[576]; + + /* read side info */ + if (s->lsf) { + main_data_begin = get_bits(&s->gb, 8); + if (s->nb_channels == 2) + private_bits = get_bits(&s->gb, 2); + else + private_bits = get_bits(&s->gb, 1); + nb_granules = 1; + } else { + main_data_begin = get_bits(&s->gb, 9); + if (s->nb_channels == 2) + private_bits = get_bits(&s->gb, 3); + else + private_bits = get_bits(&s->gb, 5); + nb_granules = 2; + for(ch=0;ch<s->nb_channels;ch++) { + granules[ch][0].scfsi = 0; /* all scale factors are transmitted */ + granules[ch][1].scfsi = get_bits(&s->gb, 4); + } + } + + for(gr=0;gr<nb_granules;gr++) { + for(ch=0;ch<s->nb_channels;ch++) { + dprintf("gr=%d ch=%d: side_info\n", gr, ch); + g = &granules[ch][gr]; + g->part2_3_length = get_bits(&s->gb, 12); + g->big_values = get_bits(&s->gb, 9); + g->global_gain = get_bits(&s->gb, 8); + /* if MS stereo only is selected, we precompute the + 1/sqrt(2) renormalization factor */ + if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) == + MODE_EXT_MS_STEREO) + g->global_gain -= 2; + if (s->lsf) + g->scalefac_compress = get_bits(&s->gb, 9); + else + g->scalefac_compress = get_bits(&s->gb, 4); + blocksplit_flag = get_bits(&s->gb, 1); + if (blocksplit_flag) { + g->block_type = get_bits(&s->gb, 2); + if (g->block_type == 0) + return -1; + g->switch_point = get_bits(&s->gb, 1); + for(i=0;i<2;i++) + g->table_select[i] = get_bits(&s->gb, 5); + for(i=0;i<3;i++) + g->subblock_gain[i] = get_bits(&s->gb, 3); + /* compute huffman coded region sizes */ + if (g->block_type == 2) + g->region_size[0] = (36 / 2); + else { + if (s->sample_rate_index <= 2) + g->region_size[0] = (36 / 2); + else if (s->sample_rate_index != 8) + g->region_size[0] = (54 / 2); + else + g->region_size[0] = (108 / 2); + } + g->region_size[1] = (576 / 2); + } else { + int region_address1, region_address2, l; + g->block_type = 0; + g->switch_point = 0; + for(i=0;i<3;i++) + g->table_select[i] = get_bits(&s->gb, 5); + /* compute huffman coded region sizes */ + region_address1 = get_bits(&s->gb, 4); + region_address2 = get_bits(&s->gb, 3); + dprintf("region1=%d region2=%d\n", + region_address1, region_address2); + g->region_size[0] = + band_index_long[s->sample_rate_index][region_address1 + 1] >> 1; + l = region_address1 + region_address2 + 2; + /* should not overflow */ + if (l > 22) + l = 22; + g->region_size[1] = + band_index_long[s->sample_rate_index][l] >> 1; + } + /* convert region offsets to region sizes and truncate + size to big_values */ + g->region_size[2] = (576 / 2); + j = 0; + for(i=0;i<3;i++) { + k = g->region_size[i]; + if (k > g->big_values) + k = g->big_values; + g->region_size[i] = k - j; + j = k; + } + + /* compute band indexes */ + if (g->block_type == 2) { + if (g->switch_point) { + /* if switched mode, we handle the 36 first samples as + long blocks. For 8000Hz, we handle the 48 first + exponents as long blocks (XXX: check this!) */ + if (s->sample_rate_index <= 2) + g->long_end = 8; + else if (s->sample_rate_index != 8) + g->long_end = 6; + else + g->long_end = 4; /* 8000 Hz */ + + if (s->sample_rate_index != 8) + g->short_start = 3; + else + g->short_start = 2; + } else { + g->long_end = 0; + g->short_start = 0; + } + } else { + g->short_start = 13; + g->long_end = 22; + } + + g->preflag = 0; + if (!s->lsf) + g->preflag = get_bits(&s->gb, 1); + g->scalefac_scale = get_bits(&s->gb, 1); + g->count1table_select = get_bits(&s->gb, 1); + dprintf("block_type=%d switch_point=%d\n", + g->block_type, g->switch_point); + } + } + + /* now we get bits from the main_data_begin offset */ + dprintf("seekback: %d\n", main_data_begin); + seek_to_maindata(s, main_data_begin); + + for(gr=0;gr<nb_granules;gr++) { + for(ch=0;ch<s->nb_channels;ch++) { + g = &granules[ch][gr]; + + bits_pos = get_bits_count(&s->gb); + + if (!s->lsf) { + UINT8 *sc; + int slen, slen1, slen2; + + /* MPEG1 scale factors */ + slen1 = slen_table[0][g->scalefac_compress]; + slen2 = slen_table[1][g->scalefac_compress]; + dprintf("slen1=%d slen2=%d\n", slen1, slen2); + if (g->block_type == 2) { + n = g->switch_point ? 17 : 18; + j = 0; + for(i=0;i<n;i++) + g->scale_factors[j++] = get_bitsz(&s->gb, slen1); + for(i=0;i<18;i++) + g->scale_factors[j++] = get_bitsz(&s->gb, slen2); + for(i=0;i<3;i++) + g->scale_factors[j++] = 0; + } else { + sc = granules[ch][0].scale_factors; + j = 0; + for(k=0;k<4;k++) { + n = (k == 0 ? 6 : 5); + if ((g->scfsi & (0x8 >> k)) == 0) { + slen = (k < 2) ? slen1 : slen2; + for(i=0;i<n;i++) + g->scale_factors[j++] = get_bitsz(&s->gb, slen); + } else { + /* simply copy from last granule */ + for(i=0;i<n;i++) { + g->scale_factors[j] = sc[j]; + j++; + } + } + } + g->scale_factors[j++] = 0; + } +#ifdef DEBUG + { + printf("scfsi=%x gr=%d ch=%d scale_factors:\n", + g->scfsi, gr, ch); + for(i=0;i<j;i++) + printf(" %d", g->scale_factors[i]); + printf("\n"); + } +#endif + } else { + int tindex, tindex2, slen[4], sl, sf; + + /* LSF scale factors */ + if (g->block_type == 2) { + tindex = g->switch_point ? 2 : 1; + } else { + tindex = 0; + } + sf = g->scalefac_compress; + if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) { + /* intensity stereo case */ + sf >>= 1; + if (sf < 180) { + lsf_sf_expand(slen, sf, 6, 6, 0); + tindex2 = 3; + } else if (sf < 244) { + lsf_sf_expand(slen, sf - 180, 4, 4, 0); + tindex2 = 4; + } else { + lsf_sf_expand(slen, sf - 244, 3, 0, 0); + tindex2 = 5; + } + } else { + /* normal case */ + if (sf < 400) { + lsf_sf_expand(slen, sf, 5, 4, 4); + tindex2 = 0; + } else if (sf < 500) { + lsf_sf_expand(slen, sf - 400, 5, 4, 0); + tindex2 = 1; + } else { + lsf_sf_expand(slen, sf - 500, 3, 0, 0); + tindex2 = 2; + g->preflag = 1; + } + } + + j = 0; + for(k=0;k<4;k++) { + n = lsf_nsf_table[tindex2][tindex][k]; + sl = slen[k]; + for(i=0;i<n;i++) + g->scale_factors[j++] = get_bitsz(&s->gb, sl); + } + /* XXX: should compute exact size */ + for(;j<40;j++) + g->scale_factors[j] = 0; +#ifdef DEBUG + { + printf("gr=%d ch=%d scale_factors:\n", + gr, ch); + for(i=0;i<40;i++) + printf(" %d", g->scale_factors[i]); + printf("\n"); + } +#endif + } + + exponents_from_scale_factors(s, g, exponents); + + /* read Huffman coded residue */ + if (huffman_decode(s, g, exponents, + bits_pos + g->part2_3_length) < 0) + return -1; +#if defined(DEBUG) && 0 + sample_dump(3, g->sb_hybrid, 576); +#endif + + /* skip extension bits */ + bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos); + if (bits_left < 0) { + dprintf("bits_left=%d\n", bits_left); + return -1; + } + while (bits_left >= 16) { + skip_bits(&s->gb, 16); + bits_left -= 16; + } + if (bits_left > 0) + skip_bits(&s->gb, bits_left); + } /* ch */ + + if (s->nb_channels == 2) + compute_stereo(s, &granules[0][gr], &granules[1][gr]); + + for(ch=0;ch<s->nb_channels;ch++) { + g = &granules[ch][gr]; + + reorder_block(s, g); +#ifdef DEBUG + sample_dump(0, g->sb_hybrid, 576); +#endif + compute_antialias(s, g); +#ifdef DEBUG + sample_dump(1, g->sb_hybrid, 576); +#endif + compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]); +#ifdef DEBUG + sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576); +#endif + } + } /* gr */ + return nb_granules * 18; +} + +static int mp_decode_frame(MPADecodeContext *s, + short *samples) +{ + int i, nb_frames, ch; + short *samples_ptr; + + init_get_bits(&s->gb, s->inbuf + HEADER_SIZE, + s->inbuf_ptr - s->inbuf - HEADER_SIZE); + + /* skip error protection field */ + if (s->error_protection) + get_bits(&s->gb, 16); + + dprintf("frame %d:\n", s->frame_count); + switch(s->layer) { + case 1: + nb_frames = mp_decode_layer1(s); + break; + case 2: + nb_frames = mp_decode_layer2(s); + break; + case 3: + default: + nb_frames = mp_decode_layer3(s); + break; + } +#if defined(DEBUG) + for(i=0;i<nb_frames;i++) { + for(ch=0;ch<s->nb_channels;ch++) { + int j; + printf("%d-%d:", i, ch); + for(j=0;j<SBLIMIT;j++) + printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE); + printf("\n"); + } + } +#endif + /* apply the synthesis filter */ + for(ch=0;ch<s->nb_channels;ch++) { + samples_ptr = samples + ch; + for(i=0;i<nb_frames;i++) { + synth_filter(s, ch, samples_ptr, s->nb_channels, + s->sb_samples[ch][i]); + samples_ptr += 32 * s->nb_channels; + } + } +#ifdef DEBUG + s->frame_count++; +#endif + return nb_frames * 32 * sizeof(short) * s->nb_channels; +} + static int decode_frame(AVCodecContext * avctx, void *data, int *data_size, UINT8 * buf, int buf_size) @@ -237,7 +2252,19 @@ static int decode_frame(AVCodecContext * avctx, while (buf_size > 0) { len = s->inbuf_ptr - s->inbuf; if (s->frame_size == 0) { - /* no header seen : find one. We need at least 7 bytes to parse it */ + /* special case for next header for first frame in free + format case (XXX: find a simpler method) */ + if (s->free_format_next_header != 0) { + s->inbuf[0] = s->free_format_next_header >> 24; + s->inbuf[1] = s->free_format_next_header >> 16; + s->inbuf[2] = s->free_format_next_header >> 8; + s->inbuf[3] = s->free_format_next_header; + s->inbuf_ptr = s->inbuf + 4; + s->free_format_next_header = 0; + goto got_header; + } + /* no header seen : find one. We need at least HEADER_SIZE + bytes to parse it */ len = HEADER_SIZE - len; if (len > buf_size) len = buf_size; @@ -246,20 +2273,80 @@ static int decode_frame(AVCodecContext * avctx, s->inbuf_ptr += len; buf_size -= len; if ((s->inbuf_ptr - s->inbuf) == HEADER_SIZE) { + got_header: header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) | (s->inbuf[2] << 8) | s->inbuf[3]; if (check_header(header) < 0) { /* no sync found : move by one byte (inefficient, but simple!) */ memcpy(s->inbuf, s->inbuf + 1, HEADER_SIZE - 1); s->inbuf_ptr--; + dprintf("skip %x\n", header); + /* reset free format frame size to give a chance + to get a new bitrate */ + s->free_format_frame_size = 0; } else { - decode_header(s, header); - /* update codec info */ - avctx->sample_rate = s->sample_rate; - avctx->channels = s->mpstr.fr.stereo ? 2 : 1; - avctx->bit_rate = s->bit_rate; + if (decode_header(s, header) == 1) { + /* free format: compute frame size */ + s->frame_size = -1; + } else { + /* update codec info */ + avctx->sample_rate = s->sample_rate; + avctx->channels = s->nb_channels; + avctx->bit_rate = s->bit_rate; + } } } + } else if (s->frame_size == -1) { + /* free format : find next sync to compute frame size */ + len = MPA_MAX_CODED_FRAME_SIZE - len; + if (len > buf_size) + len = buf_size; + if (len == 0) { + /* frame too long: resync */ + s->frame_size = 0; + } else { + UINT8 *p, *pend; + UINT32 header1; + int padding; + + memcpy(s->inbuf_ptr, buf_ptr, len); + /* check for header */ + p = s->inbuf_ptr - 3; + pend = s->inbuf_ptr + len - 4; + while (p <= pend) { + header = (p[0] << 24) | (p[1] << 16) | + (p[2] << 8) | p[3]; + header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) | + (s->inbuf[2] << 8) | s->inbuf[3]; + /* check with high probability that we have a + valid header */ + if ((header & SAME_HEADER_MASK) == + (header1 & SAME_HEADER_MASK)) { + /* header found: update pointers */ + len = (p + 4) - s->inbuf_ptr; + buf_ptr += len; + buf_size -= len; + s->inbuf_ptr = p; + /* compute frame size */ + s->free_format_next_header = header; + s->free_format_frame_size = s->inbuf_ptr - s->inbuf; + padding = (header1 >> 9) & 1; + if (s->layer == 1) + s->free_format_frame_size -= padding * 4; + else + s->free_format_frame_size -= padding; + dprintf("free frame size=%d padding=%d\n", + s->free_format_frame_size, padding); + decode_header(s, header1); + goto next_data; + } + p++; + } + /* not found: simply increase pointers */ + buf_ptr += len; + s->inbuf_ptr += len; + buf_size -= len; + } } else if (len < s->frame_size) { len = s->frame_size - len; if (len > buf_size) @@ -276,6 +2363,7 @@ static int decode_frame(AVCodecContext * avctx, *data_size = out_size; break; } + next_data: } return buf_ptr - buf; } |