diff options
author | Fabrice Bellard <fabrice@bellard.org> | 2002-10-28 00:34:08 +0000 |
---|---|---|
committer | Fabrice Bellard <fabrice@bellard.org> | 2002-10-28 00:34:08 +0000 |
commit | bb6f5690728486b71e280a295aef4c49d25ee758 (patch) | |
tree | bb4def001175ea9c928da56cc2eb8cbcc77488b1 /libavcodec/fft.c | |
parent | 6d291820978ee1058f7154ed0b8cb7377c8bed51 (diff) | |
download | ffmpeg-bb6f5690728486b71e280a295aef4c49d25ee758.tar.gz |
new generic FFT/MDCT code for audio codecs
Originally committed as revision 1088 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/fft.c')
-rw-r--r-- | libavcodec/fft.c | 229 |
1 files changed, 229 insertions, 0 deletions
diff --git a/libavcodec/fft.c b/libavcodec/fft.c new file mode 100644 index 0000000000..0f5181ac3c --- /dev/null +++ b/libavcodec/fft.c @@ -0,0 +1,229 @@ +/* + * FFT/IFFT transforms + * Copyright (c) 2002 Fabrice Bellard. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ +#include "dsputil.h" + +/** + * The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is + * done + */ +int fft_init(FFTContext *s, int nbits, int inverse) +{ + int i, j, m, n; + float alpha, c1, s1, s2; + + s->nbits = nbits; + n = 1 << nbits; + + s->exptab = av_malloc((n / 2) * sizeof(FFTComplex)); + if (!s->exptab) + goto fail; + s->revtab = av_malloc(n * sizeof(uint16_t)); + if (!s->revtab) + goto fail; + s->inverse = inverse; + + s2 = inverse ? 1.0 : -1.0; + + for(i=0;i<(n/2);i++) { + alpha = 2 * M_PI * (float)i / (float)n; + c1 = cos(alpha); + s1 = sin(alpha) * s2; + s->exptab[i].re = c1; + s->exptab[i].im = s1; + } + s->fft_calc = fft_calc_c; + s->exptab1 = NULL; + + /* compute constant table for HAVE_SSE version */ +#if defined(HAVE_MMX) && 0 + if (mm_flags & MM_SSE) { + int np, nblocks, np2, l; + FFTComplex *q; + + np = 1 << nbits; + nblocks = np >> 3; + np2 = np >> 1; + s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex)); + if (!s->exptab1) + goto fail; + q = s->exptab1; + do { + for(l = 0; l < np2; l += 2 * nblocks) { + *q++ = s->exptab[l]; + *q++ = s->exptab[l + nblocks]; + + q->re = -s->exptab[l].im; + q->im = s->exptab[l].re; + q++; + q->re = -s->exptab[l + nblocks].im; + q->im = s->exptab[l + nblocks].re; + q++; + } + nblocks = nblocks >> 1; + } while (nblocks != 0); + av_freep(&s->exptab); + } +#endif + + /* compute bit reverse table */ + + for(i=0;i<n;i++) { + m=0; + for(j=0;j<nbits;j++) { + m |= ((i >> j) & 1) << (nbits-j-1); + } + s->revtab[i]=m; + } + return 0; + fail: + av_freep(&s->revtab); + av_freep(&s->exptab); + av_freep(&s->exptab1); + return -1; +} + +/* butter fly op */ +#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \ +{\ + FFTSample ax, ay, bx, by;\ + bx=pre1;\ + by=pim1;\ + ax=qre1;\ + ay=qim1;\ + pre = (bx + ax);\ + pim = (by + ay);\ + qre = (bx - ax);\ + qim = (by - ay);\ +} + +#define MUL16(a,b) ((a) * (b)) + +#define CMUL(pre, pim, are, aim, bre, bim) \ +{\ + pre = (MUL16(are, bre) - MUL16(aim, bim));\ + pim = (MUL16(are, bim) + MUL16(bre, aim));\ +} + +/** + * Do a complex FFT with the parameters defined in fft_init(). The + * input data must be permuted before with s->revtab table. No + * 1.0/sqrt(n) normalization is done. + */ +void fft_calc_c(FFTContext *s, FFTComplex *z) +{ + int ln = s->nbits; + int j, np, np2; + int nblocks, nloops; + register FFTComplex *p, *q; + FFTComplex *exptab = s->exptab; + int l; + FFTSample tmp_re, tmp_im; + + np = 1 << ln; + + /* pass 0 */ + + p=&z[0]; + j=(np >> 1); + do { + BF(p[0].re, p[0].im, p[1].re, p[1].im, + p[0].re, p[0].im, p[1].re, p[1].im); + p+=2; + } while (--j != 0); + + /* pass 1 */ + + + p=&z[0]; + j=np >> 2; + if (s->inverse) { + do { + BF(p[0].re, p[0].im, p[2].re, p[2].im, + p[0].re, p[0].im, p[2].re, p[2].im); + BF(p[1].re, p[1].im, p[3].re, p[3].im, + p[1].re, p[1].im, -p[3].im, p[3].re); + p+=4; + } while (--j != 0); + } else { + do { + BF(p[0].re, p[0].im, p[2].re, p[2].im, + p[0].re, p[0].im, p[2].re, p[2].im); + BF(p[1].re, p[1].im, p[3].re, p[3].im, + p[1].re, p[1].im, p[3].im, -p[3].re); + p+=4; + } while (--j != 0); + } + /* pass 2 .. ln-1 */ + + nblocks = np >> 3; + nloops = 1 << 2; + np2 = np >> 1; + do { + p = z; + q = z + nloops; + for (j = 0; j < nblocks; ++j) { + BF(p->re, p->im, q->re, q->im, + p->re, p->im, q->re, q->im); + + p++; + q++; + for(l = nblocks; l < np2; l += nblocks) { + CMUL(tmp_re, tmp_im, exptab[l].re, exptab[l].im, q->re, q->im); + BF(p->re, p->im, q->re, q->im, + p->re, p->im, tmp_re, tmp_im); + p++; + q++; + } + + p += nloops; + q += nloops; + } + nblocks = nblocks >> 1; + nloops = nloops << 1; + } while (nblocks != 0); +} + +/** + * Do the permutation needed BEFORE calling fft_calc() + */ +void fft_permute(FFTContext *s, FFTComplex *z) +{ + int j, k, np; + FFTComplex tmp; + const uint16_t *revtab = s->revtab; + + /* reverse */ + np = 1 << s->nbits; + for(j=0;j<np;j++) { + k = revtab[j]; + if (k < j) { + tmp = z[k]; + z[k] = z[j]; + z[j] = tmp; + } + } +} + +void fft_end(FFTContext *s) +{ + av_freep(&s->revtab); + av_freep(&s->exptab); + av_freep(&s->exptab1); +} + |