diff options
author | multiple authors <multiple@multiple.x> | 2011-10-06 17:57:17 +0200 |
---|---|---|
committer | Michael Niedermayer <michaelni@gmx.at> | 2011-10-30 21:50:08 +0100 |
commit | 5d50fcc5497407f4e6d8e90dd9660b3369d86764 (patch) | |
tree | c50f50e7dd1844dc625aabe6f7ea579cdd974956 /libavcodec/diracdec.c | |
parent | b54c0a552d8843c521ac329b79e169a224d20191 (diff) | |
download | ffmpeg-5d50fcc5497407f4e6d8e90dd9660b3369d86764.tar.gz |
DIRAC Decoder stable version, MMX support removed.
Look for MMX_DISABLED to find the disabled functions.
Authors of this code are Marco Gerards <marco@gnu.org> and David Conrad <lessen42@gmail.com>
With changes from Jordi Ortiz <nenjordi@gmail.com>
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
Diffstat (limited to 'libavcodec/diracdec.c')
-rw-r--r-- | libavcodec/diracdec.c | 1876 |
1 files changed, 1876 insertions, 0 deletions
diff --git a/libavcodec/diracdec.c b/libavcodec/diracdec.c new file mode 100644 index 0000000000..86c361969b --- /dev/null +++ b/libavcodec/diracdec.c @@ -0,0 +1,1876 @@ +/* + * Copyright (C) 2007 Marco Gerards <marco@gnu.org> + * Copyright (C) 2009 David Conrad + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +/** + * @file libavcodec/diracdec.c + * Dirac Decoder + * @author Marco Gerards <marco@gnu.org> + */ + +#include "avcodec.h" +#include "dsputil.h" +#include "get_bits.h" +#include "bytestream.h" +#include "golomb.h" +#include "dirac_arith.h" +#include "mpeg12data.h" +#include "dwt.h" +#include "dirac.h" +#include "diracdsp.h" + +#undef printf + +/** + * The spec limits the number of wavelet decompositions to 4 for both + * level 1 (VC-2) and 128 (long-gop default). + * 5 decompositions is the maximum before >16-bit buffers are needed. + * Schroedinger allows this for DD 9,7 and 13,7 wavelets only, limiting + * the others to 4 decompositions (or 3 for the fidelity filter). + * + * We use this instead of MAX_DECOMPOSITIONS to save some memory. + */ +#define MAX_DWT_LEVELS 5 + +/** + * The spec limits this to 3 for frame coding, but in practice can be as high as 6 + */ +#define MAX_REFERENCE_FRAMES 8 +#define MAX_DELAY 5 ///< limit for main profile for frame coding (TODO: field coding) +#define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1) +#define MAX_QUANT 68 ///< max quant for VC-2 +#define MAX_BLOCKSIZE 32 ///< maximum xblen/yblen we support + +/** + * DiracBlock->ref flags, if set then the block does MC from the given ref + */ +#define DIRAC_REF_MASK_REF1 1 +#define DIRAC_REF_MASK_REF2 2 +#define DIRAC_REF_MASK_GLOBAL 4 + +/** + * Value of Picture.reference when Picture is not a reference picture, but + * is held for delayed output. + */ +#define DELAYED_PIC_REF 4 + +#define ff_emulated_edge_mc ff_emulated_edge_mc_8 //Fix: change the calls to this function regarding bit depth + +#define CALC_PADDING(size, depth) \ + (((size + (1 << depth) - 1) >> depth) << depth) + +#define DIVRNDUP(a, b) (((a) + (b) - 1) / (b)) + +typedef struct { + //FF_COMMON_FRAME + AVFrame avframe; + + int interpolated[3]; ///< 1 if hpel[] is valid + uint8_t *hpel[3][4]; + uint8_t *hpel_base[3][4]; +} DiracFrame; + +typedef struct { + union { + int16_t mv[2][2]; + int16_t dc[3]; + } u; // anonymous unions aren't in C99 :( + uint8_t ref; +} DiracBlock; + +typedef struct SubBand { + int level; + int orientation; + int stride; + int width; + int height; + int quant; + IDWTELEM *ibuf; + struct SubBand *parent; + + // for low delay + unsigned length; + const uint8_t *coeff_data; +} SubBand; + +typedef struct Plane { + int width; + int height; + int stride; + + int idwt_width; + int idwt_height; + int idwt_stride; + IDWTELEM *idwt_buf; + IDWTELEM *idwt_buf_base; + IDWTELEM *idwt_tmp; + + // block length + uint8_t xblen; + uint8_t yblen; + // block separation (block n+1 starts after this many pixels in block n) + uint8_t xbsep; + uint8_t ybsep; + // amount of overspill on each edge (half of the overlap between blocks) + uint8_t xoffset; + uint8_t yoffset; + + SubBand band[MAX_DWT_LEVELS][4]; +} Plane; + +typedef struct DiracContext { + AVCodecContext *avctx; + DSPContext dsp; + DiracDSPContext diracdsp; + GetBitContext gb; + dirac_source_params source; + int seen_sequence_header; + int frame_number; ///< number of the next frame to display + Plane plane[3]; + int chroma_x_shift; + int chroma_y_shift; + + int zero_res; ///< zero residue flag + int is_arith; ///< whether coeffs use arith or golomb coding + int low_delay; ///< use the low delay syntax + int globalmc_flag; ///< use global motion compensation + int num_refs; ///< number of reference pictures + + // wavelet decoding + unsigned wavelet_depth; ///< depth of the IDWT + unsigned wavelet_idx; + + /** + * schroedinger older than 1.0.8 doesn't store + * quant delta if only one codebook exists in a band + */ + unsigned old_delta_quant; + unsigned codeblock_mode; + + struct { + unsigned width; + unsigned height; + } codeblock[MAX_DWT_LEVELS+1]; + + struct { + unsigned num_x; ///< number of horizontal slices + unsigned num_y; ///< number of vertical slices + AVRational bytes; ///< average bytes per slice + uint8_t quant[MAX_DWT_LEVELS][4]; //[DIRAC_STD] E.1 + } lowdelay; + + struct { + int pan_tilt[2]; ///< pan/tilt vector + int zrs[2][2]; ///< zoom/rotate/shear matrix + int perspective[2]; ///< perspective vector + unsigned zrs_exp; + unsigned perspective_exp; + } globalmc[2]; + + // motion compensation + uint8_t mv_precision; //[DIRAC_STD] REFS_WT_PRECISION + int16_t weight[2]; ////[DIRAC_STD] REF1_WT and REF2_WT + unsigned weight_log2denom; ////[DIRAC_STD] REFS_WT_PRECISION + + int blwidth; ///< number of blocks (horizontally) + int blheight; ///< number of blocks (vertically) + int sbwidth; ///< number of superblocks (horizontally) + int sbheight; ///< number of superblocks (vertically) + + uint8_t *sbsplit; + DiracBlock *blmotion; + + uint8_t *edge_emu_buffer[4]; + uint8_t *edge_emu_buffer_base; + + uint16_t *mctmp; ///< buffer holding the MC data multipled by OBMC weights + uint8_t *mcscratch; + + DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE]; + + void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h); + void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h); + void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen); + dirac_weight_func weight_func; + dirac_biweight_func biweight_func; + + DiracFrame *current_picture; + DiracFrame *ref_pics[2]; + + DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1]; + DiracFrame *delay_frames[MAX_DELAY+1]; + DiracFrame all_frames[MAX_FRAMES]; +} DiracContext; + +// [DIRAC_STD] Parse code values. 9.6.1 Table 9.1 +enum dirac_parse_code { + pc_seq_header = 0x00, + pc_eos = 0x10, + pc_aux_data = 0x20, + pc_padding = 0x30, +}; + +enum dirac_subband { + subband_ll = 0, + subband_hl = 1, + subband_lh = 2, + subband_hh = 3 +}; + +static const uint8_t default_qmat[][4][4] = { + { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} }, + { { 4, 2, 2, 0}, { 0, 4, 4, 2}, { 0, 5, 5, 3}, { 0, 7, 7, 5} }, + { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} }, + { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} }, + { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} }, + { { 0, 4, 4, 8}, { 0, 8, 8, 12}, { 0, 13, 13, 17}, { 0, 17, 17, 21} }, + { { 3, 1, 1, 0}, { 0, 4, 4, 2}, { 0, 6, 6, 5}, { 0, 9, 9, 7} }, +}; + +static const int qscale_tab[MAX_QUANT+1] = { + 4, 5, 6, 7, 8, 10, 11, 13, + 16, 19, 23, 27, 32, 38, 45, 54, + 64, 76, 91, 108, 128, 152, 181, 215, + 256, 304, 362, 431, 512, 609, 724, 861, + 1024, 1218, 1448, 1722, 2048, 2435, 2896, 3444, + 4096, 4871, 5793, 6889, 8192, 9742, 11585, 13777, + 16384, 19484, 23170, 27554, 32768, 38968, 46341, 55109, + 65536, 77936 +}; + +static const int qoffset_intra_tab[MAX_QUANT+1] = { + 1, 2, 3, 4, 4, 5, 6, 7, + 8, 10, 12, 14, 16, 19, 23, 27, + 32, 38, 46, 54, 64, 76, 91, 108, + 128, 152, 181, 216, 256, 305, 362, 431, + 512, 609, 724, 861, 1024, 1218, 1448, 1722, + 2048, 2436, 2897, 3445, 4096, 4871, 5793, 6889, + 8192, 9742, 11585, 13777, 16384, 19484, 23171, 27555, + 32768, 38968 +}; + +static const int qoffset_inter_tab[MAX_QUANT+1] = { + 1, 2, 2, 3, 3, 4, 4, 5, + 6, 7, 9, 10, 12, 14, 17, 20, + 24, 29, 34, 41, 48, 57, 68, 81, + 96, 114, 136, 162, 192, 228, 272, 323, + 384, 457, 543, 646, 768, 913, 1086, 1292, + 1536, 1827, 2172, 2583, 3072, 3653, 4344, 5166, + 6144, 7307, 8689, 10333, 12288, 14613, 17378, 20666, + 24576, 29226 +}; + +// magic number division by 3 from schroedinger +static inline int divide3(int x) +{ + return ((x+1)*21845 + 10922) >> 16; +} + +static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum) +{ + DiracFrame *remove_pic = NULL; + int i, remove_idx = -1; + + for (i = 0; framelist[i]; i++) + if (framelist[i]->avframe.display_picture_number == picnum) { + remove_pic = framelist[i]; + remove_idx = i; + } + + if (remove_pic) + for (i = remove_idx; framelist[i]; i++) + framelist[i] = framelist[i+1]; + + return remove_pic; +} + +static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame) +{ + int i; + for (i = 0; i < maxframes; i++) + if (!framelist[i]) { + framelist[i] = frame; + return 0; + } + return -1; +} + +static int alloc_sequence_buffers(DiracContext *s) +{ + int sbwidth = DIVRNDUP(s->source.width, 4); + int sbheight = DIVRNDUP(s->source.height, 4); + int i, w, h, top_padding; + + // todo: think more about this / use or set Plane here + for (i = 0; i < 3; i++) { + int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0); + int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0); + w = s->source.width >> (i ? s->chroma_x_shift : 0); + h = s->source.height >> (i ? s->chroma_y_shift : 0); + + // we allocate the max we support here since num decompositions can + // change from frame to frame. Stride is aligned to 16 for SIMD, and + // 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding + // MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that + // on each side + top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2); + w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); //FIXME: Should this be 16 for SSE??? + h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2; + + s->plane[i].idwt_buf_base = av_mallocz((w+max_xblen)*h * sizeof(IDWTELEM)); + s->plane[i].idwt_tmp = av_malloc((w+16) * sizeof(IDWTELEM)); + s->plane[i].idwt_buf = s->plane[i].idwt_buf_base + top_padding*w; + if (!s->plane[i].idwt_buf_base || !s->plane[i].idwt_tmp) + return AVERROR(ENOMEM); + } + + w = s->source.width; + h = s->source.height; + + // fixme: allocate using real stride here + s->sbsplit = av_malloc(sbwidth * sbheight); + s->blmotion = av_malloc(sbwidth * sbheight * 4 * sizeof(*s->blmotion)); + s->edge_emu_buffer_base = av_malloc((w+64)*MAX_BLOCKSIZE); + + s->mctmp = av_malloc((w+64+MAX_BLOCKSIZE) * (h*MAX_BLOCKSIZE) * sizeof(*s->mctmp)); + s->mcscratch= av_malloc((w+64)*MAX_BLOCKSIZE); + + if (!s->sbsplit || !s->blmotion) + return AVERROR(ENOMEM); + return 0; +} + +static void free_sequence_buffers(DiracContext *s) +{ + int i, j, k; + + for (i = 0; i < MAX_FRAMES; i++) { + if (s->all_frames[i].avframe.data[0]) { + s->avctx->release_buffer(s->avctx, &s->all_frames[i].avframe); + memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated)); + } + + for (j = 0; j < 3; j++) + for (k = 1; k < 4; k++) + av_freep(&s->all_frames[i].hpel_base[j][k]); + } + + memset(s->ref_frames, 0, sizeof(s->ref_frames)); + memset(s->delay_frames, 0, sizeof(s->delay_frames)); + + for (i = 0; i < 3; i++) { + av_freep(&s->plane[i].idwt_buf_base); + av_freep(&s->plane[i].idwt_tmp); + } + + av_freep(&s->sbsplit); + av_freep(&s->blmotion); + av_freep(&s->edge_emu_buffer_base); + + av_freep(&s->mctmp); + av_freep(&s->mcscratch); +} + +static av_cold int dirac_decode_init(AVCodecContext *avctx) +{ + DiracContext *s = avctx->priv_data; + s->avctx = avctx; + s->frame_number = -1; + + if (avctx->flags&CODEC_FLAG_EMU_EDGE) { + av_log(avctx, AV_LOG_ERROR, "Edge emulation not supported!\n"); + return AVERROR_PATCHWELCOME; + } + + dsputil_init(&s->dsp, avctx); + ff_diracdsp_init(&s->diracdsp); + + return 0; +} + +static void dirac_decode_flush(AVCodecContext *avctx) +{ + DiracContext *s = avctx->priv_data; + free_sequence_buffers(s); + s->seen_sequence_header = 0; + s->frame_number = -1; +} + +static av_cold int dirac_decode_end(AVCodecContext *avctx) +{ + dirac_decode_flush(avctx); + return 0; +} + +#define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0)) + +static inline void coeff_unpack_arith(DiracArith *c, int qfactor, int qoffset, + SubBand *b, IDWTELEM *buf, int x, int y) +{ + int coeff, sign; + int sign_pred = 0; + int pred_ctx = CTX_ZPZN_F1; + + // Check if the parent subband has a 0 in the corresponding position + if (b->parent) + pred_ctx += !!b->parent->ibuf[b->parent->stride * (y>>1) + (x>>1)] << 1; + + if (b->orientation == subband_hl) + sign_pred = buf[-b->stride]; + + // Determine if the pixel has only zeros in its neighbourhood + if (x) { + pred_ctx += !(buf[-1] | buf[-b->stride] | buf[-1-b->stride]); + if (b->orientation == subband_lh) + sign_pred = buf[-1]; + } else { + pred_ctx += !buf[-b->stride]; + } + + coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); + if (coeff) { + coeff = (coeff*qfactor + qoffset + 2)>>2; + sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); + coeff = (coeff ^ -sign) + sign; + } + *buf = coeff; +} + +static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset) +{ + int sign, coeff; + + coeff = svq3_get_ue_golomb(gb); + if (coeff) { + coeff = (coeff*qfactor + qoffset + 2)>>2; + sign = get_bits1(gb); + coeff = (coeff ^ -sign) + sign; + } + return coeff; +} + +/** + * Decode the coeffs in the rectangle defined by left, right, top, bottom + * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock() + */ +static inline void codeblock(DiracContext *s, SubBand *b, + GetBitContext *gb, DiracArith *c, + int left, int right, int top, int bottom, + int blockcnt_one, int is_arith) +{ + int x, y, zero_block; + int qoffset, qfactor; + IDWTELEM *buf; + + // check for any coded coefficients in this codeblock + if (!blockcnt_one) { + if (is_arith) + zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK); + else + zero_block = get_bits1(gb); + + if (zero_block) + return; + } + + if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) { + if (is_arith) + b->quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA); + else + b->quant += dirac_get_se_golomb(gb); + } + + b->quant = FFMIN(b->quant, MAX_QUANT); + + qfactor = qscale_tab[b->quant]; + // TODO: context pointer? + if (!s->num_refs) + qoffset = qoffset_intra_tab[b->quant]; + else + qoffset = qoffset_inter_tab[b->quant]; + + buf = b->ibuf + top*b->stride; + for (y = top; y < bottom; y++) { + for (x = left; x < right; x++) { + //[DIRAC_STD] 13.4.4 Subband coefficients. coeff_unpack() + if (is_arith) + coeff_unpack_arith(c, qfactor, qoffset, b, buf+x, x, y); + else + buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); + } + buf += b->stride; + } +} + +//[DIRAC_STD] 13.3 intra_dc_prediction(band) +static inline void intra_dc_prediction(SubBand *b) +{ + IDWTELEM *buf = b->ibuf; + int x, y; + + for (x = 1; x < b->width; x++) + buf[x] += buf[x-1]; + buf += b->stride; + + for (y = 1; y < b->height; y++) { + buf[0] += buf[-b->stride]; + + for (x = 1; x < b->width; x++) { + int pred = buf[x - 1] + buf[x - b->stride] + buf[x - b->stride-1]; + buf[x] += divide3(pred); + } + buf += b->stride; + } +} + +//[DIRAC_STD] 13.4.2 Non-skipped subbands. subband_coeffs() +static av_always_inline +void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith) +{ + int cb_x, cb_y, left, right, top, bottom; + DiracArith c; + GetBitContext gb; + int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width; + int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height; + int blockcnt_one = (cb_width + cb_height) == 2; + + if (!b->length) + return; + + init_get_bits(&gb, b->coeff_data, b->length*8); + + if (is_arith) + ff_dirac_init_arith_decoder(&c, &gb, b->length); + + top = 0; + for (cb_y = 0; cb_y < cb_height; cb_y++) { + bottom = (b->height * (cb_y+1)) / cb_height; + left = 0; + for (cb_x = 0; cb_x < cb_width; cb_x++) { + right = (b->width * (cb_x+1)) / cb_width; + codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith); + left = right; + } + top = bottom; + } + + if (b->orientation == subband_ll && s->num_refs == 0) + intra_dc_prediction(b); +} + +static int decode_subband_arith(AVCodecContext *avctx, void *b) +{ + DiracContext *s = avctx->priv_data; + decode_subband_internal(s, b, 1); + return 0; +} + +static int decode_subband_golomb(AVCodecContext *avctx, void *arg) +{ + DiracContext *s = avctx->priv_data; + SubBand **b = arg; + decode_subband_internal(s, *b, 0); + return 0; +} + +//[DIRAC_STD] 13.4.1 core_transform_data() +static void decode_component(DiracContext *s, int comp) +{ + AVCodecContext *avctx = s->avctx; + SubBand *bands[3*MAX_DWT_LEVELS+1]; + enum dirac_subband orientation; + int level, num_bands = 0; + + // Unpack all subbands at all levels. + for (level = 0; level < s->wavelet_depth; level++) { + for (orientation = !!level; orientation < 4; orientation++) { + SubBand *b = &s->plane[comp].band[level][orientation]; + bands[num_bands++] = b; + + align_get_bits(&s->gb); + //[DIRAC_STD] 13.4.2 subband() + b->length = svq3_get_ue_golomb(&s->gb); + if (b->length) { + b->quant = svq3_get_ue_golomb(&s->gb); + align_get_bits(&s->gb); + b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8; + b->length = FFMIN(b->length, get_bits_left(&s->gb)/8); + skip_bits_long(&s->gb, b->length*8); + } + } + // arithmetic coding has inter-level dependencies, so we can only execute one level at a time + if (s->is_arith) + avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level], + NULL, 4-!!level, sizeof(SubBand)); + } + // golomb coding has no inter-level dependencies, so we can execute all subbands in parallel + if (!s->is_arith) + avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*)); +} + +//[DIRAC_STD] 13.5.5.2 Luma slice subband data. luma_slice_band(level,orient,sx,sy) --> if b2 == NULL +//[DIRAC_STD] 13.5.5.3 Chroma slice subband data. chroma_slice_band(level,orient,sx,sy) --> if b2 != NULL +static void lowdelay_subband(DiracContext *s, GetBitContext *gb, int quant, + int slice_x, int slice_y, int bits_end, + SubBand *b1, SubBand *b2) +{ + int left = b1->width * slice_x / s->lowdelay.num_x; + int right = b1->width *(slice_x+1) / s->lowdelay.num_x; + int top = b1->height* slice_y / s->lowdelay.num_y; + int bottom = b1->height*(slice_y+1) / s->lowdelay.num_y; + + int qfactor = qscale_tab[FFMIN(quant, MAX_QUANT)]; + int qoffset = qoffset_intra_tab[FFMIN(quant, MAX_QUANT)]; + + IDWTELEM *buf1 = b1->ibuf + top*b1->stride; + IDWTELEM *buf2 = b2 ? b2->ibuf + top*b2->stride : NULL; + int x, y; + // we have to constantly check for overread since the spec explictly + // requires this, with the meaning that all remaining coeffs are set to 0 + if (get_bits_count(gb) >= bits_end) + return; + + for (y = top; y < bottom; y++) { + for (x = left; x < right; x++) { + buf1[x] = coeff_unpack_golomb(gb, qfactor, qoffset); + if (get_bits_count(gb) >= bits_end) + return; + if (buf2) { + buf2[x] = coeff_unpack_golomb(gb, qfactor, qoffset); + if (get_bits_count(gb) >= bits_end) + return; + } + } + buf1 += b1->stride; + if (buf2) + buf2 += b2->stride; + } +} + +struct lowdelay_slice { + GetBitContext gb; + int slice_x; + int slice_y; + int bytes; +}; + + +//[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) +static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg) +{ + DiracContext *s = avctx->priv_data; + struct lowdelay_slice *slice = arg; + GetBitContext *gb = &slice->gb; + enum dirac_subband orientation; + int level, quant, chroma_bits, chroma_end; + + int quant_base = get_bits(gb, 7); //[DIRAC_STD] qindex + int length_bits = av_log2(8*slice->bytes)+1; + int luma_bits = get_bits_long(gb, length_bits); + int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb)); + + //[DIRAC_STD] 13.5.5.2 luma_slice_band + for (level = 0; level < s->wavelet_depth; level++) + for (orientation = !!level; orientation < 4; orientation++) { + quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0); + lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end, + &s->plane[0].band[level][orientation], NULL); + } + + // consume any unused bits from luma + skip_bits_long(gb, get_bits_count(gb) - luma_end); + + chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits; + chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb)); + //[DIRAC_STD] 13.5.5.3 chroma_slice_band + for (level = 0; level < s->wavelet_depth; level++) + for (orientation = !!level; orientation < 4; orientation++) { + quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0); + lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end, + &s->plane[1].band[level][orientation], + &s->plane[2].band[level][orientation]); + } + + return 0; +} + +//[DIRAC_STD] 13.5.1 low_delay_transform_data() +static void decode_lowdelay(DiracContext *s) +{ + AVCodecContext *avctx = s->avctx; + int slice_x, slice_y, bytes, bufsize; + const uint8_t *buf; + struct lowdelay_slice *slices; + int slice_num = 0; + + slices = av_mallocz(s->lowdelay.num_x * s->lowdelay.num_y * sizeof(struct lowdelay_slice)); + + align_get_bits(&s->gb); + //[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) + buf = s->gb.buffer + get_bits_count(&s->gb)/8; + bufsize = get_bits_left(&s->gb); + + for (slice_y = 0; slice_y < s->lowdelay.num_y; slice_y++) + for (slice_x = 0; slice_x < s->lowdelay.num_x; slice_x++) { + bytes = (slice_num+1) * s->lowdelay.bytes.num / s->lowdelay.bytes.den + - slice_num * s->lowdelay.bytes.num / s->lowdelay.bytes.den; + + slices[slice_num].bytes = bytes; + slices[slice_num].slice_x = slice_x; + slices[slice_num].slice_y = slice_y; + init_get_bits(&slices[slice_num].gb, buf, bufsize); + slice_num++; + + buf += bytes; + bufsize -= bytes*8; + if (bufsize <= 0) + goto end; + } +end: + + avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num, + sizeof(struct lowdelay_slice)); //[DIRAC_STD] 13.5.2 Slices + intra_dc_prediction(&s->plane[0].band[0][0]); //[DIRAC_STD] 13.3 intra_dc_prediction() + intra_dc_prediction(&s->plane[1].band[0][0]); //[DIRAC_STD] 13.3 intra_dc_prediction() + intra_dc_prediction(&s->plane[2].band[0][0]); //[DIRAC_STD] 13.3 intra_dc_prediction() + + av_free(slices); +} + +static void init_planes(DiracContext *s) +{ + int i, w, h, level, orientation; + + for (i = 0; i < 3; i++) { + Plane *p = &s->plane[i]; + + p->width = s->source.width >> (i ? s->chroma_x_shift : 0); + p->height = s->source.height >> (i ? s->chroma_y_shift : 0); + p->idwt_width = w = CALC_PADDING(p->width , s->wavelet_depth); + p->idwt_height = h = CALC_PADDING(p->height, s->wavelet_depth); + p->idwt_stride = FFALIGN(p->idwt_width, 8); + + for (level = s->wavelet_depth-1; level >= 0; level--) { + w = w>>1; + h = h>>1; + for (orientation = !!level; orientation < 4; orientation++) { + SubBand *b = &p->band[level][orientation]; + + b->ibuf = p->idwt_buf; + b->level = level; + b->stride = p->idwt_stride << (s->wavelet_depth - level); + b->width = w; + b->height = h; + b->orientation = orientation; + + if (orientation & 1) + b->ibuf += w; + if (orientation > 1) + b->ibuf += b->stride>>1; + + if (level) + b->parent = &p->band[level-1][orientation]; + } + } + + if (i > 0) { + p->xblen = s->plane[0].xblen >> s->chroma_x_shift; + p->yblen = s->plane[0].yblen >> s->chroma_y_shift; + p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift; + p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift; + } + + p->xoffset = (p->xblen - p->xbsep)/2; + p->yoffset = (p->yblen - p->ybsep)/2; + } +} + +/** + * Unpack the motion compensation parameters + * [DIRAC_STD] 11.2 Picture prediction data. picture_prediction() + */ +static int dirac_unpack_prediction_parameters(DiracContext *s) +{ + static const uint8_t default_blen[] = { 4, 12, 16, 24 }; + static const uint8_t default_bsep[] = { 4, 8, 12, 16 }; + + GetBitContext *gb = &s->gb; + unsigned idx, ref; + + align_get_bits(gb); + //[DIRAC_STD] 11.2.2 Block parameters. block_parameters() + //Luma and Chroma are equal. 11.2.3 + idx = svq3_get_ue_golomb(gb); ////[DIRAC_STD] index + + if (idx > 4) + { + av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n"); + return -1; + } + + if (idx == 0) { + s->plane[0].xblen = svq3_get_ue_golomb(gb); + s->plane[0].yblen = svq3_get_ue_golomb(gb); + s->plane[0].xbsep = svq3_get_ue_golomb(gb); + s->plane[0].ybsep = svq3_get_ue_golomb(gb); + } else { + //[DIRAC_STD] preset_block_params(index). Table 11.1 + s->plane[0].xblen = default_blen[idx-1]; + s->plane[0].yblen = default_blen[idx-1]; + s->plane[0].xbsep = default_bsep[idx-1]; + s->plane[0].ybsep = default_bsep[idx-1]; + } + //[DIRAC_STD] 11.2.4 motion_data_dimensions() --> Calculated in function dirac_unpack_block_motion_data + + if (s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) { + av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n"); + return -1; + } + if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) { + av_log(s->avctx, AV_LOG_ERROR, "Block seperation greater than size\n"); + return -1; + } + if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) { + av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n"); + return -1; + } + + //[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision() + // Read motion vector precision + s->mv_precision = svq3_get_ue_golomb(gb); + if (s->mv_precision > 3) { + av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n"); + return -1; + } + + //[DIRAC_STD] 11.2.6 Global motion. global_motion() + // Read the global motion compensation parameters + s->globalmc_flag = get_bits1(gb); + if (s->globalmc_flag) { + memset(s->globalmc, 0, sizeof(s->globalmc)); + //[DIRAC_STD] pan_tilt(gparams) + for (ref = 0; ref < s->num_refs; ref++) { + if (get_bits1(gb)) { + s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb); + s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb); + } + //[DIRAC_STD] zoom_rotate_shear(gparams) + // zoom/rotation/shear parameters + if (get_bits1(gb)) { + s->globalmc[ref].zrs_exp = svq3_get_ue_golomb(gb); + s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb); + s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb); + s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb); + s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb); + } else { + s->globalmc[ref].zrs[0][0] = 1; + s->globalmc[ref].zrs[1][1] = 1; + } + //[DIRAC_STD] perspective(gparams) + if (get_bits1(gb)) { + s->globalmc[ref].perspective_exp = svq3_get_ue_golomb(gb); + s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb); + s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb); + } + } + } + + //[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode() + // Picture prediction mode, not currently used. + if (svq3_get_ue_golomb(gb)) { + av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n"); + return -1; + } + + //[DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights() + //just data read, weight calculation will be done later on. + s->weight_log2denom = 1; + s->weight[0] = 1; + s->weight[1] = 1; + + if (get_bits1(gb)) { + s->weight_log2denom = svq3_get_ue_golomb(gb); + s->weight[0] = dirac_get_se_golomb(gb); + if (s->num_refs == 2) + s->weight[1] = dirac_get_se_golomb(gb); + } + return 0; +} + +//[DIRAC_STD] 11.3 Wavelet transform data. wavelet_transform() +static int dirac_unpack_idwt_params(DiracContext *s) +{ + GetBitContext *gb = &s->gb; + int i, level; + + align_get_bits(gb); + + s->zero_res = s->num_refs ? get_bits1(gb) : 0; + if (s->zero_res) + return 0; + + //[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() + s->wavelet_idx = svq3_get_ue_golomb(gb); + if (s->wavelet_idx > 6) + return -1; + + s->wavelet_depth = svq3_get_ue_golomb(gb); + if (s->wavelet_depth > MAX_DWT_LEVELS) { + av_log(s->avctx, AV_LOG_ERROR, "too many dwt decompositions\n"); + return -1; + } + + if (!s->low_delay) { + /* Codeblock paramaters (core syntax only) */ + if (get_bits1(gb)) { + for (i = 0; i <= s->wavelet_depth; i++) { + s->codeblock[i].width = svq3_get_ue_golomb(gb); + s->codeblock[i].height = svq3_get_ue_golomb(gb); + } + + s->codeblock_mode = svq3_get_ue_golomb(gb); + if (s->codeblock_mode > 1) { + av_log(s->avctx, AV_LOG_ERROR, "unknown codeblock mode\n"); + return -1; + } + } else + for (i = 0; i <= s->wavelet_depth; i++) + s->codeblock[i].width = s->codeblock[i].height = 1; + } else { + /* Slice parameters + quantization matrix*/ + //[DIRAC_STD] 11.3.4 Slice coding Parameters (low delay syntax only). slice_parameters() + s->lowdelay.num_x = svq3_get_ue_golomb(gb); + s->lowdelay.num_y = svq3_get_ue_golomb(gb); + s->lowdelay.bytes.num = svq3_get_ue_golomb(gb); + s->lowdelay.bytes.den = svq3_get_ue_golomb(gb); + + //[DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() + if (get_bits1(gb)) { + av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n"); + // custom quantization matrix + s->lowdelay.quant[0][0] = svq3_get_ue_golomb(gb); + for (level = 0; level < s->wavelet_depth; level++) { + s->lowdelay.quant[level][1] = svq3_get_ue_golomb(gb); + s->lowdelay.quant[level][2] = svq3_get_ue_golomb(gb); + s->lowdelay.quant[level][3] = svq3_get_ue_golomb(gb); + } + } else { + // default quantization matrix + for (level = 0; level < s->wavelet_depth; level++) + for (i = 0; i < 4; i++) { + s->lowdelay.quant[level][i] = default_qmat[s->wavelet_idx][level][i]; + // haar with no shift differs for different depths + if (s->wavelet_idx == 3) + s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level); + } + } + } + return 0; +} + +static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y) +{ + static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 }; + + if (!(x|y)) + return 0; + else if (!y) + return sbsplit[-1]; + else if (!x) + return sbsplit[-stride]; + + return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]]; +} + +static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask) +{ + int pred; + + if (!(x|y)) + return 0; + else if (!y) + return block[-1].ref & refmask; + else if (!x) + return block[-stride].ref & refmask; + + // return the majority + pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask); + return (pred >> 1) & refmask; +} + +static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y) +{ + int i, n = 0; + + memset(block->u.dc, 0, sizeof(block->u.dc)); + + if (x && !(block[-1].ref & 3)) { + for (i = 0; i < 3; i++) + block->u.dc[i] += block[-1].u.dc[i]; + n++; + } + + if (y && !(block[-stride].ref & 3)) { + for (i = 0; i < 3; i++) + block->u.dc[i] += block[-stride].u.dc[i]; + n++; + } + + if (x && y && !(block[-1-stride].ref & 3)) { + for (i = 0; i < 3; i++) + block->u.dc[i] += block[-1-stride].u.dc[i]; + n++; + } + + if (n == 2) { + for (i = 0; i < 3; i++) + block->u.dc[i] = (block->u.dc[i]+1)>>1; + } else if (n == 3) { + for (i = 0; i < 3; i++) + block->u.dc[i] = divide3(block->u.dc[i]); + } +} + +static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref) +{ + int16_t *pred[3]; + int refmask = ref+1; + int mask = refmask | DIRAC_REF_MASK_GLOBAL; // exclude gmc blocks + int n = 0; + + if (x && (block[-1].ref & mask) == refmask) + pred[n++] = block[-1].u.mv[ref]; + + if (y && (block[-stride].ref & mask) == refmask) + pred[n++] = block[-stride].u.mv[ref]; + + if (x && y && (block[-stride-1].ref & mask) == refmask) + pred[n++] = block[-stride-1].u.mv[ref]; + + switch (n) { + case 0: + block->u.mv[ref][0] = 0; + block->u.mv[ref][1] = 0; + break; + case 1: + block->u.mv[ref][0] = pred[0][0]; + block->u.mv[ref][1] = pred[0][1]; + break; + case 2: + block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1; + block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1; + break; + case 3: + block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]); + block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]); + break; + } +} + +static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref) +{ + int ez = s->globalmc[ref].zrs_exp; + int ep = s->globalmc[ref].perspective_exp; + int (*A)[2] = s->globalmc[ref].zrs; + int *b = s->globalmc[ref].pan_tilt; + int *c = s->globalmc[ref].perspective; + + int m = (1<<ep) - (c[0]*x + c[1]*y); + int mx = m*((A[0][0]*x + A[0][1]*y) + (1<<ez)*b[0]); + int my = m*((A[1][0]*x + A[1][1]*y) + (1<<ez)*b[1]); + + block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep); + block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep); +} + +static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block, + int stride, int x, int y) +{ + int i; + + block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1); + block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1); + + if (s->num_refs == 2) { + block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2); + block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1; + } + + if (!block->ref) { + pred_block_dc(block, stride, x, y); + for (i = 0; i < 3; i++) + block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA); + return; + } + + if (s->globalmc_flag) { + block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL); + block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2; + } + + for (i = 0; i < s->num_refs; i++) + if (block->ref & (i+1)) { + if (block->ref & DIRAC_REF_MASK_GLOBAL) { + global_mv(s, block, x, y, i); + } else { + pred_mv(block, stride, x, y, i); + block->u.mv[i][0] += dirac_get_arith_int(arith+4+2*i, CTX_MV_F1, CTX_MV_DATA); + block->u.mv[i][1] += dirac_get_arith_int(arith+5+2*i, CTX_MV_F1, CTX_MV_DATA); + } + } +} + +/** + * Copies the current block to the other blocks covered by the current superblock split mode + */ +static void propagate_block_data(DiracBlock *block, int stride, int size) +{ + int x, y; + DiracBlock *dst = block; + + for (x = 1; x < size; x++) + dst[x] = *block; + + for (y = 1; y < size; y++) { + dst += stride; + for (x = 0; x < size; x++) + dst[x] = *block; + } +} + +//[DIRAC_STD] 12. Block motion data syntax +static void dirac_unpack_block_motion_data(DiracContext *s) +{ + GetBitContext *gb = &s->gb; + uint8_t *sbsplit = s->sbsplit; + int i, x, y, q, p; + DiracArith arith[8]; + + align_get_bits(gb); + + //[DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks + s->sbwidth = DIVRNDUP(s->source.width, 4*s->plane[0].xbsep); + s->sbheight = DIVRNDUP(s->source.height, 4*s->plane[0].ybsep); + s->blwidth = 4*s->sbwidth; + s->blheight = 4*s->sbheight; + + //[DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes() + // decode superblock split modes + ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb)); //svq3_get_ue_golomb(gb) is the length + for (y = 0; y < s->sbheight; y++) { + for (x = 0; x < s->sbwidth; x++) { + int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA); + sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3; + } + sbsplit += s->sbwidth; + } + + // setup arith decoding + ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb)); + for (i = 0; i < s->num_refs; i++) { + ff_dirac_init_arith_decoder(arith+4+2*i, gb, svq3_get_ue_golomb(gb)); + ff_dirac_init_arith_decoder(arith+5+2*i, gb, svq3_get_ue_golomb(gb)); + } + for (i = 0; i < 3; i++) + ff_dirac_init_arith_decoder(arith+1+i, gb, svq3_get_ue_golomb(gb)); + + for (y = 0; y < s->sbheight; y++) + for (x = 0; x < s->sbwidth; x++) { + int blkcnt = 1 << s->sbsplit[y*s->sbwidth + x]; + int step = 4 >> s->sbsplit[y*s->sbwidth + x]; + + for (q = 0; q < blkcnt; q++) + for (p = 0; p < blkcnt; p++) { + int bx = 4*x + p*step; + int by = 4*y + q*step; + DiracBlock *block = &s->blmotion[by*s->blwidth + bx]; + decode_block_params(s, arith, block, s->blwidth, bx, by); + propagate_block_data(block, s->blwidth, step); + } + } +} + +static int weight(int i, int blen, int offset) +{ +#define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \ + (1 + (6*(i) + offset - 1) / (2*offset - 1)) + + if (i < 2*offset) + return ROLLOFF(i); + else if (i > blen-1 - 2*offset) + return ROLLOFF(blen-1 - i); + return 8; +} + +static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride, + int left, int right, int wy) +{ + int x; + for (x = 0; left && x < p->xblen >> 1; x++) + obmc_weight[x] = wy*8; + for (; x < p->xblen >> right; x++) + obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset); + for (; x < p->xblen; x++) + obmc_weight[x] = wy*8; + for (; x < stride; x++) + obmc_weight[x] = 0; +} + +static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride, + int left, int right, int top, int bottom) +{ + int y; + for (y = 0; top && y < p->yblen >> 1; y++) { + init_obmc_weight_row(p, obmc_weight, stride, left, right, 8); + obmc_weight += stride; + } + for (; y < p->yblen >> bottom; y++) { + int wy = weight(y, p->yblen, p->yoffset); + init_obmc_weight_row(p, obmc_weight, stride, left, right, wy); + obmc_weight += stride; + } + for (; y < p->yblen; y++) { + init_obmc_weight_row(p, obmc_weight, stride, left, right, 8); + obmc_weight += stride; + } +} + +static void init_obmc_weights(DiracContext *s, Plane *p, int by) +{ + int top = !by; + int bottom = by == s->blheight-1; + + // don't bother re-initing for rows 2 to blheight-2, the weights don't change + if (top || bottom || by == 1) { + init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom); + init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom); + init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom); + } +} + +static const uint8_t epel_weights[4][4][4] = { + {{ 16, 0, 0, 0 }, + { 12, 4, 0, 0 }, + { 8, 8, 0, 0 }, + { 4, 12, 0, 0 }}, + {{ 12, 0, 4, 0 }, + { 9, 3, 3, 1 }, + { 6, 6, 2, 2 }, + { 3, 9, 1, 3 }}, + {{ 8, 0, 8, 0 }, + { 6, 2, 6, 2 }, + { 4, 4, 4, 4 }, + { 2, 6, 2, 6 }}, + {{ 4, 0, 12, 0 }, + { 3, 1, 9, 3 }, + { 2, 2, 6, 6 }, + { 1, 3, 3, 9 }} +}; + +/** + * For block x,y, determine which of the hpel planes to do bilinear + * interpolation from and set src[] to the location in each hpel plane + * to MC from. + * + * @return the index of the put_dirac_pixels_tab function to use + * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel + */ +static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5], + int x, int y, int ref, int plane) +{ + Plane *p = &s->plane[plane]; + uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane]; + int motion_x = block->u.mv[ref][0]; + int motion_y = block->u.mv[ref][1]; + int mx, my, i, epel, nplanes = 0; + + if (plane) { + motion_x >>= s->chroma_x_shift; + motion_y >>= s->chroma_y_shift; + } + + mx = motion_x & ~(-1 << s->mv_precision); + my = motion_y & ~(-1 << s->mv_precision); + motion_x >>= s->mv_precision; + motion_y >>= s->mv_precision; + // normalize subpel coordinates to epel + // TODO: template this function? + mx <<= 3-s->mv_precision; + my <<= 3-s->mv_precision; + + x += motion_x; + y += motion_y; + epel = (mx|my)&1; + + // hpel position + if (!((mx|my)&3)) { + nplanes = 1; + src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x; + } else { + // qpel or epel + nplanes = 4; + for (i = 0; i < 4; i++) + src[i] = ref_hpel[i] + y*p->stride + x; + + // if we're interpolating in the right/bottom halves, adjust the planes as needed + // we increment x/y because the edge changes for half of the pixels + if (mx > 4) { + src[0] += 1; + src[2] += 1; + x++; + } + if (my > 4) { + src[0] += p->stride; + src[1] += p->stride; + y++; + } + + // hpel planes are: + // [0]: F [1]: H + // [2]: V [3]: C + if (!epel) { + // check if we really only need 2 planes since either mx or my is + // a hpel position. (epel weights of 0 handle this there) + if (!(mx&3)) { + // mx == 0: average [0] and [2] + // mx == 4: average [1] and [3] + src[!mx] = src[2 + !!mx]; + nplanes = 2; + } else if (!(my&3)) { + src[0] = src[(my>>1) ]; + src[1] = src[(my>>1)+1]; + nplanes = 2; + } + } else { + // adjust the ordering if needed so the weights work + if (mx > 4) { + FFSWAP(const uint8_t *, src[0], src[1]); + FFSWAP(const uint8_t *, src[2], src[3]); + } + if (my > 4) { + FFSWAP(const uint8_t *, src[0], src[2]); + FFSWAP(const uint8_t *, src[1], src[3]); + } + src[4] = epel_weights[my&3][mx&3]; + } + } + + // fixme: v/h _edge_pos + if ((unsigned)x > p->width +EDGE_WIDTH/2 - p->xblen || + (unsigned)y > p->height+EDGE_WIDTH/2 - p->yblen) { + for (i = 0; i < nplanes; i++) { + ff_emulated_edge_mc(s->edge_emu_buffer[i], src[i], p->stride, + p->xblen, p->yblen, x, y, + p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2); + src[i] = s->edge_emu_buffer[i]; + } + } + return (nplanes>>1) + epel; +} + +static void add_dc(uint16_t *dst, int dc, int stride, + uint8_t *obmc_weight, int xblen, int yblen) +{ + int x, y; + dc += 128; + + for (y = 0; y < yblen; y++) { + for (x = 0; x < xblen; x += 2) { + dst[x ] += dc * obmc_weight[x ]; + dst[x+1] += dc * obmc_weight[x+1]; + } + dst += stride; + obmc_weight += MAX_BLOCKSIZE; + } +} + +static void block_mc(DiracContext *s, DiracBlock *block, + uint16_t *mctmp, uint8_t *obmc_weight, + int plane, int dstx, int dsty) +{ + Plane *p = &s->plane[plane]; + const uint8_t *src[5]; + int idx; + + switch (block->ref&3) { + case 0: // DC + add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen); + return; + case 1: + case 2: + idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane); + s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen); + if (s->weight_func) + s->weight_func(s->mcscratch, p->stride, s->weight_log2denom, + s->weight[0] + s->weight[1], p->yblen); + break; + case 3: + idx = mc_subpel(s, block, src, dstx, dsty, 0, plane); + s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen); + idx = mc_subpel(s, block, src, dstx, dsty, 1, plane); + if (s->biweight_func) { + // fixme: +32 is a quick hack + s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen); + s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom, + s->weight[0], s->weight[1], p->yblen); + } else + s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen); + break; + } + s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen); +} + +static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty) +{ + Plane *p = &s->plane[plane]; + int x, dstx = p->xbsep - p->xoffset; + + block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty); + mctmp += p->xbsep; + + for (x = 1; x < s->blwidth-1; x++) { + block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty); + dstx += p->xbsep; + mctmp += p->xbsep; + } + block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty); +} + +static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen) +{ + int idx = 0; + if (xblen > 8) + idx = 1; + if (xblen > 16) + idx = 2; + + memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab)); + memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab)); + s->add_obmc = s->diracdsp.add_dirac_obmc[idx]; + if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) { + s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx]; + s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx]; + } else { + s->weight_func = NULL; + s->biweight_func = NULL; + } +} + +static void interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height) +{ + // chroma allocates an edge of 8 when subsampled + // which for 4:2:2 means an h edge of 16 and v edge of 8 + // just use 8 for everything for the moment + int i, edge = EDGE_WIDTH/2; + + ref->hpel[plane][0] = ref->avframe.data[plane]; + s->dsp.draw_edges(ref->hpel[plane][0], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); //EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured + + // no need for hpel if we only have fpel vectors + if (!s->mv_precision) + return; + + for (i = 1; i < 4; i++) { + if (!ref->hpel_base[plane][i]) + ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe.linesize[plane] + 32); + // we need to be 16-byte aligned even for chroma + ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe.linesize[plane] + 16; + } + + if (!ref->interpolated[plane]) { + s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2], + ref->hpel[plane][3], ref->hpel[plane][0], + ref->avframe.linesize[plane], width, height); + s->dsp.draw_edges(ref->hpel[plane][1], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); + s->dsp.draw_edges(ref->hpel[plane][2], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); + s->dsp.draw_edges(ref->hpel[plane][3], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); + } + ref->interpolated[plane] = 1; +} + +//[DIRAC_STD] 13.0 Transform data syntax. transform_data() +static int dirac_decode_frame_internal(DiracContext *s) +{ + DWTContext d; + int y, i, comp, dsty; + + if (s->low_delay) { + //[DIRAC_STD] 13.5.1 low_delay_transform_data() + for (comp = 0; comp < 3; comp++) { + Plane *p = &s->plane[comp]; + memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM)); + } + if (!s->zero_res) + decode_lowdelay(s); + } + + for (comp = 0; comp < 3; comp++) { + Plane *p = &s->plane[comp]; + uint8_t *frame = s->current_picture->avframe.data[comp]; + + // FIXME: small resolutions + for (i = 0; i < 4; i++) + s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16); + + if (!s->zero_res && !s->low_delay) + { + memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM)); + decode_component(s, comp); //[DIRAC_STD] 13.4.1 core_transform_data() + } + if (ff_spatial_idwt_init2(&d, p->idwt_buf, p->idwt_width, p->idwt_height, p->idwt_stride, + s->wavelet_idx+2, s->wavelet_depth, p->idwt_tmp)) + return -1; + + if (!s->num_refs) { //intra + for (y = 0; y < p->height; y += 16) { + ff_spatial_idwt_slice2(&d, y+16); //decode + s->diracdsp.put_signed_rect_clamped(frame + y*p->stride, p->stride, + p->idwt_buf + y*p->idwt_stride, p->idwt_stride, p->width, 16); + } + } else { //inter + int rowheight = p->ybsep*p->stride; + + select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen); + + for (i = 0; i < s->num_refs; i++) + interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height); + + memset(s->mctmp, 0, 4*p->yoffset*p->stride); + + dsty = -p->yoffset; + for (y = 0; y < s->blheight; y++) { + int h = 0, start = FFMAX(dsty, 0); + uint16_t *mctmp = s->mctmp + y*rowheight; + DiracBlock *blocks = s->blmotion + y*s->blwidth; + + init_obmc_weights(s, p, y); + + if (y == s->blheight-1 || start+p->ybsep > p->height) + h = p->height - start; + else + h = p->ybsep - (start - dsty); + if (h < 0) + break; + + memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight); + mc_row(s, blocks, mctmp, comp, dsty); + + mctmp += (start - dsty)*p->stride + p->xoffset; + ff_spatial_idwt_slice2(&d, start + h); //decode + s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride, + p->idwt_buf + start*p->idwt_stride, p->idwt_stride, p->width, h); + + dsty += p->ybsep; + } + } + } + + + return 0; +} + +//[DIRAC_STD] 11.1.1 Picture Header. picture_header() +static int dirac_decode_picture_header(DiracContext *s) +{ + int retire, picnum; + int i, j, refnum, refdist; + GetBitContext *gb = &s->gb; + + //[DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM + picnum = s->current_picture->avframe.display_picture_number = get_bits_long(gb, 32); + + + av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum); + + // if this is the first keyframe after a sequence header, start our + // reordering from here + if (s->frame_number < 0) + s->frame_number = picnum; + + s->ref_pics[0] = s->ref_pics[1] = NULL; + for (i = 0; i < s->num_refs; i++) { + refnum = picnum + dirac_get_se_golomb(gb); + refdist = INT_MAX; + + // find the closest reference to the one we want + // Jordi: this is needed if the referenced picture hasn't yet arrived + for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++) + if (s->ref_frames[j] + && FFABS(s->ref_frames[j]->avframe.display_picture_number - refnum) < refdist) { + s->ref_pics[i] = s->ref_frames[j]; + refdist = FFABS(s->ref_frames[j]->avframe.display_picture_number - refnum); + } + + if (!s->ref_pics[i] || refdist) + av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n"); + + // if there were no references at all, allocate one + if (!s->ref_pics[i]) + for (j = 0; j < MAX_FRAMES; j++) + if (!s->all_frames[j].avframe.data[0]) { + s->ref_pics[i] = &s->all_frames[j]; + s->avctx->get_buffer(s->avctx, &s->ref_pics[i]->avframe); + } + } + + // retire the reference frames that are not used anymore + if (s->current_picture->avframe.reference) { + retire = picnum + dirac_get_se_golomb(gb); + if (retire != picnum) { + DiracFrame *retire_pic = remove_frame(s->ref_frames, retire); + + if (retire_pic) + retire_pic->avframe.reference &= DELAYED_PIC_REF; + else + av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n"); + } + + // if reference array is full, remove the oldest as per the spec + while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) { + av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n"); + remove_frame(s->ref_frames, s->ref_frames[0]->avframe.display_picture_number)->avframe.reference &= DELAYED_PIC_REF; + } + } + + if (s->num_refs) { + if (dirac_unpack_prediction_parameters(s)) //[DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() + return -1; + dirac_unpack_block_motion_data(s); //[DIRAC_STD] 12. Block motion data syntax + } + if (dirac_unpack_idwt_params(s)) //[DIRAC_STD] 11.3 Wavelet transform data + return -1; + + init_planes(s); //Jordi... ???? + return 0; +} + +static int get_delayed_pic(DiracContext *s, DiracFrame *picture, int *data_size) +{ + DiracFrame *out = s->delay_frames[0]; + int i, out_idx = 0; + + // find frame with lowest picture number + for (i = 1; s->delay_frames[i]; i++) + if (s->delay_frames[i]->avframe.display_picture_number < out->avframe.display_picture_number) { + out = s->delay_frames[i]; + out_idx = i; + } + + for (i = out_idx; s->delay_frames[i]; i++) + s->delay_frames[i] = s->delay_frames[i+1]; + + if (out) { + out->avframe.reference ^= DELAYED_PIC_REF; + *data_size = sizeof(DiracFrame); + *picture = *out; + } + + return 0; +} + +// [DIRAC_STD] 9.6 Parse Info Header Syntax. parse_info() +// 4 byte start code + byte parse code + 4 byte size + 4 byte previous size +#define DATA_UNIT_HEADER_SIZE 13 + +//[DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() +static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size) +{ + DiracContext *s = avctx->priv_data; + DiracFrame *pic = NULL; + int i, parse_code = buf[4]; + + if (size < DATA_UNIT_HEADER_SIZE) + return -1; + + init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE)); + + if (parse_code == pc_seq_header) { + if (s->seen_sequence_header) + return 0; + + //[DIRAC_STD] 10. Sequence header + if (avpriv_dirac_parse_sequence_header(avctx, &s->gb, &s->source)) + return -1; + + avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift); + + if (alloc_sequence_buffers(s)) + return -1; + + s->seen_sequence_header = 1; + } else if (parse_code == pc_eos) { //[DIRAC_STD] End of Sequence + free_sequence_buffers(s); + s->seen_sequence_header = 0; + } else if (parse_code == pc_aux_data) { + if (buf[13] == 1) { // encoder implementation/version + int ver[3]; + // versions older than 1.0.8 don't store quant delta for + // subbands with only one codeblock + if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3) + if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7) + s->old_delta_quant = 1; + } + } else if (parse_code & 0x8) { // picture data unit + if (!s->seen_sequence_header) { + av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n"); + return -1; + } + + // find an unused frame + for (i = 0; i < MAX_FRAMES; i++) + if (s->all_frames[i].avframe.data[0] == NULL) + pic = &s->all_frames[i]; + if (!pic) { + av_log(avctx, AV_LOG_ERROR, "framelist full\n"); + return -1; + } + + avcodec_get_frame_defaults(&pic->avframe); + + //[DIRAC_STD] Defined in 9.6.1 ... + s->num_refs = parse_code & 0x03; //[DIRAC_STD] num_refs() + s->is_arith = (parse_code & 0x48) == 0x08; //[DIRAC_STD] using_ac() + s->low_delay = (parse_code & 0x88) == 0x88; //[DIRAC_STD] is_low_delay() + pic->avframe.reference = (parse_code & 0x0C) == 0x0C; //[DIRAC_STD] is_reference() + pic->avframe.key_frame = s->num_refs == 0; //[DIRAC_STD] is_intra() + pic->avframe.pict_type = s->num_refs + 1; //Definition of AVPictureType in avutil.h + + if (avctx->get_buffer(avctx, &pic->avframe) < 0) { + av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); + return -1; + } + s->current_picture = pic; + s->plane[0].stride = pic->avframe.linesize[0]; + s->plane[1].stride = pic->avframe.linesize[1]; + s->plane[2].stride = pic->avframe.linesize[2]; + + //[DIRAC_STD] 11.1 Picture parse. picture_parse() + if (dirac_decode_picture_header(s)) + return -1; + + //[DIRAC_STD] 13.0 Transform data syntax. transform_data() + if (dirac_decode_frame_internal(s)) + return -1; + } + return 0; +} + +static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *pkt) +{ + DiracContext *s = avctx->priv_data; + DiracFrame *picture = data; + uint8_t *buf = pkt->data; + int buf_size = pkt->size; + int i, data_unit_size, buf_idx = 0; + + // release unused frames + for (i = 0; i < MAX_FRAMES; i++) + if (s->all_frames[i].avframe.data[0] && !s->all_frames[i].avframe.reference) { + avctx->release_buffer(avctx, &s->all_frames[i].avframe); + memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated)); + } + + s->current_picture = NULL; + *data_size = 0; + + // end of stream, so flush delayed pics + if (buf_size == 0) + return get_delayed_pic(s, picture, data_size); + + for (;;) { + //[DIRAC_STD] Here starts the code from parse_info() defined in 9.6 + //[DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646 + // BBCD start code search + for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) { + if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' && + buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D') + break; + } + //BBCD found or end of data + if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size) + break; + + data_unit_size = AV_RB32(buf+buf_idx+5); + if (buf_idx + data_unit_size > buf_size) { + av_log(s->avctx, AV_LOG_ERROR, + "Data unit with size %d is larger than input buffer, discarding\n", + data_unit_size); + buf_idx += 4; + continue; + } + + // [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() + if (dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size)) + return -1; + buf_idx += data_unit_size; + } + + if (!s->current_picture) + return 0; + + if (s->current_picture->avframe.display_picture_number > s->frame_number) { + DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number); + + s->current_picture->avframe.reference |= DELAYED_PIC_REF; + + if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) { + int min_num = s->delay_frames[0]->avframe.display_picture_number; + // Too many delayed frames, so we display the frame with the lowest pts + av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n"); + delayed_frame = s->delay_frames[0]; + + for (i = 1; s->delay_frames[i]; i++) + if (s->delay_frames[i]->avframe.display_picture_number < min_num) + min_num = s->delay_frames[i]->avframe.display_picture_number; + + delayed_frame = remove_frame(s->delay_frames, min_num); + add_frame(s->delay_frames, MAX_DELAY, s->current_picture); + } + + if (delayed_frame) { + delayed_frame->avframe.reference ^= DELAYED_PIC_REF; + *data_size = sizeof(DiracFrame); + *picture = *delayed_frame; + } + } else if (s->current_picture->avframe.display_picture_number == s->frame_number) { + // The right frame at the right time :-) + *data_size = sizeof(DiracFrame); + *picture = *s->current_picture; + } + + if (*data_size) + s->frame_number = picture->avframe.display_picture_number + 1; + + return buf_idx; +} + +AVCodec ff_dirac_decoder = { + "dirac", + AVMEDIA_TYPE_VIDEO, //CODEC_TYPE_VIDEO --> AVMEDIA_TYPE_VIDEO + CODEC_ID_DIRAC, + sizeof(DiracContext), + dirac_decode_init, + NULL, + dirac_decode_end, + dirac_decode_frame, + CODEC_CAP_DELAY, + .flush = dirac_decode_flush, + .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"), +}; |