diff options
author | Paul B Mahol <onemda@gmail.com> | 2013-04-24 09:41:36 +0000 |
---|---|---|
committer | Paul B Mahol <onemda@gmail.com> | 2013-04-25 14:21:00 +0000 |
commit | e1ba5fc96838fdadec2c36820c44af54bd8386eb (patch) | |
tree | 0e5fd60e8f9307f816031ef1d520f579917702b5 /libavcodec/dcaenc.c | |
parent | 8f0db04b086925f5358ef605e2a77bee041e5dbf (diff) | |
download | ffmpeg-e1ba5fc96838fdadec2c36820c44af54bd8386eb.tar.gz |
dcaenc: update
Long story short: previous code was useless and was port of older
dcaenc, this commit just "sync" with current dcaenc, hopefuly
making this encoder more useful.
Signed-off-by: Paul B Mahol <onemda@gmail.com>
Diffstat (limited to 'libavcodec/dcaenc.c')
-rw-r--r-- | libavcodec/dcaenc.c | 1079 |
1 files changed, 723 insertions, 356 deletions
diff --git a/libavcodec/dcaenc.c b/libavcodec/dcaenc.c index 4799ef40bd..d2862b19d7 100644 --- a/libavcodec/dcaenc.c +++ b/libavcodec/dcaenc.c @@ -1,6 +1,6 @@ /* * DCA encoder - * Copyright (C) 2008 Alexander E. Patrakov + * Copyright (C) 2008-2012 Alexander E. Patrakov * 2010 Benjamin Larsson * 2011 Xiang Wang * @@ -21,211 +21,678 @@ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ +#include "libavutil/avassert.h" #include "libavutil/channel_layout.h" #include "libavutil/common.h" -#include "libavutil/avassert.h" #include "avcodec.h" +#include "dca.h" +#include "dcadata.h" +#include "dcaenc.h" #include "internal.h" #include "put_bits.h" -#include "dcaenc.h" -#include "dcadata.h" -#include "dca.h" - -#undef NDEBUG #define MAX_CHANNELS 6 -#define DCA_SUBBANDS_32 32 -#define DCA_MAX_FRAME_SIZE 16383 +#define DCA_MAX_FRAME_SIZE 16384 #define DCA_HEADER_SIZE 13 +#define DCA_LFE_SAMPLES 8 -#define DCA_SUBBANDS 32 ///< Subband activity count -#define QUANTIZER_BITS 16 +#define DCA_SUBBANDS 32 #define SUBFRAMES 1 -#define SUBSUBFRAMES 4 -#define PCM_SAMPLES (SUBFRAMES*SUBSUBFRAMES*8) -#define LFE_BITS 8 -#define LFE_INTERPOLATION 64 -#define LFE_PRESENT 2 -#define LFE_MISSING 0 - -static const int8_t dca_lfe_index[] = { - 1,2,2,2,2,3,2,3,2,3,2,3,1,3,2,3 -}; - -static const int8_t dca_channel_reorder_lfe[][9] = { - { 0, -1, -1, -1, -1, -1, -1, -1, -1 }, - { 0, 1, -1, -1, -1, -1, -1, -1, -1 }, - { 0, 1, -1, -1, -1, -1, -1, -1, -1 }, - { 0, 1, -1, -1, -1, -1, -1, -1, -1 }, - { 0, 1, -1, -1, -1, -1, -1, -1, -1 }, - { 1, 2, 0, -1, -1, -1, -1, -1, -1 }, - { 0, 1, -1, 2, -1, -1, -1, -1, -1 }, - { 1, 2, 0, -1, 3, -1, -1, -1, -1 }, - { 0, 1, -1, 2, 3, -1, -1, -1, -1 }, - { 1, 2, 0, -1, 3, 4, -1, -1, -1 }, - { 2, 3, -1, 0, 1, 4, 5, -1, -1 }, - { 1, 2, 0, -1, 3, 4, 5, -1, -1 }, - { 0, -1, 4, 5, 2, 3, 1, -1, -1 }, - { 3, 4, 1, -1, 0, 2, 5, 6, -1 }, - { 2, 3, -1, 5, 7, 0, 1, 4, 6 }, - { 3, 4, 1, -1, 0, 2, 5, 7, 6 }, -}; +#define SUBSUBFRAMES 2 +#define SUBBAND_SAMPLES (SUBFRAMES * SUBSUBFRAMES * 8) +#define AUBANDS 25 -static const int8_t dca_channel_reorder_nolfe[][9] = { - { 0, -1, -1, -1, -1, -1, -1, -1, -1 }, - { 0, 1, -1, -1, -1, -1, -1, -1, -1 }, - { 0, 1, -1, -1, -1, -1, -1, -1, -1 }, - { 0, 1, -1, -1, -1, -1, -1, -1, -1 }, - { 0, 1, -1, -1, -1, -1, -1, -1, -1 }, - { 1, 2, 0, -1, -1, -1, -1, -1, -1 }, - { 0, 1, 2, -1, -1, -1, -1, -1, -1 }, - { 1, 2, 0, 3, -1, -1, -1, -1, -1 }, - { 0, 1, 2, 3, -1, -1, -1, -1, -1 }, - { 1, 2, 0, 3, 4, -1, -1, -1, -1 }, - { 2, 3, 0, 1, 4, 5, -1, -1, -1 }, - { 1, 2, 0, 3, 4, 5, -1, -1, -1 }, - { 0, 4, 5, 2, 3, 1, -1, -1, -1 }, - { 3, 4, 1, 0, 2, 5, 6, -1, -1 }, - { 2, 3, 5, 7, 0, 1, 4, 6, -1 }, - { 3, 4, 1, 0, 2, 5, 7, 6, -1 }, -}; - -typedef struct { +typedef struct DCAContext { PutBitContext pb; - int32_t history[MAX_CHANNELS][512]; /* This is a circular buffer */ - int start[MAX_CHANNELS]; int frame_size; - int prim_channels; + int frame_bits; + int fullband_channels; + int channels; int lfe_channel; - int sample_rate_code; - int scale_factor[MAX_CHANNELS][DCA_SUBBANDS_32]; + int samplerate_index; + int bitrate_index; + int channel_config; + const int32_t *band_interpolation; + const int32_t *band_spectrum; int lfe_scale_factor; - int lfe_data[SUBFRAMES*SUBSUBFRAMES*4]; + softfloat lfe_quant; + int32_t lfe_peak_cb; + + int32_t history[512][MAX_CHANNELS]; /* This is a circular buffer */ + int32_t subband[SUBBAND_SAMPLES][DCA_SUBBANDS][MAX_CHANNELS]; + int32_t quantized[SUBBAND_SAMPLES][DCA_SUBBANDS][MAX_CHANNELS]; + int32_t peak_cb[DCA_SUBBANDS][MAX_CHANNELS]; + int32_t downsampled_lfe[DCA_LFE_SAMPLES]; + int32_t masking_curve_cb[SUBSUBFRAMES][256]; + int abits[DCA_SUBBANDS][MAX_CHANNELS]; + int scale_factor[DCA_SUBBANDS][MAX_CHANNELS]; + softfloat quant[DCA_SUBBANDS][MAX_CHANNELS]; + int32_t eff_masking_curve_cb[256]; + int32_t band_masking_cb[32]; + int32_t worst_quantization_noise; + int32_t worst_noise_ever; + int consumed_bits; +} DCAContext; - int a_mode; ///< audio channels arrangement - int num_channel; - int lfe_state; - int lfe_offset; - const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe +static int32_t cos_table[2048]; +static int32_t band_interpolation[2][512]; +static int32_t band_spectrum[2][8]; +static int32_t auf[9][AUBANDS][256]; +static int32_t cb_to_add[256]; +static int32_t cb_to_level[2048]; +static int32_t lfe_fir_64i[512]; - int32_t pcm[FFMAX(LFE_INTERPOLATION, DCA_SUBBANDS_32)]; - int32_t subband[PCM_SAMPLES][MAX_CHANNELS][DCA_SUBBANDS_32]; /* [sample][channel][subband] */ -} DCAContext; +/* Transfer function of outer and middle ear, Hz -> dB */ +static double hom(double f) +{ + double f1 = f / 1000; + + return -3.64 * pow(f1, -0.8) + + 6.8 * exp(-0.6 * (f1 - 3.4) * (f1 - 3.4)) + - 6.0 * exp(-0.15 * (f1 - 8.7) * (f1 - 8.7)) + - 0.0006 * (f1 * f1) * (f1 * f1); +} + +static double gammafilter(int i, double f) +{ + double h = (f - fc[i]) / erb[i]; + + h = 1 + h * h; + h = 1 / (h * h); + return 20 * log10(h); +} + +static int encode_init(AVCodecContext *avctx) +{ + DCAContext *c = avctx->priv_data; + uint64_t layout = avctx->channel_layout; + int i, min_frame_bits; + + c->fullband_channels = c->channels = avctx->channels; + c->lfe_channel = (avctx->channels == 3 || avctx->channels == 6); + c->band_interpolation = band_interpolation[1]; + c->band_spectrum = band_spectrum[1]; + c->worst_quantization_noise = -2047; + c->worst_noise_ever = -2047; + + if (!layout) { + av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The " + "encoder will guess the layout, but it " + "might be incorrect.\n"); + layout = av_get_default_channel_layout(avctx->channels); + } + switch (layout) { + case AV_CH_LAYOUT_MONO: c->channel_config = 0; break; + case AV_CH_LAYOUT_STEREO: c->channel_config = 2; break; + case AV_CH_LAYOUT_2_2: c->channel_config = 8; break; + case AV_CH_LAYOUT_5POINT0: c->channel_config = 9; break; + case AV_CH_LAYOUT_5POINT1: c->channel_config = 9; break; + default: + av_log(avctx, AV_LOG_ERROR, "Unsupported channel layout!\n"); + return AVERROR_PATCHWELCOME; + } + + if (c->lfe_channel) + c->fullband_channels--; + + for (i = 0; i < 9; i++) { + if (sample_rates[i] == avctx->sample_rate) + break; + } + if (i == 9) + return AVERROR(EINVAL); + c->samplerate_index = i; + + if (avctx->bit_rate < 32000 || avctx->bit_rate > 3840000) { + av_log(avctx, AV_LOG_ERROR, "Bit rate %i not supported.", avctx->bit_rate); + return AVERROR(EINVAL); + } + for (i = 0; dca_bit_rates[i] < avctx->bit_rate; i++) + ; + c->bitrate_index = i; + avctx->bit_rate = dca_bit_rates[i]; + c->frame_bits = FFALIGN((avctx->bit_rate * 512 + avctx->sample_rate - 1) / avctx->sample_rate, 32); + min_frame_bits = 132 + (493 + 28 * 32) * c->fullband_channels + c->lfe_channel * 72; + if (c->frame_bits < min_frame_bits || c->frame_bits > (DCA_MAX_FRAME_SIZE << 3)) + return AVERROR(EINVAL); + + c->frame_size = (c->frame_bits + 7) / 8; + + avctx->frame_size = 32 * SUBBAND_SAMPLES; + + if (!cos_table[0]) { + int j, k; + + for (i = 0; i < 2048; i++) { + cos_table[i] = (int32_t)(0x7fffffff * cos(M_PI * i / 1024)); + cb_to_level[i] = (int32_t)(0x7fffffff * pow(10, -0.005 * i)); + } + + for (i = 0; i < 512; i++) { + lfe_fir_64i[i] = (int32_t)(0x01ffffff * lfe_fir_64[i]); + band_interpolation[0][i] = (int32_t)(0x1000000000ULL * fir_32bands_perfect[i]); + band_interpolation[1][i] = (int32_t)(0x1000000000ULL * fir_32bands_nonperfect[i]); + } + + for (i = 0; i < 9; i++) { + for (j = 0; j < AUBANDS; j++) { + for (k = 0; k < 256; k++) { + double freq = sample_rates[i] * (k + 0.5) / 512; + + auf[i][j][k] = (int32_t)(10 * (hom(freq) + gammafilter(j, freq))); + } + } + } + + for (i = 0; i < 256; i++) { + double add = 1 + pow(10, -0.01 * i); + cb_to_add[i] = (int32_t)(100 * log10(add)); + } + for (j = 0; j < 8; j++) { + double accum = 0; + for (i = 0; i < 512; i++) { + double reconst = fir_32bands_perfect[i] * ((i & 64) ? (-1) : 1); + accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512); + } + band_spectrum[0][j] = (int32_t)(200 * log10(accum)); + } + for (j = 0; j < 8; j++) { + double accum = 0; + for (i = 0; i < 512; i++) { + double reconst = fir_32bands_nonperfect[i] * ((i & 64) ? (-1) : 1); + accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512); + } + band_spectrum[1][j] = (int32_t)(200 * log10(accum)); + } + } + return 0; +} + +static inline int32_t cos_t(int x) +{ + return cos_table[x & 2047]; +} + +static inline int32_t sin_t(int x) +{ + return cos_t(x - 512); +} -static int32_t cos_table[128]; +static inline int32_t half32(int32_t a) +{ + return (a + 1) >> 1; +} static inline int32_t mul32(int32_t a, int32_t b) { - int64_t r = (int64_t) a * b; - /* round the result before truncating - improves accuracy */ - return (r + 0x80000000) >> 32; + int64_t r = (int64_t)a * b + 0x80000000ULL; + return r >> 32; +} + +static void subband_transform(DCAContext *c, const int32_t *input) +{ + int ch, subs, i, k, j; + + for (ch = 0; ch < c->fullband_channels; ch++) { + /* History is copied because it is also needed for PSY */ + int32_t hist[512]; + int hist_start = 0; + + for (i = 0; i < 512; i++) + hist[i] = c->history[i][ch]; + + for (subs = 0; subs < SUBBAND_SAMPLES; subs++) { + int32_t accum[64]; + int32_t resp; + int band; + + /* Calculate the convolutions at once */ + for (i = 0; i < 64; i++) + accum[i] = 0; + + for (k = 0, i = hist_start, j = 0; + i < 512; k = (k + 1) & 63, i++, j++) + accum[k] += mul32(hist[i], c->band_interpolation[j]); + for (i = 0; i < hist_start; k = (k + 1) & 63, i++, j++) + accum[k] += mul32(hist[i], c->band_interpolation[j]); + + for (k = 16; k < 32; k++) + accum[k] = accum[k] - accum[31 - k]; + for (k = 32; k < 48; k++) + accum[k] = accum[k] + accum[95 - k]; + + for (band = 0; band < 32; band++) { + resp = 0; + for (i = 16; i < 48; i++) { + int s = (2 * band + 1) * (2 * (i + 16) + 1); + resp += mul32(accum[i], cos_t(s << 3)) >> 3; + } + + c->subband[subs][band][ch] = ((band + 1) & 2) ? -resp : resp; + } + + /* Copy in 32 new samples from input */ + for (i = 0; i < 32; i++) + hist[i + hist_start] = input[(subs * 32 + i) * c->channels + ch]; + hist_start = (hist_start + 32) & 511; + } + } +} + +static void lfe_downsample(DCAContext *c, const int32_t *input) +{ + /* FIXME: make 128x LFE downsampling possible */ + int i, j, lfes; + int32_t hist[512]; + int32_t accum; + int hist_start = 0; + + for (i = 0; i < 512; i++) + hist[i] = c->history[i][c->channels - 1]; + + for (lfes = 0; lfes < DCA_LFE_SAMPLES; lfes++) { + /* Calculate the convolution */ + accum = 0; + + for (i = hist_start, j = 0; i < 512; i++, j++) + accum += mul32(hist[i], lfe_fir_64i[j]); + for (i = 0; i < hist_start; i++, j++) + accum += mul32(hist[i], lfe_fir_64i[j]); + + c->downsampled_lfe[lfes] = accum; + + /* Copy in 64 new samples from input */ + for (i = 0; i < 64; i++) + hist[i + hist_start] = input[(lfes * 64 + i) * c->channels + c->channels - 1]; + + hist_start = (hist_start + 64) & 511; + } } -/* Integer version of the cosine modulated Pseudo QMF */ +typedef struct { + int32_t re; + int32_t im; +} cplx32; -static void qmf_init(void) +static void fft(const int32_t in[2 * 256], cplx32 out[256]) { - int i; - int32_t c[17], s[17]; - s[0] = 0; /* sin(index * PI / 64) * 0x7fffffff */ - c[0] = 0x7fffffff; /* cos(index * PI / 64) * 0x7fffffff */ - - for (i = 1; i <= 16; i++) { - s[i] = 2 * (mul32(c[i - 1], 105372028) + mul32(s[i - 1], 2144896908)); - c[i] = 2 * (mul32(c[i - 1], 2144896908) - mul32(s[i - 1], 105372028)); + cplx32 buf[256], rin[256], rout[256]; + int i, j, k, l; + + /* do two transforms in parallel */ + for (i = 0; i < 256; i++) { + /* Apply the Hann window */ + rin[i].re = mul32(in[2 * i], 0x3fffffff - (cos_t(8 * i + 2) >> 1)); + rin[i].im = mul32(in[2 * i + 1], 0x3fffffff - (cos_t(8 * i + 6) >> 1)); + } + /* pre-rotation */ + for (i = 0; i < 256; i++) { + buf[i].re = mul32(cos_t(4 * i + 2), rin[i].re) + - mul32(sin_t(4 * i + 2), rin[i].im); + buf[i].im = mul32(cos_t(4 * i + 2), rin[i].im) + + mul32(sin_t(4 * i + 2), rin[i].re); + } + + for (j = 256, l = 1; j != 1; j >>= 1, l <<= 1) { + for (k = 0; k < 256; k += j) { + for (i = k; i < k + j / 2; i++) { + cplx32 sum, diff; + int t = 8 * l * i; + + sum.re = buf[i].re + buf[i + j / 2].re; + sum.im = buf[i].im + buf[i + j / 2].im; + + diff.re = buf[i].re - buf[i + j / 2].re; + diff.im = buf[i].im - buf[i + j / 2].im; + + buf[i].re = half32(sum.re); + buf[i].im = half32(sum.im); + + buf[i + j / 2].re = mul32(diff.re, cos_t(t)) + - mul32(diff.im, sin_t(t)); + buf[i + j / 2].im = mul32(diff.im, cos_t(t)) + + mul32(diff.re, sin_t(t)); + } + } + } + /* post-rotation */ + for (i = 0; i < 256; i++) { + int b = ff_reverse[i]; + rout[i].re = mul32(buf[b].re, cos_t(4 * i)) + - mul32(buf[b].im, sin_t(4 * i)); + rout[i].im = mul32(buf[b].im, cos_t(4 * i)) + + mul32(buf[b].re, sin_t(4 * i)); + } + for (i = 0; i < 256; i++) { + /* separate the results of the two transforms */ + cplx32 o1, o2; + + o1.re = rout[i].re - rout[255 - i].re; + o1.im = rout[i].im + rout[255 - i].im; + + o2.re = rout[i].im - rout[255 - i].im; + o2.im = -rout[i].re - rout[255 - i].re; + + /* combine them into one long transform */ + out[i].re = mul32( o1.re + o2.re, cos_t(2 * i + 1)) + + mul32( o1.im - o2.im, sin_t(2 * i + 1)); + out[i].im = mul32( o1.im + o2.im, cos_t(2 * i + 1)) + + mul32(-o1.re + o2.re, sin_t(2 * i + 1)); } +} - for (i = 0; i < 16; i++) { - cos_table[i ] = c[i] >> 3; /* avoid output overflow */ - cos_table[i + 16] = s[16 - i] >> 3; - cos_table[i + 32] = -s[i] >> 3; - cos_table[i + 48] = -c[16 - i] >> 3; - cos_table[i + 64] = -c[i] >> 3; - cos_table[i + 80] = -s[16 - i] >> 3; - cos_table[i + 96] = s[i] >> 3; - cos_table[i + 112] = c[16 - i] >> 3; +static int32_t get_cb(int32_t in) +{ + int i, res; + + res = 0; + if (in < 0) + in = -in; + for (i = 1024; i > 0; i >>= 1) { + if (cb_to_level[i + res] >= in) + res += i; } + return -res; } -static int32_t band_delta_factor(int band, int sample_num) +static int32_t add_cb(int32_t a, int32_t b) { - int index = band * (2 * sample_num + 1); - if (band == 0) - return 0x07ffffff; - else - return cos_table[index & 127]; + if (a < b) + FFSWAP(int32_t, a, b); + + if (a - b >= 256) + return a; + return a + cb_to_add[a - b]; } -static void add_new_samples(DCAContext *c, const int32_t *in, - int count, int channel) +static void adjust_jnd(int samplerate_index, + const int32_t in[512], int32_t out_cb[256]) { - int i; + int32_t power[256]; + cplx32 out[256]; + int32_t out_cb_unnorm[256]; + int32_t denom; + const int32_t ca_cb = -1114; + const int32_t cs_cb = 928; + int i, j; + + fft(in, out); - /* Place new samples into the history buffer */ - for (i = 0; i < count; i++) { - c->history[channel][c->start[channel] + i] = in[i]; - av_assert0(c->start[channel] + i < 512); + for (j = 0; j < 256; j++) { + power[j] = add_cb(get_cb(out[j].re), get_cb(out[j].im)); + out_cb_unnorm[j] = -2047; /* and can only grow */ } - c->start[channel] += count; - if (c->start[channel] == 512) - c->start[channel] = 0; - av_assert0(c->start[channel] < 512); + + for (i = 0; i < AUBANDS; i++) { + denom = ca_cb; /* and can only grow */ + for (j = 0; j < 256; j++) + denom = add_cb(denom, power[j] + auf[samplerate_index][i][j]); + for (j = 0; j < 256; j++) + out_cb_unnorm[j] = add_cb(out_cb_unnorm[j], + -denom + auf[samplerate_index][i][j]); + } + + for (j = 0; j < 256; j++) + out_cb[j] = add_cb(out_cb[j], -out_cb_unnorm[j] - ca_cb - cs_cb); } -static void qmf_decompose(DCAContext *c, int32_t in[32], int32_t out[32], - int channel) +typedef void (*walk_band_t)(DCAContext *c, int band1, int band2, int f, + int32_t spectrum1, int32_t spectrum2, int channel, + int32_t * arg); + +static void walk_band_low(DCAContext *c, int band, int channel, + walk_band_t walk, int32_t *arg) { - int band, i, j, k; - int32_t resp; - int32_t accum[DCA_SUBBANDS_32] = {0}; + int f; - add_new_samples(c, in, DCA_SUBBANDS_32, channel); + if (band == 0) { + for (f = 0; f < 4; f++) + walk(c, 0, 0, f, 0, -2047, channel, arg); + } else { + for (f = 0; f < 8; f++) + walk(c, band, band - 1, 8 * band - 4 + f, + c->band_spectrum[7 - f], c->band_spectrum[f], channel, arg); + } +} - /* Calculate the dot product of the signal with the (possibly inverted) - reference decoder's response to this vector: - (0.0, 0.0, ..., 0.0, -1.0, 1.0, 0.0, ..., 0.0) - so that -1.0 cancels 1.0 from the previous step */ +static void walk_band_high(DCAContext *c, int band, int channel, + walk_band_t walk, int32_t *arg) +{ + int f; - for (k = 48, j = 0, i = c->start[channel]; i < 512; k++, j++, i++) - accum[(k & 32) ? (31 - (k & 31)) : (k & 31)] += mul32(c->history[channel][i], UnQMF[j]); - for (i = 0; i < c->start[channel]; k++, j++, i++) - accum[(k & 32) ? (31 - (k & 31)) : (k & 31)] += mul32(c->history[channel][i], UnQMF[j]); + if (band == 31) { + for (f = 0; f < 4; f++) + walk(c, 31, 31, 256 - 4 + f, 0, -2047, channel, arg); + } else { + for (f = 0; f < 8; f++) + walk(c, band, band + 1, 8 * band + 4 + f, + c->band_spectrum[f], c->band_spectrum[7 - f], channel, arg); + } +} - resp = 0; - /* TODO: implement FFT instead of this naive calculation */ - for (band = 0; band < DCA_SUBBANDS_32; band++) { - for (j = 0; j < 32; j++) - resp += mul32(accum[j], band_delta_factor(band, j)); +static void update_band_masking(DCAContext *c, int band1, int band2, + int f, int32_t spectrum1, int32_t spectrum2, + int channel, int32_t * arg) +{ + int32_t value = c->eff_masking_curve_cb[f] - spectrum1; - out[band] = (band & 2) ? (-resp) : resp; + if (value < c->band_masking_cb[band1]) + c->band_masking_cb[band1] = value; +} + +static void calc_masking(DCAContext *c, const int32_t *input) +{ + int i, k, band, ch, ssf; + int32_t data[512]; + + for (i = 0; i < 256; i++) + for (ssf = 0; ssf < SUBSUBFRAMES; ssf++) + c->masking_curve_cb[ssf][i] = -2047; + + for (ssf = 0; ssf < SUBSUBFRAMES; ssf++) + for (ch = 0; ch < c->fullband_channels; ch++) { + for (i = 0, k = 128 + 256 * ssf; k < 512; i++, k++) + data[i] = c->history[k][ch]; + for (k -= 512; i < 512; i++, k++) + data[i] = input[k * c->channels + ch]; + adjust_jnd(c->samplerate_index, data, c->masking_curve_cb[ssf]); + } + for (i = 0; i < 256; i++) { + int32_t m = 2048; + + for (ssf = 0; ssf < SUBSUBFRAMES; ssf++) + if (c->masking_curve_cb[ssf][i] < m) + m = c->masking_curve_cb[ssf][i]; + c->eff_masking_curve_cb[i] = m; + } + + for (band = 0; band < 32; band++) { + c->band_masking_cb[band] = 2048; + walk_band_low(c, band, 0, update_band_masking, NULL); + walk_band_high(c, band, 0, update_band_masking, NULL); } } -static int32_t lfe_fir_64i[512]; -static int lfe_downsample(DCAContext *c, int32_t in[LFE_INTERPOLATION]) +static void find_peaks(DCAContext *c) { - int i, j; - int channel = c->prim_channels; - int32_t accum = 0; - - add_new_samples(c, in, LFE_INTERPOLATION, channel); - for (i = c->start[channel], j = 0; i < 512; i++, j++) - accum += mul32(c->history[channel][i], lfe_fir_64i[j]); - for (i = 0; i < c->start[channel]; i++, j++) - accum += mul32(c->history[channel][i], lfe_fir_64i[j]); - return accum; + int band, ch; + + for (band = 0; band < 32; band++) + for (ch = 0; ch < c->fullband_channels; ch++) { + int sample; + int32_t m = 0; + + for (sample = 0; sample < SUBBAND_SAMPLES; sample++) { + int32_t s = abs(c->subband[sample][band][ch]); + if (m < s) + m = s; + } + c->peak_cb[band][ch] = get_cb(m); + } + + if (c->lfe_channel) { + int sample; + int32_t m = 0; + + for (sample = 0; sample < DCA_LFE_SAMPLES; sample++) + if (m < abs(c->downsampled_lfe[sample])) + m = abs(c->downsampled_lfe[sample]); + c->lfe_peak_cb = get_cb(m); + } } -static void init_lfe_fir(void) +static const int snr_fudge = 128; +#define USED_1ABITS 1 +#define USED_NABITS 2 +#define USED_26ABITS 4 + +static int init_quantization_noise(DCAContext *c, int noise) { - static int initialized = 0; - int i; - if (initialized) - return; + int ch, band, ret = 0; + + c->consumed_bits = 132 + 493 * c->fullband_channels; + if (c->lfe_channel) + c->consumed_bits += 72; + + /* attempt to guess the bit distribution based on the prevoius frame */ + for (ch = 0; ch < c->fullband_channels; ch++) { + for (band = 0; band < 32; band++) { + int snr_cb = c->peak_cb[band][ch] - c->band_masking_cb[band] - noise; + + if (snr_cb >= 1312) { + c->abits[band][ch] = 26; + ret |= USED_26ABITS; + } else if (snr_cb >= 222) { + c->abits[band][ch] = 8 + mul32(snr_cb - 222, 69000000); + ret |= USED_NABITS; + } else if (snr_cb >= 0) { + c->abits[band][ch] = 2 + mul32(snr_cb, 106000000); + ret |= USED_NABITS; + } else { + c->abits[band][ch] = 1; + ret |= USED_1ABITS; + } + } + } - for (i = 0; i < 512; i++) - lfe_fir_64i[i] = lfe_fir_64[i] * (1 << 25); //float -> int32_t - initialized = 1; + for (band = 0; band < 32; band++) + for (ch = 0; ch < c->fullband_channels; ch++) { + c->consumed_bits += bit_consumption[c->abits[band][ch]]; + } + + return ret; +} + +static void assign_bits(DCAContext *c) +{ + /* Find the bounds where the binary search should work */ + int low, high, down; + int used_abits = 0; + + init_quantization_noise(c, c->worst_quantization_noise); + low = high = c->worst_quantization_noise; + if (c->consumed_bits > c->frame_bits) { + while (c->consumed_bits > c->frame_bits) { + av_assert0(used_abits != USED_1ABITS); + low = high; + high += snr_fudge; + used_abits = init_quantization_noise(c, high); + } + } else { + while (c->consumed_bits <= c->frame_bits) { + high = low; + if (used_abits == USED_26ABITS) + goto out; /* The requested bitrate is too high, pad with zeros */ + low -= snr_fudge; + used_abits = init_quantization_noise(c, low); + } + } + + /* Now do a binary search between low and high to see what fits */ + for (down = snr_fudge >> 1; down; down >>= 1) { + init_quantization_noise(c, high - down); + if (c->consumed_bits <= c->frame_bits) + high -= down; + } + init_quantization_noise(c, high); +out: + c->worst_quantization_noise = high; + if (high > c->worst_noise_ever) + c->worst_noise_ever = high; +} + +static void shift_history(DCAContext *c, const int32_t *input) +{ + int k, ch; + + for (k = 0; k < 512; k++) + for (ch = 0; ch < c->channels; ch++) + c->history[k][ch] = input[k * c->channels + ch]; +} + +static int32_t quantize_value(int32_t value, softfloat quant) +{ + int32_t offset = 1 << (quant.e - 1); + + value = mul32(value, quant.m) + offset; + value = value >> quant.e; + return value; +} + +static int calc_one_scale(int32_t peak_cb, int abits, softfloat *quant) +{ + int32_t peak; + int our_nscale, try_remove; + softfloat our_quant; + + av_assert0(peak_cb <= 0); + av_assert0(peak_cb >= -2047); + + our_nscale = 127; + peak = cb_to_level[-peak_cb]; + + for (try_remove = 64; try_remove > 0; try_remove >>= 1) { + if (scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e <= 17) + continue; + our_quant.m = mul32(scalefactor_inv[our_nscale - try_remove].m, stepsize_inv[abits].m); + our_quant.e = scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e - 17; + if ((quant_levels[abits] - 1) / 2 < quantize_value(peak, our_quant)) + continue; + our_nscale -= try_remove; + } + + if (our_nscale >= 125) + our_nscale = 124; + + quant->m = mul32(scalefactor_inv[our_nscale].m, stepsize_inv[abits].m); + quant->e = scalefactor_inv[our_nscale].e + stepsize_inv[abits].e - 17; + av_assert0((quant_levels[abits] - 1) / 2 >= quantize_value(peak, *quant)); + + return our_nscale; +} + +static void calc_scales(DCAContext *c) +{ + int band, ch; + + for (band = 0; band < 32; band++) + for (ch = 0; ch < c->fullband_channels; ch++) + c->scale_factor[band][ch] = calc_one_scale(c->peak_cb[band][ch], + c->abits[band][ch], + &c->quant[band][ch]); + + if (c->lfe_channel) + c->lfe_scale_factor = calc_one_scale(c->lfe_peak_cb, 11, &c->lfe_quant); +} + +static void quantize_all(DCAContext *c) +{ + int sample, band, ch; + + for (sample = 0; sample < SUBBAND_SAMPLES; sample++) + for (band = 0; band < 32; band++) + for (ch = 0; ch < c->fullband_channels; ch++) + c->quantized[sample][band][ch] = quantize_value(c->subband[sample][band][ch], c->quant[band][ch]); } static void put_frame_header(DCAContext *c) @@ -244,19 +711,19 @@ static void put_frame_header(DCAContext *c) put_bits(&c->pb, 1, 0); /* Number of PCM sample blocks */ - put_bits(&c->pb, 7, PCM_SAMPLES-1); + put_bits(&c->pb, 7, SUBBAND_SAMPLES - 1); /* Primary frame byte size */ - put_bits(&c->pb, 14, c->frame_size-1); + put_bits(&c->pb, 14, c->frame_size - 1); - /* Audio channel arrangement: L + R (stereo) */ - put_bits(&c->pb, 6, c->num_channel); + /* Audio channel arrangement */ + put_bits(&c->pb, 6, c->channel_config); /* Core audio sampling frequency */ - put_bits(&c->pb, 4, c->sample_rate_code); + put_bits(&c->pb, 4, bitstream_sfreq[c->samplerate_index]); - /* Transmission bit rate: 1411.2 kbps */ - put_bits(&c->pb, 5, 0x16); /* FIXME: magic number */ + /* Transmission bit rate */ + put_bits(&c->pb, 5, c->bitrate_index); /* Embedded down mix: disabled */ put_bits(&c->pb, 1, 0); @@ -282,8 +749,8 @@ static void put_frame_header(DCAContext *c) /* Audio sync word insertion flag: after each sub-frame */ put_bits(&c->pb, 1, 0); - /* Low frequency effects flag: not present or interpolation factor=64 */ - put_bits(&c->pb, 2, c->lfe_state); + /* Low frequency effects flag: not present or 64x subsampling */ + put_bits(&c->pb, 2, c->lfe_channel ? 2 : 0); /* Predictor history switch flag: on */ put_bits(&c->pb, 1, 1); @@ -321,82 +788,68 @@ static void put_primary_audio_header(DCAContext *c) put_bits(&c->pb, 4, SUBFRAMES - 1); /* Number of primary audio channels */ - put_bits(&c->pb, 3, c->prim_channels - 1); + put_bits(&c->pb, 3, c->fullband_channels - 1); /* Subband activity count */ - for (ch = 0; ch < c->prim_channels; ch++) + for (ch = 0; ch < c->fullband_channels; ch++) put_bits(&c->pb, 5, DCA_SUBBANDS - 2); /* High frequency VQ start subband */ - for (ch = 0; ch < c->prim_channels; ch++) + for (ch = 0; ch < c->fullband_channels; ch++) put_bits(&c->pb, 5, DCA_SUBBANDS - 1); /* Joint intensity coding index: 0, 0 */ - for (ch = 0; ch < c->prim_channels; ch++) + for (ch = 0; ch < c->fullband_channels; ch++) put_bits(&c->pb, 3, 0); /* Transient mode codebook: A4, A4 (arbitrary) */ - for (ch = 0; ch < c->prim_channels; ch++) + for (ch = 0; ch < c->fullband_channels; ch++) put_bits(&c->pb, 2, 0); /* Scale factor code book: 7 bit linear, 7-bit sqrt table (for each channel) */ - for (ch = 0; ch < c->prim_channels; ch++) + for (ch = 0; ch < c->fullband_channels; ch++) put_bits(&c->pb, 3, 6); /* Bit allocation quantizer select: linear 5-bit */ - for (ch = 0; ch < c->prim_channels; ch++) + for (ch = 0; ch < c->fullband_channels; ch++) put_bits(&c->pb, 3, 6); /* Quantization index codebook select: dummy data to avoid transmission of scale factor adjustment */ - for (i = 1; i < 11; i++) - for (ch = 0; ch < c->prim_channels; ch++) + for (ch = 0; ch < c->fullband_channels; ch++) put_bits(&c->pb, bitlen[i], thr[i]); /* Scale factor adjustment index: not transmitted */ + /* Audio header CRC check word: not transmitted */ } -/** - * 8-23 bits quantization - * @param sample - * @param bits - */ -static inline uint32_t quantize(int32_t sample, int bits) -{ - av_assert0(sample < 1 << (bits - 1)); - av_assert0(sample >= -(1 << (bits - 1))); - return sample & ((1 << bits) - 1); -} - -static inline int find_scale_factor7(int64_t max_value, int bits) +static void put_subframe_samples(DCAContext *c, int ss, int band, int ch) { - int i = 0, j = 128, q; - max_value = ((max_value << 15) / lossy_quant[bits + 3]) >> (bits - 1); - while (i < j) { - q = (i + j) >> 1; - if (max_value < scale_factor_quant7[q]) - j = q; - else - i = q + 1; + if (c->abits[band][ch] <= 7) { + int sum, i, j; + for (i = 0; i < 8; i += 4) { + sum = 0; + for (j = 3; j >= 0; j--) { + sum *= quant_levels[c->abits[band][ch]]; + sum += c->quantized[ss * 8 + i + j][band][ch]; + sum += (quant_levels[c->abits[band][ch]] - 1) / 2; + } + put_bits(&c->pb, bit_consumption[c->abits[band][ch]] / 4, sum); + } + } else { + int i; + for (i = 0; i < 8; i++) { + int bits = bit_consumption[c->abits[band][ch]] / 16; + int32_t mask = (1 << bits) - 1; + put_bits(&c->pb, bits, c->quantized[ss * 8 + i][band][ch] & mask); + } } - av_assert1(i < 128); - return i; -} - -static inline void put_sample7(DCAContext *c, int64_t sample, int bits, - int scale_factor) -{ - sample = (sample << 15) / ((int64_t) lossy_quant[bits + 3] * scale_factor_quant7[scale_factor]); - put_bits(&c->pb, bits, quantize((int) sample, bits)); } -static void put_subframe(DCAContext *c, - int32_t subband_data[8 * SUBSUBFRAMES][MAX_CHANNELS][32], - int subframe) +static void put_subframe(DCAContext *c, int subframe) { - int i, sub, ss, ch, max_value; - int32_t *lfe_data = c->lfe_data + 4 * SUBSUBFRAMES * subframe; + int i, band, ss, ch; /* Subsubframes count */ put_bits(&c->pb, 2, SUBSUBFRAMES -1); @@ -405,44 +858,27 @@ static void put_subframe(DCAContext *c, put_bits(&c->pb, 3, 0); /* Prediction mode: no ADPCM, in each channel and subband */ - for (ch = 0; ch < c->prim_channels; ch++) - for (sub = 0; sub < DCA_SUBBANDS; sub++) + for (ch = 0; ch < c->fullband_channels; ch++) + for (band = 0; band < DCA_SUBBANDS; band++) put_bits(&c->pb, 1, 0); /* Prediction VQ addres: not transmitted */ /* Bit allocation index */ - for (ch = 0; ch < c->prim_channels; ch++) - for (sub = 0; sub < DCA_SUBBANDS; sub++) - put_bits(&c->pb, 5, QUANTIZER_BITS+3); + for (ch = 0; ch < c->fullband_channels; ch++) + for (band = 0; band < DCA_SUBBANDS; band++) + put_bits(&c->pb, 5, c->abits[band][ch]); if (SUBSUBFRAMES > 1) { /* Transition mode: none for each channel and subband */ - for (ch = 0; ch < c->prim_channels; ch++) - for (sub = 0; sub < DCA_SUBBANDS; sub++) + for (ch = 0; ch < c->fullband_channels; ch++) + for (band = 0; band < DCA_SUBBANDS; band++) put_bits(&c->pb, 1, 0); /* codebook A4 */ } - /* Determine scale_factor */ - for (ch = 0; ch < c->prim_channels; ch++) - for (sub = 0; sub < DCA_SUBBANDS; sub++) { - max_value = 0; - for (i = 0; i < 8 * SUBSUBFRAMES; i++) - max_value = FFMAX(max_value, FFABS(subband_data[i][ch][sub])); - c->scale_factor[ch][sub] = find_scale_factor7(max_value, QUANTIZER_BITS); - } - - if (c->lfe_channel) { - max_value = 0; - for (i = 0; i < 4 * SUBSUBFRAMES; i++) - max_value = FFMAX(max_value, FFABS(lfe_data[i])); - c->lfe_scale_factor = find_scale_factor7(max_value, LFE_BITS); - } - - /* Scale factors: the same for each channel and subband, - encoded according to Table D.1.2 */ - for (ch = 0; ch < c->prim_channels; ch++) - for (sub = 0; sub < DCA_SUBBANDS; sub++) - put_bits(&c->pb, 7, c->scale_factor[ch][sub]); + /* Scale factors */ + for (ch = 0; ch < c->fullband_channels; ch++) + for (band = 0; band < DCA_SUBBANDS; band++) + put_bits(&c->pb, 7, c->scale_factor[band][ch]); /* Joint subband scale factor codebook select: not transmitted */ /* Scale factors for joint subband coding: not transmitted */ @@ -451,152 +887,83 @@ static void put_subframe(DCAContext *c, /* Stde information CRC check word: not transmitted */ /* VQ encoded high frequency subbands: not transmitted */ - /* LFE data */ + /* LFE data: 8 samples and scalefactor */ if (c->lfe_channel) { - for (i = 0; i < 4 * SUBSUBFRAMES; i++) - put_sample7(c, lfe_data[i], LFE_BITS, c->lfe_scale_factor); + for (i = 0; i < DCA_LFE_SAMPLES; i++) + put_bits(&c->pb, 8, quantize_value(c->downsampled_lfe[i], c->lfe_quant) & 0xff); put_bits(&c->pb, 8, c->lfe_scale_factor); } /* Audio data (subsubframes) */ - for (ss = 0; ss < SUBSUBFRAMES ; ss++) - for (ch = 0; ch < c->prim_channels; ch++) - for (sub = 0; sub < DCA_SUBBANDS; sub++) - for (i = 0; i < 8; i++) - put_sample7(c, subband_data[ss * 8 + i][ch][sub], QUANTIZER_BITS, c->scale_factor[ch][sub]); + for (ch = 0; ch < c->fullband_channels; ch++) + for (band = 0; band < DCA_SUBBANDS; band++) + put_subframe_samples(c, ss, band, ch); /* DSYNC */ put_bits(&c->pb, 16, 0xffff); } -static void put_frame(DCAContext *c, - int32_t subband_data[PCM_SAMPLES][MAX_CHANNELS][32], - uint8_t *frame) -{ - int i; - init_put_bits(&c->pb, frame + DCA_HEADER_SIZE, DCA_MAX_FRAME_SIZE-DCA_HEADER_SIZE); - - put_primary_audio_header(c); - for (i = 0; i < SUBFRAMES; i++) - put_subframe(c, &subband_data[SUBSUBFRAMES * 8 * i], i); - - flush_put_bits(&c->pb); - c->frame_size = (put_bits_count(&c->pb) >> 3) + DCA_HEADER_SIZE; - - init_put_bits(&c->pb, frame, DCA_HEADER_SIZE); - put_frame_header(c); - flush_put_bits(&c->pb); -} - static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr) { - int i, k, channel; DCAContext *c = avctx->priv_data; - const int16_t *samples; - int ret, real_channel = 0; + const int32_t *samples; + int ret, i; - if ((ret = ff_alloc_packet2(avctx, avpkt, DCA_MAX_FRAME_SIZE + DCA_HEADER_SIZE)) < 0) + if ((ret = ff_alloc_packet2(avctx, avpkt, c->frame_size )) < 0) return ret; - samples = (const int16_t *)frame->data[0]; - for (i = 0; i < PCM_SAMPLES; i ++) { /* i is the decimated sample number */ - for (channel = 0; channel < c->prim_channels + 1; channel++) { - real_channel = c->channel_order_tab[channel]; - if (real_channel >= 0) { - /* Get 32 PCM samples */ - for (k = 0; k < 32; k++) { /* k is the sample number in a 32-sample block */ - c->pcm[k] = samples[avctx->channels * (32 * i + k) + channel] << 16; - } - /* Put subband samples into the proper place */ - qmf_decompose(c, c->pcm, &c->subband[i][real_channel][0], real_channel); - } - } - } + samples = (const int32_t *)frame->data[0]; - if (c->lfe_channel) { - for (i = 0; i < PCM_SAMPLES / 2; i++) { - for (k = 0; k < LFE_INTERPOLATION; k++) /* k is the sample number in a 32-sample block */ - c->pcm[k] = samples[avctx->channels * (LFE_INTERPOLATION*i+k) + c->lfe_offset] << 16; - c->lfe_data[i] = lfe_downsample(c, c->pcm); - } - } + subband_transform(c, samples); + if (c->lfe_channel) + lfe_downsample(c, samples); - put_frame(c, c->subband, avpkt->data); + calc_masking(c, samples); + find_peaks(c); + assign_bits(c); + calc_scales(c); + quantize_all(c); + shift_history(c, samples); - avpkt->size = c->frame_size; - *got_packet_ptr = 1; - return 0; -} - -static int encode_init(AVCodecContext *avctx) -{ - DCAContext *c = avctx->priv_data; - int i; - uint64_t layout = avctx->channel_layout; - - c->prim_channels = avctx->channels; - c->lfe_channel = (avctx->channels == 3 || avctx->channels == 6); - - if (!layout) { - av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The " - "encoder will guess the layout, but it " - "might be incorrect.\n"); - layout = av_get_default_channel_layout(avctx->channels); - } - switch (layout) { - case AV_CH_LAYOUT_STEREO: c->a_mode = 2; c->num_channel = 2; break; - case AV_CH_LAYOUT_5POINT0: c->a_mode = 9; c->num_channel = 9; break; - case AV_CH_LAYOUT_5POINT1: c->a_mode = 9; c->num_channel = 9; break; - case AV_CH_LAYOUT_5POINT0_BACK: c->a_mode = 9; c->num_channel = 9; break; - case AV_CH_LAYOUT_5POINT1_BACK: c->a_mode = 9; c->num_channel = 9; break; - default: - av_log(avctx, AV_LOG_ERROR, - "Only stereo, 5.0, 5.1 channel layouts supported at the moment!\n"); - return AVERROR_PATCHWELCOME; - } - - if (c->lfe_channel) { - init_lfe_fir(); - c->prim_channels--; - c->channel_order_tab = dca_channel_reorder_lfe[c->a_mode]; - c->lfe_state = LFE_PRESENT; - c->lfe_offset = dca_lfe_index[c->a_mode]; - } else { - c->channel_order_tab = dca_channel_reorder_nolfe[c->a_mode]; - c->lfe_state = LFE_MISSING; - } - - for (i = 0; i < 16; i++) { - if (avpriv_dca_sample_rates[i] && (avpriv_dca_sample_rates[i] == avctx->sample_rate)) - break; - } - if (i == 16) { - av_log(avctx, AV_LOG_ERROR, "Sample rate %iHz not supported, only ", avctx->sample_rate); - for (i = 0; i < 16; i++) - av_log(avctx, AV_LOG_ERROR, "%d, ", avpriv_dca_sample_rates[i]); - av_log(avctx, AV_LOG_ERROR, "supported.\n"); - return -1; - } - c->sample_rate_code = i; + init_put_bits(&c->pb, avpkt->data, avpkt->size); + put_frame_header(c); + put_primary_audio_header(c); + for (i = 0; i < SUBFRAMES; i++) + put_subframe(c, i); - avctx->frame_size = 32 * PCM_SAMPLES; + flush_put_bits(&c->pb); - if (!cos_table[127]) - qmf_init(); + avpkt->pts = frame->pts; + avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples); + avpkt->size = c->frame_size + 1; + *got_packet_ptr = 1; return 0; } +static const AVCodecDefault defaults[] = { + { "b", "1411200" }, + { NULL }, +}; + AVCodec ff_dca_encoder = { - .name = "dca", - .type = AVMEDIA_TYPE_AUDIO, - .id = AV_CODEC_ID_DTS, - .priv_data_size = sizeof(DCAContext), - .init = encode_init, - .encode2 = encode_frame, - .capabilities = CODEC_CAP_EXPERIMENTAL, - .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, - AV_SAMPLE_FMT_NONE }, - .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"), + .name = "dca", + .type = AVMEDIA_TYPE_AUDIO, + .id = AV_CODEC_ID_DTS, + .priv_data_size = sizeof(DCAContext), + .init = encode_init, + .encode2 = encode_frame, + .capabilities = CODEC_CAP_EXPERIMENTAL, + .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32, + AV_SAMPLE_FMT_NONE }, + .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"), + .supported_samplerates = sample_rates, + .channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_MONO, + AV_CH_LAYOUT_STEREO, + AV_CH_LAYOUT_2_2, + AV_CH_LAYOUT_5POINT0, + AV_CH_LAYOUT_5POINT1, + 0 }, + .defaults = defaults, }; |