aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/dca_xll.c
diff options
context:
space:
mode:
authorfoo86 <foobaz86@gmail.com>2016-01-16 11:54:38 +0300
committerHendrik Leppkes <h.leppkes@gmail.com>2016-01-31 17:09:38 +0100
commitae5b2c52501d5009fe712334428138a9b758849b (patch)
tree8e30d705d98efe3b249ff3a57eb01789c3ff4c4f /libavcodec/dca_xll.c
parent0930b2dd1f01213ca1f08aff3a9b8b0d5515cede (diff)
downloadffmpeg-ae5b2c52501d5009fe712334428138a9b758849b.tar.gz
avcodec/dca: add new decoder based on libdcadec
Diffstat (limited to 'libavcodec/dca_xll.c')
-rw-r--r--libavcodec/dca_xll.c1499
1 files changed, 1499 insertions, 0 deletions
diff --git a/libavcodec/dca_xll.c b/libavcodec/dca_xll.c
new file mode 100644
index 0000000000..cd1af81dcc
--- /dev/null
+++ b/libavcodec/dca_xll.c
@@ -0,0 +1,1499 @@
+/*
+ * Copyright (C) 2016 foo86
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include "dcadec.h"
+#include "dcadata.h"
+#include "dcamath.h"
+#include "dca_syncwords.h"
+#include "unary.h"
+
+static int get_linear(GetBitContext *gb, int n)
+{
+ unsigned int v = get_bits_long(gb, n);
+ return (v >> 1) ^ -(v & 1);
+}
+
+static int get_rice_un(GetBitContext *gb, int k)
+{
+ unsigned int v = get_unary(gb, 1, 128);
+ return (v << k) | get_bits_long(gb, k);
+}
+
+static int get_rice(GetBitContext *gb, int k)
+{
+ unsigned int v = get_rice_un(gb, k);
+ return (v >> 1) ^ -(v & 1);
+}
+
+static void get_array(GetBitContext *gb, int32_t *array, int size, int n)
+{
+ int i;
+
+ for (i = 0; i < size; i++)
+ array[i] = get_bits(gb, n);
+}
+
+static void get_linear_array(GetBitContext *gb, int32_t *array, int size, int n)
+{
+ int i;
+
+ if (n == 0)
+ memset(array, 0, sizeof(*array) * size);
+ else for (i = 0; i < size; i++)
+ array[i] = get_linear(gb, n);
+}
+
+static void get_rice_array(GetBitContext *gb, int32_t *array, int size, int k)
+{
+ int i;
+
+ for (i = 0; i < size; i++)
+ array[i] = get_rice(gb, k);
+}
+
+static int parse_dmix_coeffs(DCAXllDecoder *s, DCAXllChSet *c)
+{
+ // Size of downmix coefficient matrix
+ int m = c->primary_chset ? ff_dca_dmix_primary_nch[c->dmix_type] : c->hier_ofs;
+ int i, j, *coeff_ptr = c->dmix_coeff;
+
+ for (i = 0; i < m; i++) {
+ int code, sign, coeff, scale, scale_inv = 0;
+ unsigned int index;
+
+ // Downmix scale (only for non-primary channel sets)
+ if (!c->primary_chset) {
+ code = get_bits(&s->gb, 9);
+ sign = (code >> 8) - 1;
+ index = (code & 0xff) - FF_DCA_DMIXTABLE_OFFSET;
+ if (index >= FF_DCA_INV_DMIXTABLE_SIZE) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL downmix scale index\n");
+ return AVERROR_INVALIDDATA;
+ }
+ scale = ff_dca_dmixtable[index + FF_DCA_DMIXTABLE_OFFSET];
+ scale_inv = ff_dca_inv_dmixtable[index];
+ c->dmix_scale[i] = (scale ^ sign) - sign;
+ c->dmix_scale_inv[i] = (scale_inv ^ sign) - sign;
+ }
+
+ // Downmix coefficients
+ for (j = 0; j < c->nchannels; j++) {
+ code = get_bits(&s->gb, 9);
+ sign = (code >> 8) - 1;
+ index = code & 0xff;
+ if (index >= FF_DCA_DMIXTABLE_SIZE) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL downmix coefficient index\n");
+ return AVERROR_INVALIDDATA;
+ }
+ coeff = ff_dca_dmixtable[index];
+ if (!c->primary_chset)
+ // Multiply by |InvDmixScale| to get |UndoDmixScale|
+ coeff = mul16(scale_inv, coeff);
+ *coeff_ptr++ = (coeff ^ sign) - sign;
+ }
+ }
+
+ return 0;
+}
+
+static int chs_parse_header(DCAXllDecoder *s, DCAXllChSet *c, DCAExssAsset *asset)
+{
+ int i, j, k, ret, band, header_size, header_pos = get_bits_count(&s->gb);
+ DCAXllChSet *p = &s->chset[0];
+ DCAXllBand *b;
+
+ // Size of channel set sub-header
+ header_size = get_bits(&s->gb, 10) + 1;
+
+ // Check CRC
+ if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL))
+ && ff_dca_check_crc(&s->gb, header_pos, header_pos + header_size * 8)) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL sub-header checksum\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ // Number of channels in the channel set
+ c->nchannels = get_bits(&s->gb, 4) + 1;
+ if (c->nchannels > DCA_XLL_CHANNELS_MAX) {
+ avpriv_request_sample(s->avctx, "%d XLL channels", c->nchannels);
+ return AVERROR_PATCHWELCOME;
+ }
+
+ // Residual type
+ c->residual_encode = get_bits(&s->gb, c->nchannels);
+
+ // PCM bit resolution
+ c->pcm_bit_res = get_bits(&s->gb, 5) + 1;
+
+ // Storage unit width
+ c->storage_bit_res = get_bits(&s->gb, 5) + 1;
+ if (c->storage_bit_res != 16 && c->storage_bit_res != 24) {
+ avpriv_request_sample(s->avctx, "%d-bit XLL storage resolution", c->storage_bit_res);
+ return AVERROR_PATCHWELCOME;
+ }
+
+ if (c->pcm_bit_res > c->storage_bit_res) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid PCM bit resolution for XLL channel set (%d > %d)\n", c->pcm_bit_res, c->storage_bit_res);
+ return AVERROR_INVALIDDATA;
+ }
+
+ // Original sampling frequency
+ c->freq = ff_dca_sampling_freqs[get_bits(&s->gb, 4)];
+ if (c->freq > 192000) {
+ avpriv_request_sample(s->avctx, "%d Hz XLL sampling frequency", c->freq);
+ return AVERROR_PATCHWELCOME;
+ }
+
+ // Sampling frequency modifier
+ if (get_bits(&s->gb, 2)) {
+ avpriv_request_sample(s->avctx, "XLL sampling frequency modifier");
+ return AVERROR_PATCHWELCOME;
+ }
+
+ // Which replacement set this channel set is member of
+ if (get_bits(&s->gb, 2)) {
+ avpriv_request_sample(s->avctx, "XLL replacement set");
+ return AVERROR_PATCHWELCOME;
+ }
+
+ if (asset->one_to_one_map_ch_to_spkr) {
+ // Primary channel set flag
+ c->primary_chset = get_bits1(&s->gb);
+ if (c->primary_chset != (c == p)) {
+ av_log(s->avctx, AV_LOG_ERROR, "The first (and only) XLL channel set must be primary\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ // Downmix coefficients present in stream
+ c->dmix_coeffs_present = get_bits1(&s->gb);
+
+ // Downmix already performed by encoder
+ c->dmix_embedded = c->dmix_coeffs_present && get_bits1(&s->gb);
+
+ // Downmix type
+ if (c->dmix_coeffs_present && c->primary_chset) {
+ c->dmix_type = get_bits(&s->gb, 3);
+ if (c->dmix_type >= DCA_DMIX_TYPE_COUNT) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL primary channel set downmix type\n");
+ return AVERROR_INVALIDDATA;
+ }
+ }
+
+ // Whether the channel set is part of a hierarchy
+ c->hier_chset = get_bits1(&s->gb);
+ if (!c->hier_chset && s->nchsets != 1) {
+ avpriv_request_sample(s->avctx, "XLL channel set outside of hierarchy");
+ return AVERROR_PATCHWELCOME;
+ }
+
+ // Downmix coefficients
+ if (c->dmix_coeffs_present && (ret = parse_dmix_coeffs(s, c)) < 0)
+ return ret;
+
+ // Channel mask enabled
+ if (!get_bits1(&s->gb)) {
+ avpriv_request_sample(s->avctx, "Disabled XLL channel mask");
+ return AVERROR_PATCHWELCOME;
+ }
+
+ // Channel mask for set
+ c->ch_mask = get_bits_long(&s->gb, s->ch_mask_nbits);
+ if (av_popcount(c->ch_mask) != c->nchannels) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL channel mask\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ // Build the channel to speaker map
+ for (i = 0, j = 0; i < s->ch_mask_nbits; i++)
+ if (c->ch_mask & (1U << i))
+ c->ch_remap[j++] = i;
+ } else {
+ // Mapping coeffs present flag
+ if (c->nchannels != 2 || s->nchsets != 1 || get_bits1(&s->gb)) {
+ avpriv_request_sample(s->avctx, "Custom XLL channel to speaker mapping");
+ return AVERROR_PATCHWELCOME;
+ }
+
+ // Setup for LtRt decoding
+ c->primary_chset = 1;
+ c->dmix_coeffs_present = 0;
+ c->dmix_embedded = 0;
+ c->hier_chset = 0;
+ c->ch_mask = DCA_SPEAKER_LAYOUT_STEREO;
+ c->ch_remap[0] = DCA_SPEAKER_L;
+ c->ch_remap[1] = DCA_SPEAKER_R;
+ }
+
+ if (c->freq > 96000) {
+ // Extra frequency bands flag
+ if (get_bits1(&s->gb)) {
+ avpriv_request_sample(s->avctx, "Extra XLL frequency bands");
+ return AVERROR_PATCHWELCOME;
+ }
+ c->nfreqbands = 2;
+ } else {
+ c->nfreqbands = 1;
+ }
+
+ // Set the sampling frequency to that of the first frequency band.
+ // Frequency will be doubled again after bands assembly.
+ c->freq >>= c->nfreqbands - 1;
+
+ // Verify that all channel sets have the same audio characteristics
+ if (c != p && (c->nfreqbands != p->nfreqbands || c->freq != p->freq
+ || c->pcm_bit_res != p->pcm_bit_res
+ || c->storage_bit_res != p->storage_bit_res)) {
+ avpriv_request_sample(s->avctx, "Different XLL audio characteristics");
+ return AVERROR_PATCHWELCOME;
+ }
+
+ // Determine number of bits to read bit allocation coding parameter
+ if (c->storage_bit_res > 16)
+ c->nabits = 5;
+ else if (c->storage_bit_res > 8)
+ c->nabits = 4;
+ else
+ c->nabits = 3;
+
+ // Account for embedded downmix and decimator saturation
+ if ((s->nchsets > 1 || c->nfreqbands > 1) && c->nabits < 5)
+ c->nabits++;
+
+ for (band = 0, b = c->bands; band < c->nfreqbands; band++, b++) {
+ // Pairwise channel decorrelation
+ if ((b->decor_enabled = get_bits1(&s->gb)) && c->nchannels > 1) {
+ int ch_nbits = av_ceil_log2(c->nchannels);
+
+ // Original channel order
+ for (i = 0; i < c->nchannels; i++) {
+ b->orig_order[i] = get_bits(&s->gb, ch_nbits);
+ if (b->orig_order[i] >= c->nchannels) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL original channel order\n");
+ return AVERROR_INVALIDDATA;
+ }
+ }
+
+ // Pairwise channel coefficients
+ for (i = 0; i < c->nchannels / 2; i++)
+ b->decor_coeff[i] = get_bits1(&s->gb) ? get_linear(&s->gb, 7) : 0;
+ } else {
+ for (i = 0; i < c->nchannels; i++)
+ b->orig_order[i] = i;
+ for (i = 0; i < c->nchannels / 2; i++)
+ b->decor_coeff[i] = 0;
+ }
+
+ // Adaptive predictor order
+ b->highest_pred_order = 0;
+ for (i = 0; i < c->nchannels; i++) {
+ b->adapt_pred_order[i] = get_bits(&s->gb, 4);
+ if (b->adapt_pred_order[i] > b->highest_pred_order)
+ b->highest_pred_order = b->adapt_pred_order[i];
+ }
+ if (b->highest_pred_order > s->nsegsamples) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL adaptive predicition order\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ // Fixed predictor order
+ for (i = 0; i < c->nchannels; i++)
+ b->fixed_pred_order[i] = b->adapt_pred_order[i] ? 0 : get_bits(&s->gb, 2);
+
+ // Adaptive predictor quantized reflection coefficients
+ for (i = 0; i < c->nchannels; i++) {
+ for (j = 0; j < b->adapt_pred_order[i]; j++) {
+ k = get_linear(&s->gb, 8);
+ if (k == -128) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL reflection coefficient index\n");
+ return AVERROR_INVALIDDATA;
+ }
+ if (k < 0)
+ b->adapt_refl_coeff[i][j] = -(int)ff_dca_xll_refl_coeff[-k];
+ else
+ b->adapt_refl_coeff[i][j] = (int)ff_dca_xll_refl_coeff[ k];
+ }
+ }
+
+ // Downmix performed by encoder in extension frequency band
+ b->dmix_embedded = c->dmix_embedded && (band == 0 || get_bits1(&s->gb));
+
+ // MSB/LSB split flag in extension frequency band
+ if ((band == 0 && s->scalable_lsbs) || (band != 0 && get_bits1(&s->gb))) {
+ // Size of LSB section in any segment
+ b->lsb_section_size = get_bits_long(&s->gb, s->seg_size_nbits);
+ if (b->lsb_section_size < 0 || b->lsb_section_size > s->frame_size) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid LSB section size\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ // Account for optional CRC bytes after LSB section
+ if (b->lsb_section_size && (s->band_crc_present > 2 ||
+ (band == 0 && s->band_crc_present > 1)))
+ b->lsb_section_size += 2;
+
+ // Number of bits to represent the samples in LSB part
+ for (i = 0; i < c->nchannels; i++) {
+ b->nscalablelsbs[i] = get_bits(&s->gb, 4);
+ if (b->nscalablelsbs[i] && !b->lsb_section_size) {
+ av_log(s->avctx, AV_LOG_ERROR, "LSB section missing with non-zero LSB width\n");
+ return AVERROR_INVALIDDATA;
+ }
+ }
+ } else {
+ b->lsb_section_size = 0;
+ for (i = 0; i < c->nchannels; i++)
+ b->nscalablelsbs[i] = 0;
+ }
+
+ // Scalable resolution flag in extension frequency band
+ if ((band == 0 && s->scalable_lsbs) || (band != 0 && get_bits1(&s->gb))) {
+ // Number of bits discarded by authoring
+ for (i = 0; i < c->nchannels; i++)
+ b->bit_width_adjust[i] = get_bits(&s->gb, 4);
+ } else {
+ for (i = 0; i < c->nchannels; i++)
+ b->bit_width_adjust[i] = 0;
+ }
+ }
+
+ // Reserved
+ // Byte align
+ // CRC16 of channel set sub-header
+ if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) {
+ av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL sub-header\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ return 0;
+}
+
+static int chs_alloc_msb_band_data(DCAXllDecoder *s, DCAXllChSet *c)
+{
+ int ndecisamples = c->nfreqbands > 1 ? DCA_XLL_DECI_HISTORY_MAX : 0;
+ int nchsamples = s->nframesamples + ndecisamples;
+ int i, j, nsamples = nchsamples * c->nchannels * c->nfreqbands;
+ int32_t *ptr;
+
+ // Reallocate MSB sample buffer
+ av_fast_malloc(&c->sample_buffer[0], &c->sample_size[0], nsamples * sizeof(int32_t));
+ if (!c->sample_buffer[0])
+ return AVERROR(ENOMEM);
+
+ ptr = c->sample_buffer[0] + ndecisamples;
+ for (i = 0; i < c->nfreqbands; i++) {
+ for (j = 0; j < c->nchannels; j++) {
+ c->bands[i].msb_sample_buffer[j] = ptr;
+ ptr += nchsamples;
+ }
+ }
+
+ return 0;
+}
+
+static int chs_alloc_lsb_band_data(DCAXllDecoder *s, DCAXllChSet *c)
+{
+ int i, j, nsamples = 0;
+ int32_t *ptr;
+
+ // Determine number of frequency bands that have MSB/LSB split
+ for (i = 0; i < c->nfreqbands; i++)
+ if (c->bands[i].lsb_section_size)
+ nsamples += s->nframesamples * c->nchannels;
+ if (!nsamples)
+ return 0;
+
+ // Reallocate LSB sample buffer
+ av_fast_malloc(&c->sample_buffer[1], &c->sample_size[1], nsamples * sizeof(int32_t));
+ if (!c->sample_buffer[1])
+ return AVERROR(ENOMEM);
+
+ ptr = c->sample_buffer[1];
+ for (i = 0; i < c->nfreqbands; i++) {
+ if (c->bands[i].lsb_section_size) {
+ for (j = 0; j < c->nchannels; j++) {
+ c->bands[i].lsb_sample_buffer[j] = ptr;
+ ptr += s->nframesamples;
+ }
+ } else {
+ for (j = 0; j < c->nchannels; j++)
+ c->bands[i].lsb_sample_buffer[j] = NULL;
+ }
+ }
+
+ return 0;
+}
+
+static int chs_parse_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band, int seg, int band_data_end)
+{
+ DCAXllBand *b = &c->bands[band];
+ int i, j, k;
+
+ // Start unpacking MSB portion of the segment
+ if (!(seg && get_bits1(&s->gb))) {
+ // Unpack segment type
+ // 0 - distinct coding parameters for each channel
+ // 1 - common coding parameters for all channels
+ c->seg_common = get_bits1(&s->gb);
+
+ // Determine number of coding parameters encoded in segment
+ k = c->seg_common ? 1 : c->nchannels;
+
+ // Unpack Rice coding parameters
+ for (i = 0; i < k; i++) {
+ // Unpack Rice coding flag
+ // 0 - linear code, 1 - Rice code
+ c->rice_code_flag[i] = get_bits1(&s->gb);
+ if (!c->seg_common && c->rice_code_flag[i]) {
+ // Unpack Hybrid Rice coding flag
+ // 0 - Rice code, 1 - Hybrid Rice code
+ if (get_bits1(&s->gb))
+ // Unpack binary code length for isolated samples
+ c->bitalloc_hybrid_linear[i] = get_bits(&s->gb, c->nabits) + 1;
+ else
+ // 0 indicates no Hybrid Rice coding
+ c->bitalloc_hybrid_linear[i] = 0;
+ } else {
+ // 0 indicates no Hybrid Rice coding
+ c->bitalloc_hybrid_linear[i] = 0;
+ }
+ }
+
+ // Unpack coding parameters
+ for (i = 0; i < k; i++) {
+ if (seg == 0) {
+ // Unpack coding parameter for part A of segment 0
+ c->bitalloc_part_a[i] = get_bits(&s->gb, c->nabits);
+
+ // Adjust for the linear code
+ if (!c->rice_code_flag[i] && c->bitalloc_part_a[i])
+ c->bitalloc_part_a[i]++;
+
+ if (!c->seg_common)
+ c->nsamples_part_a[i] = b->adapt_pred_order[i];
+ else
+ c->nsamples_part_a[i] = b->highest_pred_order;
+ } else {
+ c->bitalloc_part_a[i] = 0;
+ c->nsamples_part_a[i] = 0;
+ }
+
+ // Unpack coding parameter for part B of segment
+ c->bitalloc_part_b[i] = get_bits(&s->gb, c->nabits);
+
+ // Adjust for the linear code
+ if (!c->rice_code_flag[i] && c->bitalloc_part_b[i])
+ c->bitalloc_part_b[i]++;
+ }
+ }
+
+ // Unpack entropy codes
+ for (i = 0; i < c->nchannels; i++) {
+ int32_t *part_a, *part_b;
+ int nsamples_part_b;
+
+ // Select index of coding parameters
+ k = c->seg_common ? 0 : i;
+
+ // Slice the segment into parts A and B
+ part_a = b->msb_sample_buffer[i] + seg * s->nsegsamples;
+ part_b = part_a + c->nsamples_part_a[k];
+ nsamples_part_b = s->nsegsamples - c->nsamples_part_a[k];
+
+ if (get_bits_left(&s->gb) < 0)
+ return AVERROR_INVALIDDATA;
+
+ if (!c->rice_code_flag[k]) {
+ // Linear codes
+ // Unpack all residuals of part A of segment 0
+ get_linear_array(&s->gb, part_a, c->nsamples_part_a[k],
+ c->bitalloc_part_a[k]);
+
+ // Unpack all residuals of part B of segment 0 and others
+ get_linear_array(&s->gb, part_b, nsamples_part_b,
+ c->bitalloc_part_b[k]);
+ } else {
+ // Rice codes
+ // Unpack all residuals of part A of segment 0
+ get_rice_array(&s->gb, part_a, c->nsamples_part_a[k],
+ c->bitalloc_part_a[k]);
+
+ if (c->bitalloc_hybrid_linear[k]) {
+ // Hybrid Rice codes
+ // Unpack the number of isolated samples
+ int nisosamples = get_bits(&s->gb, s->nsegsamples_log2);
+
+ // Set all locations to 0
+ memset(part_b, 0, sizeof(*part_b) * nsamples_part_b);
+
+ // Extract the locations of isolated samples and flag by -1
+ for (j = 0; j < nisosamples; j++) {
+ int loc = get_bits(&s->gb, s->nsegsamples_log2);
+ if (loc >= nsamples_part_b) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid isolated sample location\n");
+ return AVERROR_INVALIDDATA;
+ }
+ part_b[loc] = -1;
+ }
+
+ // Unpack all residuals of part B of segment 0 and others
+ for (j = 0; j < nsamples_part_b; j++) {
+ if (part_b[j])
+ part_b[j] = get_linear(&s->gb, c->bitalloc_hybrid_linear[k]);
+ else
+ part_b[j] = get_rice(&s->gb, c->bitalloc_part_b[k]);
+ }
+ } else {
+ // Rice codes
+ // Unpack all residuals of part B of segment 0 and others
+ get_rice_array(&s->gb, part_b, nsamples_part_b, c->bitalloc_part_b[k]);
+ }
+ }
+ }
+
+ // Unpack decimator history for frequency band 1
+ if (seg == 0 && band == 1) {
+ int nbits = get_bits(&s->gb, 5) + 1;
+ for (i = 0; i < c->nchannels; i++)
+ for (j = 1; j < DCA_XLL_DECI_HISTORY_MAX; j++)
+ c->deci_history[i][j] = get_sbits_long(&s->gb, nbits);
+ }
+
+ // Start unpacking LSB portion of the segment
+ if (b->lsb_section_size) {
+ // Skip to the start of LSB portion
+ if (ff_dca_seek_bits(&s->gb, band_data_end - b->lsb_section_size * 8)) {
+ av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL band data\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ // Unpack all LSB parts of residuals of this segment
+ for (i = 0; i < c->nchannels; i++) {
+ if (b->nscalablelsbs[i]) {
+ get_array(&s->gb,
+ b->lsb_sample_buffer[i] + seg * s->nsegsamples,
+ s->nsegsamples, b->nscalablelsbs[i]);
+ }
+ }
+ }
+
+ // Skip to the end of band data
+ if (ff_dca_seek_bits(&s->gb, band_data_end)) {
+ av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL band data\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ return 0;
+}
+
+static void av_cold chs_clear_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band, int seg)
+{
+ DCAXllBand *b = &c->bands[band];
+ int i, offset, nsamples;
+
+ if (seg < 0) {
+ offset = 0;
+ nsamples = s->nframesamples;
+ } else {
+ offset = seg * s->nsegsamples;
+ nsamples = s->nsegsamples;
+ }
+
+ for (i = 0; i < c->nchannels; i++) {
+ memset(b->msb_sample_buffer[i] + offset, 0, nsamples * sizeof(int32_t));
+ if (b->lsb_section_size)
+ memset(b->lsb_sample_buffer[i] + offset, 0, nsamples * sizeof(int32_t));
+ }
+
+ if (seg <= 0 && band)
+ memset(c->deci_history, 0, sizeof(c->deci_history));
+
+ if (seg < 0) {
+ memset(b->nscalablelsbs, 0, sizeof(b->nscalablelsbs));
+ memset(b->bit_width_adjust, 0, sizeof(b->bit_width_adjust));
+ }
+}
+
+static void chs_filter_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band)
+{
+ DCAXllBand *b = &c->bands[band];
+ int nsamples = s->nframesamples;
+ int i, j, k;
+
+ // Inverse adaptive or fixed prediction
+ for (i = 0; i < c->nchannels; i++) {
+ int32_t *buf = b->msb_sample_buffer[i];
+ int order = b->adapt_pred_order[i];
+ if (order > 0) {
+ int coeff[DCA_XLL_ADAPT_PRED_ORDER_MAX];
+ // Conversion from reflection coefficients to direct form coefficients
+ for (j = 0; j < order; j++) {
+ int rc = b->adapt_refl_coeff[i][j];
+ for (k = 0; k < (j + 1) / 2; k++) {
+ int tmp1 = coeff[ k ];
+ int tmp2 = coeff[j - k - 1];
+ coeff[ k ] = tmp1 + mul16(rc, tmp2);
+ coeff[j - k - 1] = tmp2 + mul16(rc, tmp1);
+ }
+ coeff[j] = rc;
+ }
+ // Inverse adaptive prediction
+ for (j = 0; j < nsamples - order; j++) {
+ int64_t err = 0;
+ for (k = 0; k < order; k++)
+ err += (int64_t)buf[j + k] * coeff[order - k - 1];
+ buf[j + k] -= clip23(norm16(err));
+ }
+ } else {
+ // Inverse fixed coefficient prediction
+ for (j = 0; j < b->fixed_pred_order[i]; j++)
+ for (k = 1; k < nsamples; k++)
+ buf[k] += buf[k - 1];
+ }
+ }
+
+ // Inverse pairwise channel decorrellation
+ if (b->decor_enabled) {
+ int32_t *tmp[DCA_XLL_CHANNELS_MAX];
+
+ for (i = 0; i < c->nchannels / 2; i++) {
+ int coeff = b->decor_coeff[i];
+ if (coeff) {
+ s->dcadsp->decor(b->msb_sample_buffer[i * 2 + 1],
+ b->msb_sample_buffer[i * 2 ],
+ coeff, nsamples);
+ }
+ }
+
+ // Reorder channel pointers to the original order
+ for (i = 0; i < c->nchannels; i++)
+ tmp[i] = b->msb_sample_buffer[i];
+
+ for (i = 0; i < c->nchannels; i++)
+ b->msb_sample_buffer[b->orig_order[i]] = tmp[i];
+ }
+
+ // Map output channel pointers for frequency band 0
+ if (c->nfreqbands == 1)
+ for (i = 0; i < c->nchannels; i++)
+ s->output_samples[c->ch_remap[i]] = b->msb_sample_buffer[i];
+}
+
+static int chs_get_lsb_width(DCAXllDecoder *s, DCAXllChSet *c, int band, int ch)
+{
+ int adj = c->bands[band].bit_width_adjust[ch];
+ int shift = c->bands[band].nscalablelsbs[ch];
+
+ if (s->fixed_lsb_width)
+ shift = s->fixed_lsb_width;
+ else if (shift && adj)
+ shift += adj - 1;
+ else
+ shift += adj;
+
+ return shift;
+}
+
+static void chs_assemble_msbs_lsbs(DCAXllDecoder *s, DCAXllChSet *c, int band)
+{
+ DCAXllBand *b = &c->bands[band];
+ int n, ch, nsamples = s->nframesamples;
+
+ for (ch = 0; ch < c->nchannels; ch++) {
+ int shift = chs_get_lsb_width(s, c, band, ch);
+ if (shift) {
+ int32_t *msb = b->msb_sample_buffer[ch];
+ if (b->nscalablelsbs[ch]) {
+ int32_t *lsb = b->lsb_sample_buffer[ch];
+ int adj = b->bit_width_adjust[ch];
+ for (n = 0; n < nsamples; n++)
+ msb[n] = msb[n] * (1 << shift) + (lsb[n] << adj);
+ } else {
+ for (n = 0; n < nsamples; n++)
+ msb[n] = msb[n] * (1 << shift);
+ }
+ }
+ }
+}
+
+static int chs_assemble_freq_bands(DCAXllDecoder *s, DCAXllChSet *c)
+{
+ int ch, nsamples = s->nframesamples;
+ int32_t *ptr;
+
+ av_assert1(c->nfreqbands > 1);
+
+ // Reallocate frequency band assembly buffer
+ av_fast_malloc(&c->sample_buffer[2], &c->sample_size[2],
+ 2 * nsamples * c->nchannels * sizeof(int32_t));
+ if (!c->sample_buffer[2])
+ return AVERROR(ENOMEM);
+
+ // Assemble frequency bands 0 and 1
+ ptr = c->sample_buffer[2];
+ for (ch = 0; ch < c->nchannels; ch++) {
+ int32_t *band0 = c->bands[0].msb_sample_buffer[ch];
+ int32_t *band1 = c->bands[1].msb_sample_buffer[ch];
+
+ // Copy decimator history
+ memcpy(band0 - DCA_XLL_DECI_HISTORY_MAX,
+ c->deci_history[ch], sizeof(c->deci_history[0]));
+
+ // Filter
+ s->dcadsp->assemble_freq_bands(ptr, band0, band1,
+ ff_dca_xll_band_coeff,
+ nsamples);
+
+ // Remap output channel pointer to assembly buffer
+ s->output_samples[c->ch_remap[ch]] = ptr;
+ ptr += nsamples * 2;
+ }
+
+ return 0;
+}
+
+static int parse_common_header(DCAXllDecoder *s)
+{
+ int stream_ver, header_size, frame_size_nbits, nframesegs_log2;
+
+ // XLL extension sync word
+ if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XLL) {
+ av_log(s->avctx, AV_LOG_VERBOSE, "Invalid XLL sync word\n");
+ return AVERROR(EAGAIN);
+ }
+
+ // Version number
+ stream_ver = get_bits(&s->gb, 4) + 1;
+ if (stream_ver > 1) {
+ avpriv_request_sample(s->avctx, "XLL stream version %d", stream_ver);
+ return AVERROR_PATCHWELCOME;
+ }
+
+ // Lossless frame header length
+ header_size = get_bits(&s->gb, 8) + 1;
+
+ // Check CRC
+ if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL))
+ && ff_dca_check_crc(&s->gb, 32, header_size * 8)) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL common header checksum\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ // Number of bits used to read frame size
+ frame_size_nbits = get_bits(&s->gb, 5) + 1;
+
+ // Number of bytes in a lossless frame
+ s->frame_size = get_bits_long(&s->gb, frame_size_nbits);
+ if (s->frame_size < 0 || s->frame_size >= DCA_XLL_PBR_BUFFER_MAX) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL frame size (%d bytes)\n", s->frame_size);
+ return AVERROR_INVALIDDATA;
+ }
+ s->frame_size++;
+
+ // Number of channels sets per frame
+ s->nchsets = get_bits(&s->gb, 4) + 1;
+ if (s->nchsets > DCA_XLL_CHSETS_MAX) {
+ avpriv_request_sample(s->avctx, "%d XLL channel sets", s->nchsets);
+ return AVERROR_PATCHWELCOME;
+ }
+
+ // Number of segments per frame
+ nframesegs_log2 = get_bits(&s->gb, 4);
+ s->nframesegs = 1 << nframesegs_log2;
+ if (s->nframesegs > 1024) {
+ av_log(s->avctx, AV_LOG_ERROR, "Too many segments per XLL frame\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ // Samples in segment per one frequency band for the first channel set
+ // Maximum value is 256 for sampling frequencies <= 48 kHz
+ // Maximum value is 512 for sampling frequencies > 48 kHz
+ s->nsegsamples_log2 = get_bits(&s->gb, 4);
+ if (!s->nsegsamples_log2) {
+ av_log(s->avctx, AV_LOG_ERROR, "Too few samples per XLL segment\n");
+ return AVERROR_INVALIDDATA;
+ }
+ s->nsegsamples = 1 << s->nsegsamples_log2;
+ if (s->nsegsamples > 512) {
+ av_log(s->avctx, AV_LOG_ERROR, "Too many samples per XLL segment\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ // Samples in frame per one frequency band for the first channel set
+ s->nframesamples_log2 = s->nsegsamples_log2 + nframesegs_log2;
+ s->nframesamples = 1 << s->nframesamples_log2;
+ if (s->nframesamples > 65536) {
+ av_log(s->avctx, AV_LOG_ERROR, "Too many samples per XLL frame\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ // Number of bits used to read segment size
+ s->seg_size_nbits = get_bits(&s->gb, 5) + 1;
+
+ // Presence of CRC16 within each frequency band
+ // 0 - No CRC16 within band
+ // 1 - CRC16 placed at the end of MSB0
+ // 2 - CRC16 placed at the end of MSB0 and LSB0
+ // 3 - CRC16 placed at the end of MSB0 and LSB0 and other frequency bands
+ s->band_crc_present = get_bits(&s->gb, 2);
+
+ // MSB/LSB split flag
+ s->scalable_lsbs = get_bits1(&s->gb);
+
+ // Channel position mask
+ s->ch_mask_nbits = get_bits(&s->gb, 5) + 1;
+
+ // Fixed LSB width
+ if (s->scalable_lsbs)
+ s->fixed_lsb_width = get_bits(&s->gb, 4);
+ else
+ s->fixed_lsb_width = 0;
+
+ // Reserved
+ // Byte align
+ // Header CRC16 protection
+ if (ff_dca_seek_bits(&s->gb, header_size * 8)) {
+ av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL common header\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ return 0;
+}
+
+static int is_hier_dmix_chset(DCAXllChSet *c)
+{
+ return !c->primary_chset && c->dmix_embedded && c->hier_chset;
+}
+
+static DCAXllChSet *find_next_hier_dmix_chset(DCAXllDecoder *s, DCAXllChSet *c)
+{
+ if (c->hier_chset)
+ while (++c < &s->chset[s->nchsets])
+ if (is_hier_dmix_chset(c))
+ return c;
+
+ return NULL;
+}
+
+static void prescale_down_mix(DCAXllChSet *c, DCAXllChSet *o)
+{
+ int i, j, *coeff_ptr = c->dmix_coeff;
+
+ for (i = 0; i < c->hier_ofs; i++) {
+ int scale = o->dmix_scale[i];
+ int scale_inv = o->dmix_scale_inv[i];
+ c->dmix_scale[i] = mul15(c->dmix_scale[i], scale);
+ c->dmix_scale_inv[i] = mul16(c->dmix_scale_inv[i], scale_inv);
+ for (j = 0; j < c->nchannels; j++) {
+ int coeff = mul16(*coeff_ptr, scale_inv);
+ *coeff_ptr++ = mul15(coeff, o->dmix_scale[c->hier_ofs + j]);
+ }
+ }
+}
+
+static int parse_sub_headers(DCAXllDecoder *s, DCAExssAsset *asset)
+{
+ DCAContext *dca = s->avctx->priv_data;
+ DCAXllChSet *c;
+ int i, ret;
+
+ // Parse channel set headers
+ s->nfreqbands = 0;
+ s->nchannels = 0;
+ s->nreschsets = 0;
+ for (i = 0, c = s->chset; i < s->nchsets; i++, c++) {
+ c->hier_ofs = s->nchannels;
+ if ((ret = chs_parse_header(s, c, asset)) < 0)
+ return ret;
+ if (c->nfreqbands > s->nfreqbands)
+ s->nfreqbands = c->nfreqbands;
+ if (c->hier_chset)
+ s->nchannels += c->nchannels;
+ if (c->residual_encode != (1 << c->nchannels) - 1)
+ s->nreschsets++;
+ }
+
+ // Pre-scale downmixing coefficients for all non-primary channel sets
+ for (i = s->nchsets - 1, c = &s->chset[i]; i > 0; i--, c--) {
+ if (is_hier_dmix_chset(c)) {
+ DCAXllChSet *o = find_next_hier_dmix_chset(s, c);
+ if (o)
+ prescale_down_mix(c, o);
+ }
+ }
+
+ // Determine number of active channel sets to decode
+ switch (dca->request_channel_layout) {
+ case DCA_SPEAKER_LAYOUT_STEREO:
+ s->nactivechsets = 1;
+ break;
+ case DCA_SPEAKER_LAYOUT_5POINT0:
+ case DCA_SPEAKER_LAYOUT_5POINT1:
+ s->nactivechsets = (s->chset[0].nchannels < 5 && s->nchsets > 1) ? 2 : 1;
+ break;
+ default:
+ s->nactivechsets = s->nchsets;
+ break;
+ }
+
+ return 0;
+}
+
+static int parse_navi_table(DCAXllDecoder *s)
+{
+ int chs, seg, band, navi_nb, navi_pos, *navi_ptr;
+ DCAXllChSet *c;
+
+ // Determine size of NAVI table
+ navi_nb = s->nfreqbands * s->nframesegs * s->nchsets;
+ if (navi_nb > 1024) {
+ av_log(s->avctx, AV_LOG_ERROR, "Too many NAVI entries (%d)\n", navi_nb);
+ return AVERROR_INVALIDDATA;
+ }
+
+ // Reallocate NAVI table
+ av_fast_malloc(&s->navi, &s->navi_size, navi_nb * sizeof(*s->navi));
+ if (!s->navi)
+ return AVERROR(ENOMEM);
+
+ // Parse NAVI
+ navi_pos = get_bits_count(&s->gb);
+ navi_ptr = s->navi;
+ for (band = 0; band < s->nfreqbands; band++) {
+ for (seg = 0; seg < s->nframesegs; seg++) {
+ for (chs = 0, c = s->chset; chs < s->nchsets; chs++, c++) {
+ int size = 0;
+ if (c->nfreqbands > band) {
+ size = get_bits_long(&s->gb, s->seg_size_nbits);
+ if (size < 0 || size >= s->frame_size) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI segment size (%d bytes)\n", size);
+ return AVERROR_INVALIDDATA;
+ }
+ size++;
+ }
+ *navi_ptr++ = size;
+ }
+ }
+ }
+
+ // Byte align
+ // CRC16
+ skip_bits(&s->gb, -get_bits_count(&s->gb) & 7);
+ skip_bits(&s->gb, 16);
+
+ // Check CRC
+ if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL))
+ && ff_dca_check_crc(&s->gb, navi_pos, get_bits_count(&s->gb))) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI checksum\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ return 0;
+}
+
+static int parse_band_data(DCAXllDecoder *s)
+{
+ int ret, chs, seg, band, navi_pos, *navi_ptr;
+ DCAXllChSet *c;
+
+ for (chs = 0, c = s->chset; chs < s->nactivechsets; chs++, c++) {
+ if ((ret = chs_alloc_msb_band_data(s, c)) < 0)
+ return ret;
+ if ((ret = chs_alloc_lsb_band_data(s, c)) < 0)
+ return ret;
+ }
+
+ navi_pos = get_bits_count(&s->gb);
+ navi_ptr = s->navi;
+ for (band = 0; band < s->nfreqbands; band++) {
+ for (seg = 0; seg < s->nframesegs; seg++) {
+ for (chs = 0, c = s->chset; chs < s->nchsets; chs++, c++) {
+ if (c->nfreqbands > band) {
+ navi_pos += *navi_ptr * 8;
+ if (navi_pos > s->gb.size_in_bits) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI position\n");
+ return AVERROR_INVALIDDATA;
+ }
+ if (chs < s->nactivechsets &&
+ (ret = chs_parse_band_data(s, c, band, seg, navi_pos)) < 0) {
+ if (s->avctx->err_recognition & AV_EF_EXPLODE)
+ return ret;
+ chs_clear_band_data(s, c, band, seg);
+ }
+ s->gb.index = navi_pos;
+ }
+ navi_ptr++;
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int parse_frame(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset)
+{
+ int ret;
+
+ if ((ret = init_get_bits8(&s->gb, data, size)) < 0)
+ return ret;
+ if ((ret = parse_common_header(s)) < 0)
+ return ret;
+ if ((ret = parse_sub_headers(s, asset)) < 0)
+ return ret;
+ if ((ret = parse_navi_table(s)) < 0)
+ return ret;
+ if ((ret = parse_band_data(s)) < 0)
+ return ret;
+ if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) {
+ av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL frame\n");
+ return AVERROR_INVALIDDATA;
+ }
+ return ret;
+}
+
+static void clear_pbr(DCAXllDecoder *s)
+{
+ s->pbr_length = 0;
+ s->pbr_delay = 0;
+}
+
+static int copy_to_pbr(DCAXllDecoder *s, uint8_t *data, int size, int delay)
+{
+ if (size > DCA_XLL_PBR_BUFFER_MAX)
+ return AVERROR(ENOSPC);
+
+ if (!s->pbr_buffer && !(s->pbr_buffer = av_malloc(DCA_XLL_PBR_BUFFER_MAX + DCA_BUFFER_PADDING_SIZE)))
+ return AVERROR(ENOMEM);
+
+ memcpy(s->pbr_buffer, data, size);
+ s->pbr_length = size;
+ s->pbr_delay = delay;
+ return 0;
+}
+
+static int parse_frame_no_pbr(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset)
+{
+ int ret = parse_frame(s, data, size, asset);
+
+ // If XLL packet data didn't start with a sync word, we must have jumped
+ // right into the middle of PBR smoothing period
+ if (ret == AVERROR(EAGAIN) && asset->xll_sync_present && asset->xll_sync_offset < size) {
+ // Skip to the next sync word in this packet
+ data += asset->xll_sync_offset;
+ size -= asset->xll_sync_offset;
+
+ // If decoding delay is set, put the frame into PBR buffer and return
+ // failure code. Higher level decoder is expected to switch to lossy
+ // core decoding or mute its output until decoding delay expires.
+ if (asset->xll_delay_nframes > 0) {
+ if ((ret = copy_to_pbr(s, data, size, asset->xll_delay_nframes)) < 0)
+ return ret;
+ return AVERROR(EAGAIN);
+ }
+
+ // No decoding delay, just parse the frame in place
+ ret = parse_frame(s, data, size, asset);
+ }
+
+ if (ret < 0)
+ return ret;
+
+ if (s->frame_size > size)
+ return AVERROR(EINVAL);
+
+ // If the XLL decoder didn't consume full packet, start PBR smoothing period
+ if (s->frame_size < size)
+ if ((ret = copy_to_pbr(s, data + s->frame_size, size - s->frame_size, 0)) < 0)
+ return ret;
+
+ return 0;
+}
+
+static int parse_frame_pbr(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset)
+{
+ int ret;
+
+ if (size > DCA_XLL_PBR_BUFFER_MAX - s->pbr_length) {
+ ret = AVERROR(ENOSPC);
+ goto fail;
+ }
+
+ memcpy(s->pbr_buffer + s->pbr_length, data, size);
+ s->pbr_length += size;
+
+ // Respect decoding delay after synchronization error
+ if (s->pbr_delay > 0 && --s->pbr_delay)
+ return AVERROR(EAGAIN);
+
+ if ((ret = parse_frame(s, s->pbr_buffer, s->pbr_length, asset)) < 0)
+ goto fail;
+
+ if (s->frame_size > s->pbr_length) {
+ ret = AVERROR(EINVAL);
+ goto fail;
+ }
+
+ if (s->frame_size == s->pbr_length) {
+ // End of PBR smoothing period
+ clear_pbr(s);
+ } else {
+ s->pbr_length -= s->frame_size;
+ memmove(s->pbr_buffer, s->pbr_buffer + s->frame_size, s->pbr_length);
+ }
+
+ return 0;
+
+fail:
+ // For now, throw out all PBR state on failure.
+ // Perhaps we can be smarter and try to resync somehow.
+ clear_pbr(s);
+ return ret;
+}
+
+int ff_dca_xll_parse(DCAXllDecoder *s, uint8_t *data, DCAExssAsset *asset)
+{
+ int ret;
+
+ if (s->hd_stream_id != asset->hd_stream_id) {
+ clear_pbr(s);
+ s->hd_stream_id = asset->hd_stream_id;
+ }
+
+ if (s->pbr_length)
+ ret = parse_frame_pbr(s, data + asset->xll_offset, asset->xll_size, asset);
+ else
+ ret = parse_frame_no_pbr(s, data + asset->xll_offset, asset->xll_size, asset);
+
+ return ret;
+}
+
+static void undo_down_mix(DCAXllDecoder *s, DCAXllChSet *o, int band)
+{
+ int i, j, k, nchannels = 0, *coeff_ptr = o->dmix_coeff;
+ DCAXllChSet *c;
+
+ for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) {
+ if (!c->hier_chset)
+ continue;
+
+ av_assert1(band < c->nfreqbands);
+ for (j = 0; j < c->nchannels; j++) {
+ for (k = 0; k < o->nchannels; k++) {
+ int coeff = *coeff_ptr++;
+ if (coeff) {
+ s->dcadsp->dmix_sub(c->bands[band].msb_sample_buffer[j],
+ o->bands[band].msb_sample_buffer[k],
+ coeff, s->nframesamples);
+ if (band)
+ s->dcadsp->dmix_sub(c->deci_history[j],
+ o->deci_history[k],
+ coeff, DCA_XLL_DECI_HISTORY_MAX);
+ }
+ }
+ }
+
+ nchannels += c->nchannels;
+ if (nchannels >= o->hier_ofs)
+ break;
+ }
+}
+
+static void scale_down_mix(DCAXllDecoder *s, DCAXllChSet *o, int band)
+{
+ int i, j, nchannels = 0;
+ DCAXllChSet *c;
+
+ for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) {
+ if (!c->hier_chset)
+ continue;
+
+ av_assert1(band < c->nfreqbands);
+ for (j = 0; j < c->nchannels; j++) {
+ int scale = o->dmix_scale[nchannels++];
+ if (scale != (1 << 15)) {
+ s->dcadsp->dmix_scale(c->bands[band].msb_sample_buffer[j],
+ scale, s->nframesamples);
+ if (band)
+ s->dcadsp->dmix_scale(c->deci_history[j],
+ scale, DCA_XLL_DECI_HISTORY_MAX);
+ }
+ }
+
+ if (nchannels >= o->hier_ofs)
+ break;
+ }
+}
+
+// Clear all band data and replace non-residual encoded channels with lossy
+// counterparts
+static void av_cold force_lossy_output(DCAXllDecoder *s, DCAXllChSet *c)
+{
+ DCAContext *dca = s->avctx->priv_data;
+ int band, ch;
+
+ for (band = 0; band < c->nfreqbands; band++)
+ chs_clear_band_data(s, c, band, -1);
+
+ for (ch = 0; ch < c->nchannels; ch++) {
+ if (!(c->residual_encode & (1 << ch)))
+ continue;
+ if (ff_dca_core_map_spkr(&dca->core, c->ch_remap[ch]) < 0)
+ continue;
+ c->residual_encode &= ~(1 << ch);
+ }
+}
+
+static int combine_residual_frame(DCAXllDecoder *s, DCAXllChSet *c)
+{
+ DCAContext *dca = s->avctx->priv_data;
+ int ch, nsamples = s->nframesamples;
+ DCAXllChSet *o;
+
+ // Verify that core is compatible
+ if (!(dca->packet & DCA_PACKET_CORE)) {
+ av_log(s->avctx, AV_LOG_ERROR, "Residual encoded channels are present without core\n");
+ return AVERROR(EINVAL);
+ }
+
+ if (c->freq != dca->core.output_rate) {
+ av_log(s->avctx, AV_LOG_WARNING, "Sample rate mismatch between core (%d Hz) and XLL (%d Hz)\n", dca->core.output_rate, c->freq);
+ return AVERROR_INVALIDDATA;
+ }
+
+ if (nsamples != dca->core.npcmsamples) {
+ av_log(s->avctx, AV_LOG_WARNING, "Number of samples per frame mismatch between core (%d) and XLL (%d)\n", dca->core.npcmsamples, nsamples);
+ return AVERROR_INVALIDDATA;
+ }
+
+ // See if this channel set is downmixed and find the next channel set in
+ // hierarchy. If downmixed, undo core pre-scaling before combining with
+ // residual (residual is not scaled).
+ o = find_next_hier_dmix_chset(s, c);
+
+ // Reduce core bit width and combine with residual
+ for (ch = 0; ch < c->nchannels; ch++) {
+ int n, spkr, shift, round;
+ int32_t *src, *dst;
+
+ if (c->residual_encode & (1 << ch))
+ continue;
+
+ // Map this channel to core speaker
+ spkr = ff_dca_core_map_spkr(&dca->core, c->ch_remap[ch]);
+ if (spkr < 0) {
+ av_log(s->avctx, AV_LOG_WARNING, "Residual encoded channel (%d) references unavailable core channel\n", c->ch_remap[ch]);
+ return AVERROR_INVALIDDATA;
+ }
+
+ // Account for LSB width
+ shift = 24 - c->pcm_bit_res + chs_get_lsb_width(s, c, 0, ch);
+ if (shift > 24) {
+ av_log(s->avctx, AV_LOG_WARNING, "Invalid core shift (%d bits)\n", shift);
+ return AVERROR_INVALIDDATA;
+ }
+
+ round = shift > 0 ? 1 << (shift - 1) : 0;
+
+ src = dca->core.output_samples[spkr];
+ dst = c->bands[0].msb_sample_buffer[ch];
+ if (o) {
+ // Undo embedded core downmix pre-scaling
+ int scale_inv = o->dmix_scale_inv[c->hier_ofs + ch];
+ for (n = 0; n < nsamples; n++)
+ dst[n] += clip23((mul16(src[n], scale_inv) + round) >> shift);
+ } else {
+ // No downmix scaling
+ for (n = 0; n < nsamples; n++)
+ dst[n] += (src[n] + round) >> shift;
+ }
+ }
+
+ return 0;
+}
+
+int ff_dca_xll_filter_frame(DCAXllDecoder *s, AVFrame *frame)
+{
+ AVCodecContext *avctx = s->avctx;
+ DCAContext *dca = avctx->priv_data;
+ DCAExssAsset *asset = &dca->exss.assets[0];
+ DCAXllChSet *p = &s->chset[0], *c;
+ enum AVMatrixEncoding matrix_encoding = AV_MATRIX_ENCODING_NONE;
+ int i, j, k, ret, shift, nsamples, request_mask;
+ int ch_remap[DCA_SPEAKER_COUNT];
+
+ // Force lossy downmixed output during recovery
+ if (dca->packet & DCA_PACKET_RECOVERY) {
+ for (i = 0, c = s->chset; i < s->nchsets; i++, c++) {
+ if (i < s->nactivechsets)
+ force_lossy_output(s, c);
+
+ if (!c->primary_chset)
+ c->dmix_embedded = 0;
+ }
+
+ s->scalable_lsbs = 0;
+ s->fixed_lsb_width = 0;
+ }
+
+ // Filter frequency bands for active channel sets
+ s->output_mask = 0;
+ for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) {
+ chs_filter_band_data(s, c, 0);
+
+ if (c->residual_encode != (1 << c->nchannels) - 1
+ && (ret = combine_residual_frame(s, c)) < 0)
+ return ret;
+
+ if (s->scalable_lsbs)
+ chs_assemble_msbs_lsbs(s, c, 0);
+
+ if (c->nfreqbands > 1) {
+ chs_filter_band_data(s, c, 1);
+ chs_assemble_msbs_lsbs(s, c, 1);
+ }
+
+ s->output_mask |= c->ch_mask;
+ }
+
+ // Undo hierarchial downmix and/or apply scaling
+ for (i = 1, c = &s->chset[1]; i < s->nchsets; i++, c++) {
+ if (!is_hier_dmix_chset(c))
+ continue;
+
+ if (i >= s->nactivechsets) {
+ for (j = 0; j < c->nfreqbands; j++)
+ if (c->bands[j].dmix_embedded)
+ scale_down_mix(s, c, j);
+ break;
+ }
+
+ for (j = 0; j < c->nfreqbands; j++)
+ if (c->bands[j].dmix_embedded)
+ undo_down_mix(s, c, j);
+ }
+
+ // Assemble frequency bands for active channel sets
+ if (s->nfreqbands > 1) {
+ for (i = 0; i < s->nactivechsets; i++)
+ if ((ret = chs_assemble_freq_bands(s, &s->chset[i])) < 0)
+ return ret;
+ }
+
+ // Normalize to regular 5.1 layout if downmixing
+ if (dca->request_channel_layout) {
+ if (s->output_mask & DCA_SPEAKER_MASK_Lss) {
+ s->output_samples[DCA_SPEAKER_Ls] = s->output_samples[DCA_SPEAKER_Lss];
+ s->output_mask = (s->output_mask & ~DCA_SPEAKER_MASK_Lss) | DCA_SPEAKER_MASK_Ls;
+ }
+ if (s->output_mask & DCA_SPEAKER_MASK_Rss) {
+ s->output_samples[DCA_SPEAKER_Rs] = s->output_samples[DCA_SPEAKER_Rss];
+ s->output_mask = (s->output_mask & ~DCA_SPEAKER_MASK_Rss) | DCA_SPEAKER_MASK_Rs;
+ }
+ }
+
+ // Handle downmixing to stereo request
+ if (dca->request_channel_layout == DCA_SPEAKER_LAYOUT_STEREO
+ && DCA_HAS_STEREO(s->output_mask) && p->dmix_embedded
+ && (p->dmix_type == DCA_DMIX_TYPE_LoRo ||
+ p->dmix_type == DCA_DMIX_TYPE_LtRt))
+ request_mask = DCA_SPEAKER_LAYOUT_STEREO;
+ else
+ request_mask = s->output_mask;
+ if (!ff_dca_set_channel_layout(avctx, ch_remap, request_mask))
+ return AVERROR(EINVAL);
+
+ avctx->sample_rate = p->freq << (s->nfreqbands - 1);
+
+ switch (p->storage_bit_res) {
+ case 16:
+ avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
+ break;
+ case 24:
+ avctx->sample_fmt = AV_SAMPLE_FMT_S32P;
+ break;
+ default:
+ return AVERROR(EINVAL);
+ }
+
+ avctx->bits_per_raw_sample = p->storage_bit_res;
+ avctx->profile = FF_PROFILE_DTS_HD_MA;
+ avctx->bit_rate = 0;
+
+ frame->nb_samples = nsamples = s->nframesamples << (s->nfreqbands - 1);
+ if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
+ return ret;
+
+ // Downmix primary channel set to stereo
+ if (request_mask != s->output_mask) {
+ ff_dca_downmix_to_stereo_fixed(s->dcadsp, s->output_samples,
+ p->dmix_coeff, nsamples,
+ s->output_mask);
+ }
+
+ shift = p->storage_bit_res - p->pcm_bit_res;
+ for (i = 0; i < avctx->channels; i++) {
+ int32_t *samples = s->output_samples[ch_remap[i]];
+ if (frame->format == AV_SAMPLE_FMT_S16P) {
+ int16_t *plane = (int16_t *)frame->extended_data[i];
+ for (k = 0; k < nsamples; k++)
+ plane[k] = av_clip_int16(samples[k] * (1 << shift));
+ } else {
+ int32_t *plane = (int32_t *)frame->extended_data[i];
+ for (k = 0; k < nsamples; k++)
+ plane[k] = clip23(samples[k] * (1 << shift)) * (1 << 8);
+ }
+ }
+
+ if (!asset->one_to_one_map_ch_to_spkr) {
+ if (asset->representation_type == DCA_REPR_TYPE_LtRt)
+ matrix_encoding = AV_MATRIX_ENCODING_DOLBY;
+ else if (asset->representation_type == DCA_REPR_TYPE_LhRh)
+ matrix_encoding = AV_MATRIX_ENCODING_DOLBYHEADPHONE;
+ } else if (request_mask != s->output_mask && p->dmix_type == DCA_DMIX_TYPE_LtRt) {
+ matrix_encoding = AV_MATRIX_ENCODING_DOLBY;
+ }
+ if ((ret = ff_side_data_update_matrix_encoding(frame, matrix_encoding)) < 0)
+ return ret;
+
+ return 0;
+}
+
+av_cold void ff_dca_xll_flush(DCAXllDecoder *s)
+{
+ clear_pbr(s);
+}
+
+av_cold void ff_dca_xll_close(DCAXllDecoder *s)
+{
+ DCAXllChSet *c;
+ int i, j;
+
+ for (i = 0, c = s->chset; i < DCA_XLL_CHSETS_MAX; i++, c++) {
+ for (j = 0; j < DCA_XLL_SAMPLE_BUFFERS_MAX; j++) {
+ av_freep(&c->sample_buffer[j]);
+ c->sample_size[j] = 0;
+ }
+ }
+
+ av_freep(&s->navi);
+ s->navi_size = 0;
+
+ av_freep(&s->pbr_buffer);
+ clear_pbr(s);
+}