aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/dca.c
diff options
context:
space:
mode:
authorKostya Shishkov <kostya.shishkov@gmail.com>2007-02-27 06:30:40 +0000
committerKostya Shishkov <kostya.shishkov@gmail.com>2007-02-27 06:30:40 +0000
commit01ca9ac3346ced92d6cb4d9fe06233a305424510 (patch)
tree24845d866c985c0b6fd5bccd39edb3ecaf08576a /libavcodec/dca.c
parente7ebecbf445681e228558a02551c5028db50236d (diff)
downloadffmpeg-01ca9ac3346ced92d6cb4d9fe06233a305424510.tar.gz
DCA decoder
Originally committed as revision 8141 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/dca.c')
-rw-r--r--libavcodec/dca.c1322
1 files changed, 1322 insertions, 0 deletions
diff --git a/libavcodec/dca.c b/libavcodec/dca.c
new file mode 100644
index 0000000000..a57dcdc442
--- /dev/null
+++ b/libavcodec/dca.c
@@ -0,0 +1,1322 @@
+/*
+ * DCA compatible decoder
+ * Copyright (C) 2004 Gildas Bazin
+ * Copyright (C) 2004 Benjamin Zores
+ * Copyright (C) 2006 Benjamin Larsson
+ * Copyright (C) 2007 Konstantin Shishkov
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file dca.c
+ */
+
+#include <math.h>
+#include <stddef.h>
+#include <stdio.h>
+
+#include "avcodec.h"
+#include "dsputil.h"
+#include "bitstream.h"
+#include "dcadata.h"
+#include "dcahuff.h"
+#include "parser.h"
+
+/** DCA syncwords, also used for bitstream type detection */
+//@{
+#define DCA_MARKER_RAW_BE 0x7FFE8001
+#define DCA_MARKER_RAW_LE 0xFE7F0180
+#define DCA_MARKER_14B_BE 0x1FFFE800
+#define DCA_MARKER_14B_LE 0xFF1F00E8
+//@}
+
+//#define TRACE
+
+#define DCA_PRIM_CHANNELS_MAX (5)
+#define DCA_SUBBANDS (32)
+#define DCA_ABITS_MAX (32) /* Should be 28 */
+#define DCA_SUBSUBFAMES_MAX (4)
+#define DCA_LFE_MAX (3)
+
+enum DCAMode {
+ DCA_MONO = 0,
+ DCA_CHANNEL,
+ DCA_STEREO,
+ DCA_STEREO_SUMDIFF,
+ DCA_STEREO_TOTAL,
+ DCA_3F,
+ DCA_2F1R,
+ DCA_3F1R,
+ DCA_2F2R,
+ DCA_3F2R,
+ DCA_4F2R
+};
+
+#define DCA_DOLBY 101 /* FIXME */
+
+#define DCA_CHANNEL_BITS 6
+#define DCA_CHANNEL_MASK 0x3F
+
+#define DCA_LFE 0x80
+
+#define HEADER_SIZE 14
+#define CONVERT_BIAS 384
+
+#define DCA_MAX_FRAME_SIZE 16383
+
+/** Bit allocation */
+typedef struct {
+ int offset; ///< code values offset
+ int maxbits[8]; ///< max bits in VLC
+ int wrap; ///< wrap for get_vlc2()
+ VLC vlc[8]; ///< actual codes
+} BitAlloc;
+
+static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
+static BitAlloc dca_tmode; ///< transition mode VLCs
+static BitAlloc dca_scalefactor; ///< scalefactor VLCs
+static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
+
+/** Pre-calculated cosine modulation coefs for the QMF */
+static float cos_mod[544];
+
+static int av_always_inline get_bitalloc(GetBitContext *gb, BitAlloc *ba, int idx)
+{
+ return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) + ba->offset;
+}
+
+typedef struct {
+ AVCodecContext *avctx;
+ /* Frame header */
+ int frame_type; ///< type of the current frame
+ int samples_deficit; ///< deficit sample count
+ int crc_present; ///< crc is present in the bitstream
+ int sample_blocks; ///< number of PCM sample blocks
+ int frame_size; ///< primary frame byte size
+ int amode; ///< audio channels arrangement
+ int sample_rate; ///< audio sampling rate
+ int bit_rate; ///< transmission bit rate
+
+ int downmix; ///< embedded downmix enabled
+ int dynrange; ///< embedded dynamic range flag
+ int timestamp; ///< embedded time stamp flag
+ int aux_data; ///< auxiliary data flag
+ int hdcd; ///< source material is mastered in HDCD
+ int ext_descr; ///< extension audio descriptor flag
+ int ext_coding; ///< extended coding flag
+ int aspf; ///< audio sync word insertion flag
+ int lfe; ///< low frequency effects flag
+ int predictor_history; ///< predictor history flag
+ int header_crc; ///< header crc check bytes
+ int multirate_inter; ///< multirate interpolator switch
+ int version; ///< encoder software revision
+ int copy_history; ///< copy history
+ int source_pcm_res; ///< source pcm resolution
+ int front_sum; ///< front sum/difference flag
+ int surround_sum; ///< surround sum/difference flag
+ int dialog_norm; ///< dialog normalisation parameter
+
+ /* Primary audio coding header */
+ int subframes; ///< number of subframes
+ int prim_channels; ///< number of primary audio channels
+ int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
+ int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
+ int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
+ int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
+ int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
+ int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
+ int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
+ float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
+
+ /* Primary audio coding side information */
+ int subsubframes; ///< number of subsubframes
+ int partial_samples; ///< partial subsubframe samples count
+ int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
+ int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
+ int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
+ int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
+ int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2]; ///< scale factors (2 if transient)
+ int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
+ int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
+ int downmix_coef[DCA_PRIM_CHANNELS_MAX][2]; ///< stereo downmix coefficients
+ int dynrange_coef; ///< dynamic range coefficient
+
+ int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
+
+ float lfe_data[2 * DCA_SUBSUBFAMES_MAX * DCA_LFE_MAX *
+ 2 /*history */ ]; ///< Low frequency effect data
+ int lfe_scale_factor;
+
+ /* Subband samples history (for ADPCM) */
+ float subband_samples_hist[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
+ float subband_fir_hist[DCA_PRIM_CHANNELS_MAX][512];
+ float subband_fir_noidea[DCA_PRIM_CHANNELS_MAX][64];
+
+ int output; ///< type of output
+ int bias; ///< output bias
+
+ DECLARE_ALIGNED_16(float, samples[1536]); /* 6 * 256 = 1536, might only need 5 */
+ DECLARE_ALIGNED_16(int16_t, tsamples[1536]);
+
+ uint8_t dca_buffer[DCA_MAX_FRAME_SIZE];
+ int dca_buffer_size; ///< how much data is in the dca_buffer
+
+ GetBitContext gb;
+ /* Current position in DCA frame */
+ int current_subframe;
+ int current_subsubframe;
+
+ int debug_flag; ///< used for suppressing repeated error messages output
+ DSPContext dsp;
+} DCAContext;
+
+static void dca_init_vlcs()
+{
+ static int vlcs_inited = 0;
+ int i, j;
+
+ if (vlcs_inited)
+ return;
+
+ dca_bitalloc_index.offset = 1;
+ dca_bitalloc_index.wrap = 1;
+ for (i = 0; i < 5; i++)
+ init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
+ bitalloc_12_bits[i], 1, 1,
+ bitalloc_12_codes[i], 2, 2, 1);
+ dca_scalefactor.offset = -64;
+ dca_scalefactor.wrap = 2;
+ for (i = 0; i < 5; i++)
+ init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
+ scales_bits[i], 1, 1,
+ scales_codes[i], 2, 2, 1);
+ dca_tmode.offset = 0;
+ dca_tmode.wrap = 1;
+ for (i = 0; i < 4; i++)
+ init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
+ tmode_bits[i], 1, 1,
+ tmode_codes[i], 2, 2, 1);
+
+ for(i = 0; i < 10; i++)
+ for(j = 0; j < 7; j++){
+ if(!bitalloc_codes[i][j]) break;
+ dca_smpl_bitalloc[i+1].offset = bitalloc_offsets[i];
+ dca_smpl_bitalloc[i+1].wrap = 1 + (j > 4);
+ init_vlc(&dca_smpl_bitalloc[i+1].vlc[j], bitalloc_maxbits[i][j],
+ bitalloc_sizes[i],
+ bitalloc_bits[i][j], 1, 1,
+ bitalloc_codes[i][j], 2, 2, 1);
+ }
+ vlcs_inited = 1;
+}
+
+static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
+{
+ while(len--)
+ *dst++ = get_bits(gb, bits);
+}
+
+static int dca_parse_frame_header(DCAContext * s)
+{
+ int i, j;
+ static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
+ static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
+ static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
+
+ s->bias = CONVERT_BIAS;
+
+ init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
+
+ /* Sync code */
+ get_bits(&s->gb, 32);
+
+ /* Frame header */
+ s->frame_type = get_bits(&s->gb, 1);
+ s->samples_deficit = get_bits(&s->gb, 5) + 1;
+ s->crc_present = get_bits(&s->gb, 1);
+ s->sample_blocks = get_bits(&s->gb, 7) + 1;
+ s->frame_size = get_bits(&s->gb, 14) + 1;
+ if (s->frame_size < 95)
+ return -1;
+ s->amode = get_bits(&s->gb, 6);
+ s->sample_rate = dca_sample_rates[get_bits(&s->gb, 4)];
+ if (!s->sample_rate)
+ return -1;
+ s->bit_rate = dca_bit_rates[get_bits(&s->gb, 5)];
+ if (!s->bit_rate)
+ return -1;
+
+ s->downmix = get_bits(&s->gb, 1);
+ s->dynrange = get_bits(&s->gb, 1);
+ s->timestamp = get_bits(&s->gb, 1);
+ s->aux_data = get_bits(&s->gb, 1);
+ s->hdcd = get_bits(&s->gb, 1);
+ s->ext_descr = get_bits(&s->gb, 3);
+ s->ext_coding = get_bits(&s->gb, 1);
+ s->aspf = get_bits(&s->gb, 1);
+ s->lfe = get_bits(&s->gb, 2);
+ s->predictor_history = get_bits(&s->gb, 1);
+
+ /* TODO: check CRC */
+ if (s->crc_present)
+ s->header_crc = get_bits(&s->gb, 16);
+
+ s->multirate_inter = get_bits(&s->gb, 1);
+ s->version = get_bits(&s->gb, 4);
+ s->copy_history = get_bits(&s->gb, 2);
+ s->source_pcm_res = get_bits(&s->gb, 3);
+ s->front_sum = get_bits(&s->gb, 1);
+ s->surround_sum = get_bits(&s->gb, 1);
+ s->dialog_norm = get_bits(&s->gb, 4);
+
+ /* FIXME: channels mixing levels */
+ s->output = DCA_STEREO;
+
+#ifdef TRACE
+ av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
+ av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
+ av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
+ av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
+ s->sample_blocks, s->sample_blocks * 32);
+ av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
+ av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
+ s->amode, dca_channels[s->amode]);
+ av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i (%i Hz)\n",
+ s->sample_rate, dca_sample_rates[s->sample_rate]);
+ av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i (%i bits/s)\n",
+ s->bit_rate, dca_bit_rates[s->bit_rate]);
+ av_log(s->avctx, AV_LOG_DEBUG, "downmix: %i\n", s->downmix);
+ av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
+ av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
+ av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
+ av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
+ av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
+ av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
+ av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
+ av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
+ av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
+ s->predictor_history);
+ av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
+ av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
+ s->multirate_inter);
+ av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
+ av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
+ av_log(s->avctx, AV_LOG_DEBUG,
+ "source pcm resolution: %i (%i bits/sample)\n",
+ s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
+ av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
+ av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
+ av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
+ av_log(s->avctx, AV_LOG_DEBUG, "\n");
+#endif
+
+ /* Primary audio coding header */
+ s->subframes = get_bits(&s->gb, 4) + 1;
+ s->prim_channels = get_bits(&s->gb, 3) + 1;
+
+
+ for (i = 0; i < s->prim_channels; i++) {
+ s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
+ if (s->subband_activity[i] > DCA_SUBBANDS)
+ s->subband_activity[i] = DCA_SUBBANDS;
+ }
+ for (i = 0; i < s->prim_channels; i++) {
+ s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
+ if (s->vq_start_subband[i] > DCA_SUBBANDS)
+ s->vq_start_subband[i] = DCA_SUBBANDS;
+ }
+ get_array(&s->gb, s->joint_intensity, s->prim_channels, 3);
+ get_array(&s->gb, s->transient_huffman, s->prim_channels, 2);
+ get_array(&s->gb, s->scalefactor_huffman, s->prim_channels, 3);
+ get_array(&s->gb, s->bitalloc_huffman, s->prim_channels, 3);
+
+ /* Get codebooks quantization indexes */
+ memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
+ for (j = 1; j < 11; j++)
+ for (i = 0; i < s->prim_channels; i++)
+ s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
+
+ /* Get scale factor adjustment */
+ for (j = 0; j < 11; j++)
+ for (i = 0; i < s->prim_channels; i++)
+ s->scalefactor_adj[i][j] = 1;
+
+ for (j = 1; j < 11; j++)
+ for (i = 0; i < s->prim_channels; i++)
+ if (s->quant_index_huffman[i][j] < thr[j])
+ s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
+
+ if (s->crc_present) {
+ /* Audio header CRC check */
+ get_bits(&s->gb, 16);
+ }
+
+ s->current_subframe = 0;
+ s->current_subsubframe = 0;
+
+#ifdef TRACE
+ av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
+ av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
+ for(i = 0; i < s->prim_channels; i++){
+ av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n", s->subband_activity[i]);
+ av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n", s->vq_start_subband[i]);
+ av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n", s->joint_intensity[i]);
+ av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n", s->transient_huffman[i]);
+ av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n", s->scalefactor_huffman[i]);
+ av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n", s->bitalloc_huffman[i]);
+ av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
+ for (j = 0; j < 11; j++)
+ av_log(s->avctx, AV_LOG_DEBUG, " %i",
+ s->quant_index_huffman[i][j]);
+ av_log(s->avctx, AV_LOG_DEBUG, "\n");
+ av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
+ for (j = 0; j < 11; j++)
+ av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
+ av_log(s->avctx, AV_LOG_DEBUG, "\n");
+ }
+#endif
+
+ return 0;
+}
+
+
+static inline int get_scale(GetBitContext *gb, int level, int index, int value)
+{
+ if (level < 5) {
+ /* huffman encoded */
+ value += get_bitalloc(gb, &dca_scalefactor, index);
+ } else if(level < 8)
+ value = get_bits(gb, level + 1);
+ return value;
+}
+
+static int dca_subframe_header(DCAContext * s)
+{
+ /* Primary audio coding side information */
+ int j, k;
+
+ s->subsubframes = get_bits(&s->gb, 2) + 1;
+ s->partial_samples = get_bits(&s->gb, 3);
+ for (j = 0; j < s->prim_channels; j++) {
+ for (k = 0; k < s->subband_activity[j]; k++)
+ s->prediction_mode[j][k] = get_bits(&s->gb, 1);
+ }
+
+ /* Get prediction codebook */
+ for (j = 0; j < s->prim_channels; j++) {
+ for (k = 0; k < s->subband_activity[j]; k++) {
+ if (s->prediction_mode[j][k] > 0) {
+ /* (Prediction coefficient VQ address) */
+ s->prediction_vq[j][k] = get_bits(&s->gb, 12);
+ }
+ }
+ }
+
+ /* Bit allocation index */
+ for (j = 0; j < s->prim_channels; j++) {
+ for (k = 0; k < s->vq_start_subband[j]; k++) {
+ if (s->bitalloc_huffman[j] == 6)
+ s->bitalloc[j][k] = get_bits(&s->gb, 5);
+ else if (s->bitalloc_huffman[j] == 5)
+ s->bitalloc[j][k] = get_bits(&s->gb, 4);
+ else {
+ s->bitalloc[j][k] =
+ get_bitalloc(&s->gb, &dca_bitalloc_index, j);
+ }
+
+ if (s->bitalloc[j][k] > 26) {
+// av_log(s->avctx,AV_LOG_DEBUG,"bitalloc index [%i][%i] too big (%i)\n",
+// j, k, s->bitalloc[j][k]);
+ return -1;
+ }
+ }
+ }
+
+ /* Transition mode */
+ for (j = 0; j < s->prim_channels; j++) {
+ for (k = 0; k < s->subband_activity[j]; k++) {
+ s->transition_mode[j][k] = 0;
+ if (s->subsubframes > 1 &&
+ k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
+ s->transition_mode[j][k] =
+ get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
+ }
+ }
+ }
+
+ for (j = 0; j < s->prim_channels; j++) {
+ uint32_t *scale_table;
+ int scale_sum;
+
+ memset(s->scale_factor[j], 0, s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
+
+ if (s->scalefactor_huffman[j] == 6)
+ scale_table = (uint32_t *) scale_factor_quant7;
+ else
+ scale_table = (uint32_t *) scale_factor_quant6;
+
+ /* When huffman coded, only the difference is encoded */
+ scale_sum = 0;
+
+ for (k = 0; k < s->subband_activity[j]; k++) {
+ if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
+ scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], j, scale_sum);
+ s->scale_factor[j][k][0] = scale_table[scale_sum];
+ }
+
+ if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
+ /* Get second scale factor */
+ scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], j, scale_sum);
+ s->scale_factor[j][k][1] = scale_table[scale_sum];
+ }
+ }
+ }
+
+ /* Joint subband scale factor codebook select */
+ for (j = 0; j < s->prim_channels; j++) {
+ /* Transmitted only if joint subband coding enabled */
+ if (s->joint_intensity[j] > 0)
+ s->joint_huff[j] = get_bits(&s->gb, 3);
+ }
+
+ /* Scale factors for joint subband coding */
+ for (j = 0; j < s->prim_channels; j++) {
+ int source_channel;
+
+ /* Transmitted only if joint subband coding enabled */
+ if (s->joint_intensity[j] > 0) {
+ int scale = 0;
+ source_channel = s->joint_intensity[j] - 1;
+
+ /* When huffman coded, only the difference is encoded
+ * (is this valid as well for joint scales ???) */
+
+ for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
+ scale = get_scale(&s->gb, s->joint_huff[j], j, 0);
+ scale += 64; /* bias */
+ s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
+ }
+
+ if (!s->debug_flag & 0x02) {
+ av_log(s->avctx, AV_LOG_DEBUG,
+ "Joint stereo coding not supported\n");
+ s->debug_flag |= 0x02;
+ }
+ }
+ }
+
+ /* Stereo downmix coefficients */
+ if (s->prim_channels > 2 && s->downmix) {
+ for (j = 0; j < s->prim_channels; j++) {
+ s->downmix_coef[j][0] = get_bits(&s->gb, 7);
+ s->downmix_coef[j][1] = get_bits(&s->gb, 7);
+ }
+ }
+
+ /* Dynamic range coefficient */
+ if (s->dynrange)
+ s->dynrange_coef = get_bits(&s->gb, 8);
+
+ /* Side information CRC check word */
+ if (s->crc_present) {
+ get_bits(&s->gb, 16);
+ }
+
+ /*
+ * Primary audio data arrays
+ */
+
+ /* VQ encoded high frequency subbands */
+ for (j = 0; j < s->prim_channels; j++)
+ for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
+ /* 1 vector -> 32 samples */
+ s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
+
+ /* Low frequency effect data */
+ if (s->lfe) {
+ /* LFE samples */
+ int lfe_samples = 2 * s->lfe * s->subsubframes;
+ float lfe_scale;
+
+ for (j = lfe_samples; j < lfe_samples * 2; j++) {
+ /* Signed 8 bits int */
+ s->lfe_data[j] = get_sbits(&s->gb, 8);
+ }
+
+ /* Scale factor index */
+ s->lfe_scale_factor = scale_factor_quant7[get_bits(&s->gb, 8)];
+
+ /* Quantization step size * scale factor */
+ lfe_scale = 0.035 * s->lfe_scale_factor;
+
+ for (j = lfe_samples; j < lfe_samples * 2; j++)
+ s->lfe_data[j] *= lfe_scale;
+ }
+
+#ifdef TRACE
+ av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n", s->subsubframes);
+ av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
+ s->partial_samples);
+ for (j = 0; j < s->prim_channels; j++) {
+ av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
+ for (k = 0; k < s->subband_activity[j]; k++)
+ av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
+ av_log(s->avctx, AV_LOG_DEBUG, "\n");
+ }
+ for (j = 0; j < s->prim_channels; j++) {
+ for (k = 0; k < s->subband_activity[j]; k++)
+ av_log(s->avctx, AV_LOG_DEBUG,
+ "prediction coefs: %f, %f, %f, %f\n",
+ (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
+ (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
+ (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
+ (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
+ }
+ for (j = 0; j < s->prim_channels; j++) {
+ av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
+ for (k = 0; k < s->vq_start_subband[j]; k++)
+ av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
+ av_log(s->avctx, AV_LOG_DEBUG, "\n");
+ }
+ for (j = 0; j < s->prim_channels; j++) {
+ av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
+ for (k = 0; k < s->subband_activity[j]; k++)
+ av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
+ av_log(s->avctx, AV_LOG_DEBUG, "\n");
+ }
+ for (j = 0; j < s->prim_channels; j++) {
+ av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
+ for (k = 0; k < s->subband_activity[j]; k++) {
+ if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
+ av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
+ if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
+ av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
+ }
+ av_log(s->avctx, AV_LOG_DEBUG, "\n");
+ }
+ for (j = 0; j < s->prim_channels; j++) {
+ if (s->joint_intensity[j] > 0) {
+ av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
+ for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
+ av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
+ av_log(s->avctx, AV_LOG_DEBUG, "\n");
+ }
+ }
+ if (s->prim_channels > 2 && s->downmix) {
+ av_log(s->avctx, AV_LOG_DEBUG, "Downmix coeffs:\n");
+ for (j = 0; j < s->prim_channels; j++) {
+ av_log(s->avctx, AV_LOG_DEBUG, "Channel 0,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][0]]);
+ av_log(s->avctx, AV_LOG_DEBUG, "Channel 1,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][1]]);
+ }
+ av_log(s->avctx, AV_LOG_DEBUG, "\n");
+ }
+ for (j = 0; j < s->prim_channels; j++)
+ for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
+ av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
+ if(s->lfe){
+ av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
+ for (j = lfe_samples; j < lfe_samples * 2; j++)
+ av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
+ av_log(s->avctx, AV_LOG_DEBUG, "\n");
+ }
+#endif
+
+ return 0;
+}
+
+static void qmf_32_subbands(DCAContext * s, int chans,
+ float samples_in[32][8], float *samples_out,
+ float scale, float bias)
+{
+ float *prCoeff;
+ int i, j, k;
+ float praXin[33], *raXin = &praXin[1];
+
+ float *subband_fir_hist = s->subband_fir_hist[chans];
+ float *subband_fir_hist2 = s->subband_fir_noidea[chans];
+
+ int chindex = 0, subindex;
+
+ praXin[0] = 0.0;
+
+ /* Select filter */
+ if (!s->multirate_inter) /* Non-perfect reconstruction */
+ prCoeff = (float *) fir_32bands_nonperfect;
+ else /* Perfect reconstruction */
+ prCoeff = (float *) fir_32bands_perfect;
+
+ /* Reconstructed channel sample index */
+ for (subindex = 0; subindex < 8; subindex++) {
+ float t1, t2, sum[16], diff[16];
+
+ /* Load in one sample from each subband and clear inactive subbands */
+ for (i = 0; i < s->subband_activity[chans]; i++)
+ raXin[i] = samples_in[i][subindex];
+ for (; i < 32; i++)
+ raXin[i] = 0.0;
+
+ /* Multiply by cosine modulation coefficients and
+ * create temporary arrays SUM and DIFF */
+ for (j = 0, k = 0; k < 16; k++) {
+ t1 = 0.0;
+ t2 = 0.0;
+ for (i = 0; i < 16; i++, j++){
+ t1 += (raXin[2 * i] + raXin[2 * i + 1]) * cos_mod[j];
+ t2 += (raXin[2 * i] + raXin[2 * i - 1]) * cos_mod[j + 256];
+ }
+ sum[k] = t1 + t2;
+ diff[k] = t1 - t2;
+ }
+
+ j = 512;
+ /* Store history */
+ for (k = 0; k < 16; k++)
+ subband_fir_hist[k] = cos_mod[j++] * sum[k];
+ for (k = 0; k < 16; k++)
+ subband_fir_hist[32-k-1] = cos_mod[j++] * diff[k];
+
+ /* Multiply by filter coefficients */
+ for (k = 31, i = 0; i < 32; i++, k--)
+ for (j = 0; j < 512; j += 64){
+ subband_fir_hist2[i] += prCoeff[i+j] * ( subband_fir_hist[i+j] - subband_fir_hist[j+k]);
+ subband_fir_hist2[i+32] += prCoeff[i+j+32]*(-subband_fir_hist[i+j] - subband_fir_hist[j+k]);
+ }
+
+ /* Create 32 PCM output samples */
+ for (i = 0; i < 32; i++)
+ samples_out[chindex++] = subband_fir_hist2[i] * scale + bias;
+
+ /* Update working arrays */
+ memmove(&subband_fir_hist[32], &subband_fir_hist[0], (512 - 32) * sizeof(float));
+ memmove(&subband_fir_hist2[0], &subband_fir_hist2[32], 32 * sizeof(float));
+ memset(&subband_fir_hist2[32], 0, 32 * sizeof(float));
+ }
+}
+
+static void lfe_interpolation_fir(int decimation_select,
+ int num_deci_sample, float *samples_in,
+ float *samples_out, float scale,
+ float bias)
+{
+ /* samples_in: An array holding decimated samples.
+ * Samples in current subframe starts from samples_in[0],
+ * while samples_in[-1], samples_in[-2], ..., stores samples
+ * from last subframe as history.
+ *
+ * samples_out: An array holding interpolated samples
+ */
+
+ int decifactor, k, j;
+ const float *prCoeff;
+
+ int interp_index = 0; /* Index to the interpolated samples */
+ int deciindex;
+
+ /* Select decimation filter */
+ if (decimation_select == 1) {
+ decifactor = 128;
+ prCoeff = lfe_fir_128;
+ } else {
+ decifactor = 64;
+ prCoeff = lfe_fir_64;
+ }
+ /* Interpolation */
+ for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
+ /* One decimated sample generates decifactor interpolated ones */
+ for (k = 0; k < decifactor; k++) {
+ float rTmp = 0.0;
+ //FIXME the coeffs are symetric, fix that
+ for (j = 0; j < 512 / decifactor; j++)
+ rTmp += samples_in[deciindex - j] * prCoeff[k + j * decifactor];
+ samples_out[interp_index++] = rTmp / scale + bias;
+ }
+ }
+}
+
+/* downmixing routines */
+#define MIX_REAR1(samples, si1) \
+ samples[i] += samples[si1]; \
+ samples[i+256] += samples[si1];
+
+#define MIX_REAR2(samples, si1, si2) \
+ samples[i] += samples[si1]; \
+ samples[i+256] += samples[si2];
+
+#define MIX_FRONT3(samples) \
+ t = samples[i]; \
+ samples[i] += samples[i+256]; \
+ samples[i+256] = samples[i+512] + t;
+
+#define DOWNMIX_TO_STEREO(op1, op2) \
+ for(i = 0; i < 256; i++){ \
+ op1 \
+ op2 \
+ }
+
+static void dca_downmix(float *samples, int srcfmt)
+{
+ int i;
+ float t;
+
+ switch (srcfmt) {
+ case DCA_MONO:
+ case DCA_CHANNEL:
+ case DCA_STEREO_TOTAL:
+ case DCA_STEREO_SUMDIFF:
+ case DCA_4F2R:
+ av_log(NULL, 0, "Not implemented!\n");
+ break;
+ case DCA_STEREO:
+ break;
+ case DCA_3F:
+ DOWNMIX_TO_STEREO(MIX_FRONT3(samples),);
+ break;
+ case DCA_2F1R:
+ DOWNMIX_TO_STEREO(MIX_REAR1(samples, i + 512),);
+ break;
+ case DCA_3F1R:
+ DOWNMIX_TO_STEREO(MIX_FRONT3(samples),
+ MIX_REAR1(samples, i + 768));
+ break;
+ case DCA_2F2R:
+ DOWNMIX_TO_STEREO(MIX_REAR2(samples, i + 512, i + 768),);
+ break;
+ case DCA_3F2R:
+ DOWNMIX_TO_STEREO(MIX_FRONT3(samples),
+ MIX_REAR2(samples, i + 768, i + 1024));
+ break;
+ }
+}
+
+
+/* Very compact version of the block code decoder that does not use table
+ * look-up but is slightly slower */
+static int decode_blockcode(int code, int levels, int *values)
+{
+ int i;
+ int offset = (levels - 1) >> 1;
+
+ for (i = 0; i < 4; i++) {
+ values[i] = (code % levels) - offset;
+ code /= levels;
+ }
+
+ if (code == 0)
+ return 0;
+ else {
+ av_log(NULL, AV_LOG_ERROR, "ERROR: block code look-up failed\n");
+ return -1;
+ }
+}
+
+static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
+static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
+
+static int dca_subsubframe(DCAContext * s)
+{
+ int k, l;
+ int subsubframe = s->current_subsubframe;
+
+ float *quant_step_table;
+
+ /* FIXME */
+ float subband_samples[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
+
+ /*
+ * Audio data
+ */
+
+ /* Select quantization step size table */
+ if (s->bit_rate == 0x1f)
+ quant_step_table = (float *) lossless_quant_d;
+ else
+ quant_step_table = (float *) lossy_quant_d;
+
+ for (k = 0; k < s->prim_channels; k++) {
+ for (l = 0; l < s->vq_start_subband[k]; l++) {
+ int m;
+
+ /* Select the mid-tread linear quantizer */
+ int abits = s->bitalloc[k][l];
+
+ float quant_step_size = quant_step_table[abits];
+ float rscale;
+
+ /*
+ * Determine quantization index code book and its type
+ */
+
+ /* Select quantization index code book */
+ int sel = s->quant_index_huffman[k][abits];
+
+ /*
+ * Extract bits from the bit stream
+ */
+ if(!abits){
+ memset(subband_samples[k][l], 0, 8 * sizeof(subband_samples[0][0][0]));
+ }else if(abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table){
+ if(abits <= 7){
+ /* Block code */
+ int block_code1, block_code2, size, levels;
+ int block[8];
+
+ size = abits_sizes[abits-1];
+ levels = abits_levels[abits-1];
+
+ block_code1 = get_bits(&s->gb, size);
+ /* FIXME Should test return value */
+ decode_blockcode(block_code1, levels, block);
+ block_code2 = get_bits(&s->gb, size);
+ decode_blockcode(block_code2, levels, &block[4]);
+ for (m = 0; m < 8; m++)
+ subband_samples[k][l][m] = block[m];
+ }else{
+ /* no coding */
+ for (m = 0; m < 8; m++)
+ subband_samples[k][l][m] = get_sbits(&s->gb, abits - 3);
+ }
+ }else{
+ /* Huffman coded */
+ for (m = 0; m < 8; m++)
+ subband_samples[k][l][m] = get_bitalloc(&s->gb, &dca_smpl_bitalloc[abits], sel);
+ }
+
+ /* Deal with transients */
+ if (s->transition_mode[k][l] &&
+ subsubframe >= s->transition_mode[k][l])
+ rscale = quant_step_size * s->scale_factor[k][l][1];
+ else
+ rscale = quant_step_size * s->scale_factor[k][l][0];
+
+ rscale *= s->scalefactor_adj[k][sel];
+
+ for (m = 0; m < 8; m++)
+ subband_samples[k][l][m] *= rscale;
+
+ /*
+ * Inverse ADPCM if in prediction mode
+ */
+ if (s->prediction_mode[k][l]) {
+ int n;
+ for (m = 0; m < 8; m++) {
+ for (n = 1; n <= 4; n++)
+ if (m >= n)
+ subband_samples[k][l][m] +=
+ (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
+ subband_samples[k][l][m - n] / 8192);
+ else if (s->predictor_history)
+ subband_samples[k][l][m] +=
+ (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
+ s->subband_samples_hist[k][l][m - n +
+ 4] / 8192);
+ }
+ }
+ }
+
+ /*
+ * Decode VQ encoded high frequencies
+ */
+ for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) {
+ /* 1 vector -> 32 samples but we only need the 8 samples
+ * for this subsubframe. */
+ int m;
+
+ if (!s->debug_flag & 0x01) {
+ av_log(s->avctx, AV_LOG_DEBUG, "Stream with high frequencies VQ coding\n");
+ s->debug_flag |= 0x01;
+ }
+
+ for (m = 0; m < 8; m++) {
+ subband_samples[k][l][m] =
+ high_freq_vq[s->high_freq_vq[k][l]][subsubframe * 8 +
+ m]
+ * (float) s->scale_factor[k][l][0] / 16.0;
+ }
+ }
+ }
+
+ /* Check for DSYNC after subsubframe */
+ if (s->aspf || subsubframe == s->subsubframes - 1) {
+ if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
+#ifdef TRACE
+ av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
+#endif
+ } else {
+ av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
+ }
+ }
+
+ /* Backup predictor history for adpcm */
+ for (k = 0; k < s->prim_channels; k++)
+ for (l = 0; l < s->vq_start_subband[k]; l++)
+ memcpy(s->subband_samples_hist[k][l], &subband_samples[k][l][4],
+ 4 * sizeof(subband_samples[0][0][0]));
+
+ /* 32 subbands QMF */
+ for (k = 0; k < s->prim_channels; k++) {
+/* static float pcm_to_double[8] =
+ {32768.0, 32768.0, 524288.0, 524288.0, 0, 8388608.0, 8388608.0};*/
+ qmf_32_subbands(s, k, subband_samples[k], &s->samples[256 * k],
+ 2.0 / 3 /*pcm_to_double[s->source_pcm_res] */ ,
+ 0 /*s->bias */ );
+ }
+
+ /* Down mixing */
+
+ if (s->prim_channels > dca_channels[s->output & DCA_CHANNEL_MASK]) {
+ dca_downmix(s->samples, s->amode);
+ }
+
+ /* Generate LFE samples for this subsubframe FIXME!!! */
+ if (s->output & DCA_LFE) {
+ int lfe_samples = 2 * s->lfe * s->subsubframes;
+ int i_channels = dca_channels[s->output & DCA_CHANNEL_MASK];
+
+ lfe_interpolation_fir(s->lfe, 2 * s->lfe,
+ s->lfe_data + lfe_samples +
+ 2 * s->lfe * subsubframe,
+ &s->samples[256 * i_channels],
+ 8388608.0, s->bias);
+ /* Outputs 20bits pcm samples */
+ }
+
+ return 0;
+}
+
+
+static int dca_subframe_footer(DCAContext * s)
+{
+ int aux_data_count = 0, i;
+ int lfe_samples;
+
+ /*
+ * Unpack optional information
+ */
+
+ if (s->timestamp)
+ get_bits(&s->gb, 32);
+
+ if (s->aux_data)
+ aux_data_count = get_bits(&s->gb, 6);
+
+ for (i = 0; i < aux_data_count; i++)
+ get_bits(&s->gb, 8);
+
+ if (s->crc_present && (s->downmix || s->dynrange))
+ get_bits(&s->gb, 16);
+
+ lfe_samples = 2 * s->lfe * s->subsubframes;
+ for (i = 0; i < lfe_samples; i++) {
+ s->lfe_data[i] = s->lfe_data[i + lfe_samples];
+ }
+
+ return 0;
+}
+
+/**
+ * Decode a dca frame block
+ *
+ * @param s pointer to the DCAContext
+ */
+
+static int dca_decode_block(DCAContext * s)
+{
+
+ /* Sanity check */
+ if (s->current_subframe >= s->subframes) {
+ av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
+ s->current_subframe, s->subframes);
+ return -1;
+ }
+
+ if (!s->current_subsubframe) {
+#ifdef TRACE
+ av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
+#endif
+ /* Read subframe header */
+ if (dca_subframe_header(s))
+ return -1;
+ }
+
+ /* Read subsubframe */
+#ifdef TRACE
+ av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
+#endif
+ if (dca_subsubframe(s))
+ return -1;
+
+ /* Update state */
+ s->current_subsubframe++;
+ if (s->current_subsubframe >= s->subsubframes) {
+ s->current_subsubframe = 0;
+ s->current_subframe++;
+ }
+ if (s->current_subframe >= s->subframes) {
+#ifdef TRACE
+ av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
+#endif
+ /* Read subframe footer */
+ if (dca_subframe_footer(s))
+ return -1;
+ }
+
+ return 0;
+}
+
+/**
+ * Convert bitstream to one representation based on sync marker
+ */
+static int dca_convert_bitstream(uint8_t * src, int src_size, uint8_t * dst,
+ int max_size)
+{
+ uint32_t mrk;
+ int i, tmp;
+ uint16_t *ssrc = (uint16_t *) src, *sdst = (uint16_t *) dst;
+ PutBitContext pb;
+
+ mrk = AV_RB32(src);
+ switch (mrk) {
+ case DCA_MARKER_RAW_BE:
+ memcpy(dst, src, FFMIN(src_size, max_size));
+ return FFMIN(src_size, max_size);
+ case DCA_MARKER_RAW_LE:
+ for (i = 0; i < (FFMIN(src_size, max_size) + 1) >> 1; i++)
+ *sdst++ = bswap_16(*ssrc++);
+ return FFMIN(src_size, max_size);
+ case DCA_MARKER_14B_BE:
+ case DCA_MARKER_14B_LE:
+ init_put_bits(&pb, dst, max_size);
+ for (i = 0; i < (src_size + 1) >> 1; i++, src += 2) {
+ tmp = ((mrk == DCA_MARKER_14B_BE) ? AV_RB16(src) : AV_RL16(src)) & 0x3FFF;
+ put_bits(&pb, 14, tmp);
+ }
+ flush_put_bits(&pb);
+ return (put_bits_count(&pb) + 7) >> 3;
+ default:
+ return -1;
+ }
+}
+
+/**
+ * Main frame decoding function
+ * FIXME add arguments
+ */
+static int dca_decode_frame(AVCodecContext * avctx,
+ void *data, int *data_size,
+ uint8_t * buf, int buf_size)
+{
+
+ int i, j, k;
+ int16_t *samples = data;
+ DCAContext *s = avctx->priv_data;
+ int channels;
+
+
+ s->dca_buffer_size = dca_convert_bitstream(buf, buf_size, s->dca_buffer, DCA_MAX_FRAME_SIZE);
+ if (s->dca_buffer_size == -1) {
+ av_log(avctx, AV_LOG_ERROR, "Not a DCA frame\n");
+ return -1;
+ }
+
+ init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
+ if (dca_parse_frame_header(s) < 0) {
+ //seems like the frame is corrupt, try with the next one
+ return buf_size;
+ }
+ //set AVCodec values with parsed data
+ avctx->sample_rate = s->sample_rate;
+ avctx->channels = 2; //FIXME
+ avctx->bit_rate = s->bit_rate;
+
+ channels = dca_channels[s->output];
+ if(*data_size < (s->sample_blocks / 8) * 256 * sizeof(int16_t) * channels)
+ return -1;
+ *data_size = 0;
+ for (i = 0; i < (s->sample_blocks / 8); i++) {
+ dca_decode_block(s);
+ s->dsp.float_to_int16(s->tsamples, s->samples, 256 * channels);
+ /* interleave samples */
+ for (j = 0; j < 256; j++) {
+ for (k = 0; k < channels; k++)
+ samples[k] = s->tsamples[j + k * 256];
+ samples += channels;
+ }
+ *data_size += 256 * sizeof(int16_t) * channels;
+ }
+
+ return buf_size;
+}
+
+
+
+/**
+ * Build the cosine modulation tables for the QMF
+ *
+ * @param s pointer to the DCAContext
+ */
+
+static void pre_calc_cosmod(DCAContext * s)
+{
+ int i, j, k;
+ static int cosmod_inited = 0;
+
+ if(cosmod_inited) return;
+ for (j = 0, k = 0; k < 16; k++)
+ for (i = 0; i < 16; i++)
+ cos_mod[j++] = cos((2 * i + 1) * (2 * k + 1) * M_PI / 64);
+
+ for (k = 0; k < 16; k++)
+ for (i = 0; i < 16; i++)
+ cos_mod[j++] = cos((i) * (2 * k + 1) * M_PI / 32);
+
+ for (k = 0; k < 16; k++)
+ cos_mod[j++] = 0.25 / (2 * cos((2 * k + 1) * M_PI / 128));
+
+ for (k = 0; k < 16; k++)
+ cos_mod[j++] = -0.25 / (2.0 * sin((2 * k + 1) * M_PI / 128));
+
+ cosmod_inited = 1;
+}
+
+
+/**
+ * DCA initialization
+ *
+ * @param avctx pointer to the AVCodecContext
+ */
+
+static int dca_decode_init(AVCodecContext * avctx)
+{
+ DCAContext *s = avctx->priv_data;
+
+ s->avctx = avctx;
+ dca_init_vlcs();
+ pre_calc_cosmod(s);
+
+ dsputil_init(&s->dsp, avctx);
+ return 0;
+}
+
+
+AVCodec dca_decoder = {
+ .name = "dca",
+ .type = CODEC_TYPE_AUDIO,
+ .id = CODEC_ID_DTS,
+ .priv_data_size = sizeof(DCAContext),
+ .init = dca_decode_init,
+ .decode = dca_decode_frame,
+};
+
+#ifdef CONFIG_DCA_PARSER
+
+typedef struct DCAParseContext {
+ ParseContext pc;
+ uint32_t lastmarker;
+} DCAParseContext;
+
+#define IS_MARKER(state, i, buf, buf_size) \
+ ((state == DCA_MARKER_14B_LE && (i < buf_size-2) && (buf[i+1] & 0xF0) == 0xF0 && buf[i+2] == 0x07) \
+ || (state == DCA_MARKER_14B_BE && (i < buf_size-2) && buf[i+1] == 0x07 && (buf[i+2] & 0xF0) == 0xF0) \
+ || state == DCA_MARKER_RAW_LE || state == DCA_MARKER_RAW_BE)
+
+/**
+ * finds the end of the current frame in the bitstream.
+ * @return the position of the first byte of the next frame, or -1
+ */
+static int dca_find_frame_end(DCAParseContext * pc1, const uint8_t * buf,
+ int buf_size)
+{
+ int start_found, i;
+ uint32_t state;
+ ParseContext *pc = &pc1->pc;
+
+ start_found = pc->frame_start_found;
+ state = pc->state;
+
+ i = 0;
+ if (!start_found) {
+ for (i = 0; i < buf_size; i++) {
+ state = (state << 8) | buf[i];
+ if (IS_MARKER(state, i, buf, buf_size)) {
+ if (pc1->lastmarker && state == pc1->lastmarker) {
+ start_found = 1;
+ break;
+ } else if (!pc1->lastmarker) {
+ start_found = 1;
+ pc1->lastmarker = state;
+ break;
+ }
+ }
+ }
+ }
+ if (start_found) {
+ for (; i < buf_size; i++) {
+ state = (state << 8) | buf[i];
+ if (state == pc1->lastmarker && IS_MARKER(state, i, buf, buf_size)) {
+ pc->frame_start_found = 0;
+ pc->state = -1;
+ return i - 3;
+ }
+ }
+ }
+ pc->frame_start_found = start_found;
+ pc->state = state;
+ return END_NOT_FOUND;
+}
+
+static int dca_parse_init(AVCodecParserContext * s)
+{
+ DCAParseContext *pc1 = s->priv_data;
+
+ pc1->lastmarker = 0;
+ return 0;
+}
+
+static int dca_parse(AVCodecParserContext * s,
+ AVCodecContext * avctx,
+ uint8_t ** poutbuf, int *poutbuf_size,
+ const uint8_t * buf, int buf_size)
+{
+ DCAParseContext *pc1 = s->priv_data;
+ ParseContext *pc = &pc1->pc;
+ int next;
+
+ if (s->flags & PARSER_FLAG_COMPLETE_FRAMES) {
+ next = buf_size;
+ } else {
+ next = dca_find_frame_end(pc1, buf, buf_size);
+
+ if (ff_combine_frame(pc, next, (uint8_t **) & buf, &buf_size) < 0) {
+ *poutbuf = NULL;
+ *poutbuf_size = 0;
+ return buf_size;
+ }
+ }
+ *poutbuf = (uint8_t *) buf;
+ *poutbuf_size = buf_size;
+ return next;
+}
+
+AVCodecParser dca_parser = {
+ {CODEC_ID_DTS},
+ sizeof(DCAParseContext),
+ dca_parse_init,
+ dca_parse,
+ ff_parse_close,
+};
+#endif /* CONFIG_DCA_PARSER */