aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/amrnbdec.c
diff options
context:
space:
mode:
authorVitor Sessak <vitor1001@gmail.com>2010-02-21 18:01:56 +0000
committerVitor Sessak <vitor1001@gmail.com>2010-02-21 18:01:56 +0000
commit4fe3edaadf028b0a5b7debc5f556037b0ef9bdff (patch)
treefcef97aff377c16c4ba27f3f31ce6f7395dafaf3 /libavcodec/amrnbdec.c
parentf1b267ddf7ca1b84abf7bdc97b736715d23fd89f (diff)
downloadffmpeg-4fe3edaadf028b0a5b7debc5f556037b0ef9bdff.tar.gz
AMR-NB floating-point based decoder.
Code produced during SoC by Robert Swain and Colin McQuillan. Originally committed as revision 21943 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/amrnbdec.c')
-rw-r--r--libavcodec/amrnbdec.c1081
1 files changed, 1081 insertions, 0 deletions
diff --git a/libavcodec/amrnbdec.c b/libavcodec/amrnbdec.c
new file mode 100644
index 0000000000..325acfda78
--- /dev/null
+++ b/libavcodec/amrnbdec.c
@@ -0,0 +1,1081 @@
+/*
+ * AMR narrowband decoder
+ * Copyright (c) 2006-2007 Robert Swain
+ * Copyright (c) 2009 Colin McQuillan
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+
+/**
+ * @file libavcodec/amrnbdec.c
+ * AMR narrowband decoder
+ *
+ * This decoder uses floats for simplicity and so is not bit-exact. One
+ * difference is that differences in phase can accumulate. The test sequences
+ * in 3GPP TS 26.074 can still be useful.
+ *
+ * - Comparing this file's output to the output of the ref decoder gives a
+ * PSNR of 30 to 80. Plotting the output samples shows a difference in
+ * phase in some areas.
+ *
+ * - Comparing both decoders against their input, this decoder gives a similar
+ * PSNR. If the test sequence homing frames are removed (this decoder does
+ * not detect them), the PSNR is at least as good as the reference on 140
+ * out of 169 tests.
+ */
+
+
+#include <string.h>
+#include <math.h>
+
+#include "avcodec.h"
+#include "get_bits.h"
+#include "libavutil/common.h"
+#include "celp_math.h"
+#include "celp_filters.h"
+#include "acelp_filters.h"
+#include "acelp_vectors.h"
+#include "acelp_pitch_delay.h"
+#include "lsp.h"
+
+#include "amrnbdata.h"
+
+#define AMR_BLOCK_SIZE 160 ///< samples per frame
+#define AMR_SAMPLE_BOUND 32768.0 ///< threshold for synthesis overflow
+
+/**
+ * Scale from constructed speech to [-1,1]
+ *
+ * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
+ * upscales by two (section 6.2.2).
+ *
+ * Fundamentally, this scale is determined by energy_mean through
+ * the fixed vector contribution to the excitation vector.
+ */
+#define AMR_SAMPLE_SCALE (2.0 / 32768.0)
+
+/** Prediction factor for 12.2kbit/s mode */
+#define PRED_FAC_MODE_12k2 0.65
+
+#define LSF_R_FAC (8000.0 / 32768.0) ///< LSF residual tables to Hertz
+#define MIN_LSF_SPACING (50.0488 / 8000.0) ///< Ensures stability of LPC filter
+#define PITCH_LAG_MIN_MODE_12k2 18 ///< Lower bound on decoded lag search in 12.2kbit/s mode
+
+/** Initial energy in dB. Also used for bad frames (unimplemented). */
+#define MIN_ENERGY -14.0
+
+/** Maximum sharpening factor
+ *
+ * The specification says 0.8, which should be 13107, but the reference C code
+ * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in g729dec.c.)
+ */
+#define SHARP_MAX 0.79449462890625
+
+/** Number of impulse response coefficients used for tilt factor */
+#define AMR_TILT_RESPONSE 22
+/** Tilt factor = 1st reflection coefficient * gamma_t */
+#define AMR_TILT_GAMMA_T 0.8
+/** Adaptive gain control factor used in post-filter */
+#define AMR_AGC_ALPHA 0.9
+
+typedef struct AMRContext {
+ AMRNBFrame frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
+ uint8_t bad_frame_indicator; ///< bad frame ? 1 : 0
+ enum Mode cur_frame_mode;
+
+ int16_t prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
+ double lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
+ double prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame
+
+ float lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
+ float lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector
+
+ float lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes
+
+ uint8_t pitch_lag_int; ///< integer part of pitch lag from current subframe
+
+ float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
+ float *excitation; ///< pointer to the current excitation vector in excitation_buf
+
+ float pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
+ float fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)
+
+ float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
+ float pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
+ float fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes
+
+ float beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
+ uint8_t diff_count; ///< the number of subframes for which diff has been above 0.65
+ uint8_t hang_count; ///< the number of subframes since a hangover period started
+
+ float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
+ uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
+ uint8_t ir_filter_onset; ///< flag for impulse response filter strength
+
+ float postfilter_mem[10]; ///< previous intermediate values in the formant filter
+ float tilt_mem; ///< previous input to tilt compensation filter
+ float postfilter_agc; ///< previous factor used for adaptive gain control
+ float high_pass_mem[2]; ///< previous intermediate values in the high-pass filter
+
+ float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples
+
+} AMRContext;
+
+/** Double version of ff_weighted_vector_sumf() */
+static void weighted_vector_sumd(double *out, const double *in_a,
+ const double *in_b, double weight_coeff_a,
+ double weight_coeff_b, int length)
+{
+ int i;
+
+ for (i = 0; i < length; i++)
+ out[i] = weight_coeff_a * in_a[i]
+ + weight_coeff_b * in_b[i];
+}
+
+static av_cold int amrnb_decode_init(AVCodecContext *avctx)
+{
+ AMRContext *p = avctx->priv_data;
+ int i;
+
+ avctx->sample_fmt = SAMPLE_FMT_FLT;
+
+ // p->excitation always points to the same position in p->excitation_buf
+ p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
+
+ for (i = 0; i < LP_FILTER_ORDER; i++) {
+ p->prev_lsp_sub4[i] = lsp_sub4_init[i] * 1000 / (float)(1 << 15);
+ p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
+ }
+
+ for (i = 0; i < 4; i++)
+ p->prediction_error[i] = MIN_ENERGY;
+
+ return 0;
+}
+
+
+/**
+ * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
+ *
+ * The order of speech bits is specified by 3GPP TS 26.101.
+ *
+ * @param p the context
+ * @param buf pointer to the input buffer
+ * @param buf_size size of the input buffer
+ *
+ * @return the frame mode
+ */
+static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
+ int buf_size)
+{
+ GetBitContext gb;
+ enum Mode mode;
+
+ init_get_bits(&gb, buf, buf_size * 8);
+
+ // Decode the first octet.
+ skip_bits(&gb, 1); // padding bit
+ mode = get_bits(&gb, 4); // frame type
+ p->bad_frame_indicator = !get_bits1(&gb); // quality bit
+ skip_bits(&gb, 2); // two padding bits
+
+ if (mode <= MODE_DTX) {
+ uint16_t *data = (uint16_t *)&p->frame;
+ const uint8_t *order = amr_unpacking_bitmaps_per_mode[mode];
+ int field_size;
+
+ memset(&p->frame, 0, sizeof(AMRNBFrame));
+ buf++;
+ while ((field_size = *order++)) {
+ int field = 0;
+ int field_offset = *order++;
+ while (field_size--) {
+ int bit = *order++;
+ field <<= 1;
+ field |= buf[bit >> 3] >> (bit & 7) & 1;
+ }
+ data[field_offset] = field;
+ }
+ }
+
+ return mode;
+}
+
+
+/// @defgroup amr_lpc_decoding AMR pitch LPC coefficient decoding functions
+/// @{
+
+/**
+ * Convert an lsf vector into an lsp vector.
+ *
+ * @param lsf input lsf vector
+ * @param lsp output lsp vector
+ */
+static void lsf2lsp(const float *lsf, double *lsp)
+{
+ int i;
+
+ for (i = 0; i < LP_FILTER_ORDER; i++)
+ lsp[i] = cos(2.0 * M_PI * lsf[i]);
+}
+
+/**
+ * Interpolate the LSF vector (used for fixed gain smoothing).
+ * The interpolation is done over all four subframes even in MODE_12k2.
+ *
+ * @param[in,out] lsf_q LSFs in [0,1] for each subframe
+ * @param[in] lsf_new New LSFs in [0,1] for subframe 4
+ */
+static void interpolate_lsf(float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
+{
+ int i;
+
+ for (i = 0; i < 4; i++)
+ ff_weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
+ 0.25 * (3 - i), 0.25 * (i + 1),
+ LP_FILTER_ORDER);
+}
+
+/**
+ * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
+ *
+ * @param p the context
+ * @param lsp output LSP vector
+ * @param lsf_no_r LSF vector without the residual vector added
+ * @param lsf_quantizer pointers to LSF dictionary tables
+ * @param quantizer_offset offset in tables
+ * @param sign for the 3 dictionary table
+ * @param update store data for computing the next frame's LSFs
+ */
+static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
+ const float lsf_no_r[LP_FILTER_ORDER],
+ const int16_t *lsf_quantizer[5],
+ const int quantizer_offset,
+ const int sign, const int update)
+{
+ int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
+ float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
+ int i;
+
+ for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
+ memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
+ 2 * sizeof(*lsf_r));
+
+ if (sign) {
+ lsf_r[4] *= -1;
+ lsf_r[5] *= -1;
+ }
+
+ if (update)
+ memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(float));
+
+ for (i = 0; i < LP_FILTER_ORDER; i++)
+ lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
+
+ ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
+
+ if (update)
+ interpolate_lsf(p->lsf_q, lsf_q);
+
+ lsf2lsp(lsf_q, lsp);
+}
+
+/**
+ * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
+ *
+ * @param p pointer to the AMRContext
+ */
+static void lsf2lsp_5(AMRContext *p)
+{
+ const uint16_t *lsf_param = p->frame.lsf;
+ float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
+ const int16_t *lsf_quantizer[5];
+ int i;
+
+ lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
+ lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
+ lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
+ lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
+ lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
+
+ for (i = 0; i < LP_FILTER_ORDER; i++)
+ lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
+
+ lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
+ lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
+
+ // interpolate LSP vectors at subframes 1 and 3
+ weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
+ weighted_vector_sumd(p->lsp[2], p->lsp[1] , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
+}
+
+/**
+ * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
+ *
+ * @param p pointer to the AMRContext
+ */
+static void lsf2lsp_3(AMRContext *p)
+{
+ const uint16_t *lsf_param = p->frame.lsf;
+ int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
+ float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
+ const int16_t *lsf_quantizer;
+ int i, j;
+
+ lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
+ memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
+
+ lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
+ memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
+
+ lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
+ memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
+
+ // calculate mean-removed LSF vector and add mean
+ for (i = 0; i < LP_FILTER_ORDER; i++)
+ lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
+
+ ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
+
+ // store data for computing the next frame's LSFs
+ interpolate_lsf(p->lsf_q, lsf_q);
+ memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
+
+ lsf2lsp(lsf_q, p->lsp[3]);
+
+ // interpolate LSP vectors at subframes 1, 2 and 3
+ for (i = 1; i <= 3; i++)
+ for(j = 0; j < LP_FILTER_ORDER; j++)
+ p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
+ (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
+}
+
+/// @}
+
+
+/// @defgroup amr_pitch_vector_decoding AMR pitch vector decoding functions
+/// @{
+
+/**
+ * Like ff_decode_pitch_lag(), but with 1/6 resolution
+ */
+static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
+ const int prev_lag_int, const int subframe)
+{
+ if (subframe == 0 || subframe == 2) {
+ if (pitch_index < 463) {
+ *lag_int = (pitch_index + 107) * 10923 >> 16;
+ *lag_frac = pitch_index - *lag_int * 6 + 105;
+ } else {
+ *lag_int = pitch_index - 368;
+ *lag_frac = 0;
+ }
+ } else {
+ *lag_int = ((pitch_index + 5) * 10923 >> 16) - 1;
+ *lag_frac = pitch_index - *lag_int * 6 - 3;
+ *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
+ PITCH_DELAY_MAX - 9);
+ }
+}
+
+static void decode_pitch_vector(AMRContext *p,
+ const AMRNBSubframe *amr_subframe,
+ const int subframe)
+{
+ int pitch_lag_int, pitch_lag_frac;
+ enum Mode mode = p->cur_frame_mode;
+
+ if (p->cur_frame_mode == MODE_12k2) {
+ decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
+ amr_subframe->p_lag, p->pitch_lag_int,
+ subframe);
+ } else
+ ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
+ amr_subframe->p_lag,
+ p->pitch_lag_int, subframe,
+ mode != MODE_4k75 && mode != MODE_5k15,
+ mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
+
+ p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t
+
+ pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2);
+
+ pitch_lag_int += pitch_lag_frac > 0;
+
+ /* Calculate the pitch vector by interpolating the past excitation at the
+ pitch lag using a b60 hamming windowed sinc function. */
+ ff_acelp_interpolatef(p->excitation, p->excitation + 1 - pitch_lag_int,
+ ff_b60_sinc, 6,
+ pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
+ 10, AMR_SUBFRAME_SIZE);
+
+ memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
+}
+
+/// @}
+
+
+/// @defgroup amr_algebraic_code_book AMR algebraic code book (fixed) vector decoding functions
+/// @{
+
+/**
+ * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
+ */
+static void decode_10bit_pulse(int code, int pulse_position[8],
+ int i1, int i2, int i3)
+{
+ // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
+ // the 3 pulses and the upper 7 bits being coded in base 5
+ const uint8_t *positions = base_five_table[code >> 3];
+ pulse_position[i1] = (positions[2] << 1) + ( code & 1);
+ pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
+ pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
+}
+
+/**
+ * Decode the algebraic codebook index to pulse positions and signs and
+ * construct the algebraic codebook vector for MODE_10k2.
+ *
+ * @param fixed_index positions of the eight pulses
+ * @param fixed_sparse pointer to the algebraic codebook vector
+ */
+static void decode_8_pulses_31bits(const int16_t *fixed_index,
+ AMRFixed *fixed_sparse)
+{
+ int pulse_position[8];
+ int i, temp;
+
+ decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
+ decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
+
+ // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
+ // the 2 pulses and the upper 5 bits being coded in base 5
+ temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
+ pulse_position[3] = temp % 5;
+ pulse_position[7] = temp / 5;
+ if (pulse_position[7] & 1)
+ pulse_position[3] = 4 - pulse_position[3];
+ pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1);
+ pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
+
+ fixed_sparse->n = 8;
+ for (i = 0; i < 4; i++) {
+ const int pos1 = (pulse_position[i] << 2) + i;
+ const int pos2 = (pulse_position[i + 4] << 2) + i;
+ const float sign = fixed_index[i] ? -1.0 : 1.0;
+ fixed_sparse->x[i ] = pos1;
+ fixed_sparse->x[i + 4] = pos2;
+ fixed_sparse->y[i ] = sign;
+ fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
+ }
+}
+
+/**
+ * Decode the algebraic codebook index to pulse positions and signs,
+ * then construct the algebraic codebook vector.
+ *
+ * nb of pulses | bits encoding pulses
+ * For MODE_4k75 or MODE_5k15, 2 | 1-3, 4-6, 7
+ * MODE_5k9, 2 | 1, 2-4, 5-6, 7-9
+ * MODE_6k7, 3 | 1-3, 4, 5-7, 8, 9-11
+ * MODE_7k4 or MODE_7k95, 4 | 1-3, 4-6, 7-9, 10, 11-13
+ *
+ * @param fixed_sparse pointer to the algebraic codebook vector
+ * @param pulses algebraic codebook indexes
+ * @param mode mode of the current frame
+ * @param subframe current subframe number
+ */
+static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
+ const enum Mode mode, const int subframe)
+{
+ assert(MODE_4k75 <= mode && mode <= MODE_12k2);
+
+ if (mode == MODE_12k2) {
+ ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
+ } else if (mode == MODE_10k2) {
+ decode_8_pulses_31bits(pulses, fixed_sparse);
+ } else {
+ int *pulse_position = fixed_sparse->x;
+ int i, pulse_subset;
+ const int fixed_index = pulses[0];
+
+ if (mode <= MODE_5k15) {
+ pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1);
+ pulse_position[0] = ( fixed_index & 7) * 5 + track_position[pulse_subset];
+ pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
+ fixed_sparse->n = 2;
+ } else if (mode == MODE_5k9) {
+ pulse_subset = ((fixed_index & 1) << 1) + 1;
+ pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
+ pulse_subset = (fixed_index >> 4) & 3;
+ pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
+ fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
+ } else if (mode == MODE_6k7) {
+ pulse_position[0] = (fixed_index & 7) * 5;
+ pulse_subset = (fixed_index >> 2) & 2;
+ pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
+ pulse_subset = (fixed_index >> 6) & 2;
+ pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
+ fixed_sparse->n = 3;
+ } else { // mode <= MODE_7k95
+ pulse_position[0] = gray_decode[ fixed_index & 7];
+ pulse_position[1] = gray_decode[(fixed_index >> 3) & 7] + 1;
+ pulse_position[2] = gray_decode[(fixed_index >> 6) & 7] + 2;
+ pulse_subset = (fixed_index >> 9) & 1;
+ pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
+ fixed_sparse->n = 4;
+ }
+ for (i = 0; i < fixed_sparse->n; i++)
+ fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
+ }
+}
+
+/**
+ * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
+ *
+ * @param p the context
+ * @param subframe unpacked amr subframe
+ * @param mode mode of the current frame
+ * @param fixed_sparse sparse respresentation of the fixed vector
+ */
+static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
+ AMRFixed *fixed_sparse)
+{
+ // The spec suggests the current pitch gain is always used, but in other
+ // modes the pitch and codebook gains are joinly quantized (sec 5.8.2)
+ // so the codebook gain cannot depend on the quantized pitch gain.
+ if (mode == MODE_12k2)
+ p->beta = FFMIN(p->pitch_gain[4], 1.0);
+
+ fixed_sparse->pitch_lag = p->pitch_lag_int;
+ fixed_sparse->pitch_fac = p->beta;
+
+ // Save pitch sharpening factor for the next subframe
+ // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
+ // the fact that the gains for two subframes are jointly quantized.
+ if (mode != MODE_4k75 || subframe & 1)
+ p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
+}
+/// @}
+
+
+/// @defgroup amr_gain_decoding AMR gain decoding functions
+/// @{
+
+/**
+ * fixed gain smoothing
+ * Note that where the spec specifies the "spectrum in the q domain"
+ * in section 6.1.4, in fact frequencies should be used.
+ *
+ * @param p the context
+ * @param lsf LSFs for the current subframe, in the range [0,1]
+ * @param lsf_avg averaged LSFs
+ * @param mode mode of the current frame
+ *
+ * @return fixed gain smoothed
+ */
+static float fixed_gain_smooth(AMRContext *p , const float *lsf,
+ const float *lsf_avg, const enum Mode mode)
+{
+ float diff = 0.0;
+ int i;
+
+ for (i = 0; i < LP_FILTER_ORDER; i++)
+ diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
+
+ // If diff is large for ten subframes, disable smoothing for a 40-subframe
+ // hangover period.
+ p->diff_count++;
+ if (diff <= 0.65)
+ p->diff_count = 0;
+
+ if (p->diff_count > 10) {
+ p->hang_count = 0;
+ p->diff_count--; // don't let diff_count overflow
+ }
+
+ if (p->hang_count < 40) {
+ p->hang_count++;
+ } else if (mode < MODE_7k4 || mode == MODE_10k2) {
+ const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
+ const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
+ p->fixed_gain[2] + p->fixed_gain[3] +
+ p->fixed_gain[4]) * 0.2;
+ return smoothing_factor * p->fixed_gain[4] +
+ (1.0 - smoothing_factor) * fixed_gain_mean;
+ }
+ return p->fixed_gain[4];
+}
+
+/**
+ * Decode pitch gain and fixed gain factor (part of section 6.1.3).
+ *
+ * @param p the context
+ * @param amr_subframe unpacked amr subframe
+ * @param mode mode of the current frame
+ * @param subframe current subframe number
+ * @param fixed_gain_factor decoded gain correction factor
+ */
+static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
+ const enum Mode mode, const int subframe,
+ float *fixed_gain_factor)
+{
+ if (mode == MODE_12k2 || mode == MODE_7k95) {
+ p->pitch_gain[4] = qua_gain_pit [amr_subframe->p_gain ]
+ * (1.0 / 16384.0);
+ *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
+ * (1.0 / 2048.0);
+ } else {
+ const uint16_t *gains;
+
+ if (mode >= MODE_6k7) {
+ gains = gains_high[amr_subframe->p_gain];
+ } else if (mode >= MODE_5k15) {
+ gains = gains_low [amr_subframe->p_gain];
+ } else {
+ // gain index is only coded in subframes 0,2 for MODE_4k75
+ gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
+ }
+
+ p->pitch_gain[4] = gains[0] * (1.0 / 16384.0);
+ *fixed_gain_factor = gains[1] * (1.0 / 4096.0);
+ }
+}
+
+/// @}
+
+
+/// @defgroup amr_pre_processing AMR pre-processing functions
+/// @{
+
+/**
+ * Circularly convolve a sparse fixed vector with a phase dispersion impulse
+ * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
+ *
+ * @param out vector with filter applied
+ * @param in source vector
+ * @param filter phase filter coefficients
+ *
+ * out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
+ */
+static void apply_ir_filter(float *out, const AMRFixed *in,
+ const float *filter)
+{
+ float filter1[AMR_SUBFRAME_SIZE], //!< filters at pitch lag*1 and *2
+ filter2[AMR_SUBFRAME_SIZE];
+ int lag = in->pitch_lag;
+ float fac = in->pitch_fac;
+ int i;
+
+ if (lag < AMR_SUBFRAME_SIZE) {
+ ff_celp_circ_addf(filter1, filter, filter, lag, fac,
+ AMR_SUBFRAME_SIZE);
+
+ if (lag < AMR_SUBFRAME_SIZE >> 1)
+ ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
+ AMR_SUBFRAME_SIZE);
+ }
+
+ memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
+ for (i = 0; i < in->n; i++) {
+ int x = in->x[i];
+ float y = in->y[i];
+ const float *filterp;
+
+ if (x >= AMR_SUBFRAME_SIZE - lag) {
+ filterp = filter;
+ } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
+ filterp = filter1;
+ } else
+ filterp = filter2;
+
+ ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
+ }
+}
+
+/**
+ * Reduce fixed vector sparseness by smoothing with one of three IR filters.
+ * Also know as "adaptive phase dispersion".
+ *
+ * This implements 3GPP TS 26.090 section 6.1(5).
+ *
+ * @param p the context
+ * @param fixed_sparse algebraic codebook vector
+ * @param fixed_vector unfiltered fixed vector
+ * @param fixed_gain smoothed gain
+ * @param out space for modified vector if necessary
+ */
+static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
+ const float *fixed_vector,
+ float fixed_gain, float *out)
+{
+ int ir_filter_nr;
+
+ if (p->pitch_gain[4] < 0.6) {
+ ir_filter_nr = 0; // strong filtering
+ } else if (p->pitch_gain[4] < 0.9) {
+ ir_filter_nr = 1; // medium filtering
+ } else
+ ir_filter_nr = 2; // no filtering
+
+ // detect 'onset'
+ if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
+ p->ir_filter_onset = 2;
+ } else if (p->ir_filter_onset)
+ p->ir_filter_onset--;
+
+ if (!p->ir_filter_onset) {
+ int i, count = 0;
+
+ for (i = 0; i < 5; i++)
+ if (p->pitch_gain[i] < 0.6)
+ count++;
+ if (count > 2)
+ ir_filter_nr = 0;
+
+ if (ir_filter_nr > p->prev_ir_filter_nr + 1)
+ ir_filter_nr--;
+ } else if (ir_filter_nr < 2)
+ ir_filter_nr++;
+
+ // Disable filtering for very low level of fixed_gain.
+ // Note this step is not specified in the technical description but is in
+ // the reference source in the function Ph_disp.
+ if (fixed_gain < 5.0)
+ ir_filter_nr = 2;
+
+ if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
+ && ir_filter_nr < 2) {
+ apply_ir_filter(out, fixed_sparse,
+ (p->cur_frame_mode == MODE_7k95 ?
+ ir_filters_lookup_MODE_7k95 :
+ ir_filters_lookup)[ir_filter_nr]);
+ fixed_vector = out;
+ }
+
+ // update ir filter strength history
+ p->prev_ir_filter_nr = ir_filter_nr;
+ p->prev_sparse_fixed_gain = fixed_gain;
+
+ return fixed_vector;
+}
+
+/// @}
+
+
+/// @defgroup amr_synthesis AMR synthesis functions
+/// @{
+
+/**
+ * Conduct 10th order linear predictive coding synthesis.
+ *
+ * @param p pointer to the AMRContext
+ * @param lpc pointer to the LPC coefficients
+ * @param fixed_gain fixed codebook gain for synthesis
+ * @param fixed_vector algebraic codebook vector
+ * @param samples pointer to the output speech samples
+ * @param overflow 16-bit overflow flag
+ */
+static int synthesis(AMRContext *p, float *lpc,
+ float fixed_gain, const float *fixed_vector,
+ float *samples, uint8_t overflow)
+{
+ int i, overflow_temp = 0;
+ float excitation[AMR_SUBFRAME_SIZE];
+
+ // if an overflow has been detected, the pitch vector is scaled down by a
+ // factor of 4
+ if (overflow)
+ for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
+ p->pitch_vector[i] *= 0.25;
+
+ ff_weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
+ p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
+
+ // emphasize pitch vector contribution
+ if (p->pitch_gain[4] > 0.5 && !overflow) {
+ float energy = ff_dot_productf(excitation, excitation,
+ AMR_SUBFRAME_SIZE);
+ float pitch_factor =
+ p->pitch_gain[4] *
+ (p->cur_frame_mode == MODE_12k2 ?
+ 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
+ 0.5 * FFMIN(p->pitch_gain[4], SHARP_MAX));
+
+ for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
+ excitation[i] += pitch_factor * p->pitch_vector[i];
+
+ ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
+ AMR_SUBFRAME_SIZE);
+ }
+
+ ff_celp_lp_synthesis_filterf(samples, lpc, excitation, AMR_SUBFRAME_SIZE,
+ LP_FILTER_ORDER);
+
+ // detect overflow
+ for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
+ if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
+ overflow_temp = 1;
+ samples[i] = av_clipf(samples[i], -AMR_SAMPLE_BOUND,
+ AMR_SAMPLE_BOUND);
+ }
+
+ return overflow_temp;
+}
+
+/// @}
+
+
+/// @defgroup amr_update AMR update functions
+/// @{
+
+/**
+ * Update buffers and history at the end of decoding a subframe.
+ *
+ * @param p pointer to the AMRContext
+ */
+static void update_state(AMRContext *p)
+{
+ memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
+
+ memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
+ (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
+
+ memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
+ memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
+
+ memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
+ LP_FILTER_ORDER * sizeof(float));
+}
+
+/// @}
+
+
+/// @defgroup amr_postproc AMR Post processing functions
+/// @{
+
+/**
+ * Get the tilt factor of a formant filter from its transfer function
+ *
+ * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
+ * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
+ */
+static float tilt_factor(float *lpc_n, float *lpc_d)
+{
+ float rh0, rh1; // autocorrelation at lag 0 and 1
+
+ // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
+ float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
+ float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response
+
+ hf[0] = 1.0;
+ memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
+ ff_celp_lp_synthesis_filterf(hf, lpc_d, hf, AMR_TILT_RESPONSE,
+ LP_FILTER_ORDER);
+
+ rh0 = ff_dot_productf(hf, hf, AMR_TILT_RESPONSE);
+ rh1 = ff_dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);
+
+ // The spec only specifies this check for 12.2 and 10.2 kbit/s
+ // modes. But in the ref source the tilt is always non-negative.
+ return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
+}
+
+/**
+ * Perform adaptive post-filtering to enhance the quality of the speech.
+ * See section 6.2.1.
+ *
+ * @param p pointer to the AMRContext
+ * @param lpc interpolated LP coefficients for this subframe
+ * @param buf_out output of the filter
+ */
+static void postfilter(AMRContext *p, float *lpc, float *buf_out)
+{
+ int i;
+ float *samples = p->samples_in + LP_FILTER_ORDER; // Start of input
+
+ float speech_gain = ff_dot_productf(samples, samples,
+ AMR_SUBFRAME_SIZE);
+
+ float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER]; // Output of pole filter
+ const float *gamma_n, *gamma_d; // Formant filter factor table
+ float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients
+
+ if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
+ gamma_n = ff_pow_0_7;
+ gamma_d = ff_pow_0_75;
+ } else {
+ gamma_n = ff_pow_0_55;
+ gamma_d = ff_pow_0_7;
+ }
+
+ for (i = 0; i < LP_FILTER_ORDER; i++) {
+ lpc_n[i] = lpc[i] * gamma_n[i];
+ lpc_d[i] = lpc[i] * gamma_d[i];
+ }
+
+ memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
+ ff_celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
+ AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
+ memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
+ sizeof(float) * LP_FILTER_ORDER);
+
+ ff_celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
+ pole_out + LP_FILTER_ORDER,
+ AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
+
+ ff_tilt_compensation(&p->tilt_mem, tilt_factor(lpc_n, lpc_d), buf_out,
+ AMR_SUBFRAME_SIZE);
+
+ ff_adaptative_gain_control(buf_out, speech_gain, AMR_SUBFRAME_SIZE,
+ AMR_AGC_ALPHA, &p->postfilter_agc);
+}
+
+/// @}
+
+static int amrnb_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
+ AVPacket *avpkt)
+{
+
+ AMRContext *p = avctx->priv_data; // pointer to private data
+ const uint8_t *buf = avpkt->data;
+ int buf_size = avpkt->size;
+ float *buf_out = data; // pointer to the output data buffer
+ int i, subframe;
+ float fixed_gain_factor;
+ AMRFixed fixed_sparse = {0}; // fixed vector up to anti-sparseness processing
+ float spare_vector[AMR_SUBFRAME_SIZE]; // extra stack space to hold result from anti-sparseness processing
+ float synth_fixed_gain; // the fixed gain that synthesis should use
+ const float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
+
+ p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
+ if (p->cur_frame_mode == MODE_DTX) {
+ av_log_missing_feature(avctx, "dtx mode", 1);
+ return -1;
+ }
+
+ if (p->cur_frame_mode == MODE_12k2) {
+ lsf2lsp_5(p);
+ } else
+ lsf2lsp_3(p);
+
+ for (i = 0; i < 4; i++)
+ ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
+
+ for (subframe = 0; subframe < 4; subframe++) {
+ const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
+
+ decode_pitch_vector(p, amr_subframe, subframe);
+
+ decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
+ p->cur_frame_mode, subframe);
+
+ // The fixed gain (section 6.1.3) depends on the fixed vector
+ // (section 6.1.2), but the fixed vector calculation uses
+ // pitch sharpening based on the on the pitch gain (section 6.1.3).
+ // So the correct order is: pitch gain, pitch sharpening, fixed gain.
+ decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
+ &fixed_gain_factor);
+
+ pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
+
+ ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
+ AMR_SUBFRAME_SIZE);
+
+ p->fixed_gain[4] =
+ ff_amr_set_fixed_gain(fixed_gain_factor,
+ ff_dot_productf(p->fixed_vector, p->fixed_vector,
+ AMR_SUBFRAME_SIZE)/AMR_SUBFRAME_SIZE,
+ p->prediction_error,
+ energy_mean[p->cur_frame_mode], energy_pred_fac);
+
+ // The excitation feedback is calculated without any processing such
+ // as fixed gain smoothing. This isn't mentioned in the specification.
+ for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
+ p->excitation[i] *= p->pitch_gain[4];
+ ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
+ AMR_SUBFRAME_SIZE);
+
+ // In the ref decoder, excitation is stored with no fractional bits.
+ // This step prevents buzz in silent periods. The ref encoder can
+ // emit long sequences with pitch factor greater than one. This
+ // creates unwanted feedback if the excitation vector is nonzero.
+ // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
+ for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
+ p->excitation[i] = truncf(p->excitation[i]);
+
+ // Smooth fixed gain.
+ // The specification is ambiguous, but in the reference source, the
+ // smoothed value is NOT fed back into later fixed gain smoothing.
+ synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
+ p->lsf_avg, p->cur_frame_mode);
+
+ synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
+ synth_fixed_gain, spare_vector);
+
+ if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
+ synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
+ // overflow detected -> rerun synthesis scaling pitch vector down
+ // by a factor of 4, skipping pitch vector contribution emphasis
+ // and adaptive gain control
+ synthesis(p, p->lpc[subframe], synth_fixed_gain,
+ synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
+
+ postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
+
+ // update buffers and history
+ ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
+ update_state(p);
+ }
+
+ ff_acelp_apply_order_2_transfer_function(buf_out, highpass_zeros,
+ highpass_poles, highpass_gain,
+ p->high_pass_mem, AMR_BLOCK_SIZE);
+
+ for (i = 0; i < AMR_BLOCK_SIZE; i++)
+ buf_out[i] = av_clipf(buf_out[i] * AMR_SAMPLE_SCALE,
+ -1.0, 32767.0 / 32768.0);
+
+ /* Update averaged lsf vector (used for fixed gain smoothing).
+ *
+ * Note that lsf_avg should not incorporate the current frame's LSFs
+ * for fixed_gain_smooth.
+ * The specification has an incorrect formula: the reference decoder uses
+ * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
+ ff_weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
+ 0.84, 0.16, LP_FILTER_ORDER);
+
+ /* report how many samples we got */
+ *data_size = AMR_BLOCK_SIZE * sizeof(float);
+
+ /* return the amount of bytes consumed if everything was OK */
+ return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
+}
+
+
+AVCodec amrnb_decoder = {
+ .name = "amrnb",
+ .type = CODEC_TYPE_AUDIO,
+ .id = CODEC_ID_AMR_NB,
+ .priv_data_size = sizeof(AMRContext),
+ .init = amrnb_decode_init,
+ .decode = amrnb_decode_frame,
+ .long_name = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate NarrowBand"),
+ .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_FLT,SAMPLE_FMT_NONE},
+};