diff options
author | Justin Ruggles <justin.ruggles@gmail.com> | 2007-12-30 20:58:50 +0000 |
---|---|---|
committer | Justin Ruggles <justin.ruggles@gmail.com> | 2007-12-30 20:58:50 +0000 |
commit | d802d7ca120303e399e7e09330e7b6fcb53919a2 (patch) | |
tree | 518e600f040de8f204e5a6ed4642316e04aac0a9 /libavcodec/ac3dec.c | |
parent | 23c8cb89c90a3b8273b4101222b1fe2c1e727f4f (diff) | |
download | ffmpeg-d802d7ca120303e399e7e09330e7b6fcb53919a2.tar.gz |
cosmetics: rename all AC3DecodeContext variables from ctx to s
Originally committed as revision 11355 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/ac3dec.c')
-rw-r--r-- | libavcodec/ac3dec.c | 502 |
1 files changed, 251 insertions, 251 deletions
diff --git a/libavcodec/ac3dec.c b/libavcodec/ac3dec.c index 32eb074c4d..5a12a46bd9 100644 --- a/libavcodec/ac3dec.c +++ b/libavcodec/ac3dec.c @@ -291,24 +291,24 @@ static void ac3_tables_init(void) */ static int ac3_decode_init(AVCodecContext *avctx) { - AC3DecodeContext *ctx = avctx->priv_data; - ctx->avctx = avctx; + AC3DecodeContext *s = avctx->priv_data; + s->avctx = avctx; ac3_common_init(); ac3_tables_init(); - ff_mdct_init(&ctx->imdct_256, 8, 1); - ff_mdct_init(&ctx->imdct_512, 9, 1); - ac3_window_init(ctx->window); - dsputil_init(&ctx->dsp, avctx); - av_init_random(0, &ctx->dith_state); + ff_mdct_init(&s->imdct_256, 8, 1); + ff_mdct_init(&s->imdct_512, 9, 1); + ac3_window_init(s->window); + dsputil_init(&s->dsp, avctx); + av_init_random(0, &s->dith_state); /* set bias values for float to int16 conversion */ - if(ctx->dsp.float_to_int16 == ff_float_to_int16_c) { - ctx->add_bias = 385.0f; - ctx->mul_bias = 1.0f; + if(s->dsp.float_to_int16 == ff_float_to_int16_c) { + s->add_bias = 385.0f; + s->mul_bias = 1.0f; } else { - ctx->add_bias = 0.0f; - ctx->mul_bias = 32767.0f; + s->add_bias = 0.0f; + s->mul_bias = 32767.0f; } return 0; @@ -319,10 +319,10 @@ static int ac3_decode_init(AVCodecContext *avctx) * GetBitContext within AC3DecodeContext must point to * start of the synchronized ac3 bitstream. */ -static int ac3_parse_header(AC3DecodeContext *ctx) +static int ac3_parse_header(AC3DecodeContext *s) { AC3HeaderInfo hdr; - GetBitContext *gbc = &ctx->gbc; + GetBitContext *gbc = &s->gbc; float center_mix_level, surround_mix_level; int err, i; @@ -331,42 +331,42 @@ static int ac3_parse_header(AC3DecodeContext *ctx) return err; /* get decoding parameters from header info */ - ctx->bit_alloc_params.sr_code = hdr.sr_code; - ctx->channel_mode = hdr.channel_mode; + s->bit_alloc_params.sr_code = hdr.sr_code; + s->channel_mode = hdr.channel_mode; center_mix_level = gain_levels[center_levels[hdr.center_mix_level]]; surround_mix_level = gain_levels[surround_levels[hdr.surround_mix_level]]; - ctx->lfe_on = hdr.lfe_on; - ctx->bit_alloc_params.sr_shift = hdr.sr_shift; - ctx->sampling_rate = hdr.sample_rate; - ctx->bit_rate = hdr.bit_rate; - ctx->channels = hdr.channels; - ctx->fbw_channels = ctx->channels - ctx->lfe_on; - ctx->lfe_ch = ctx->fbw_channels + 1; - ctx->frame_size = hdr.frame_size; + s->lfe_on = hdr.lfe_on; + s->bit_alloc_params.sr_shift = hdr.sr_shift; + s->sampling_rate = hdr.sample_rate; + s->bit_rate = hdr.bit_rate; + s->channels = hdr.channels; + s->fbw_channels = s->channels - s->lfe_on; + s->lfe_ch = s->fbw_channels + 1; + s->frame_size = hdr.frame_size; /* set default output to all source channels */ - ctx->out_channels = ctx->channels; - ctx->output_mode = ctx->channel_mode; - if(ctx->lfe_on) - ctx->output_mode |= AC3_OUTPUT_LFEON; + s->out_channels = s->channels; + s->output_mode = s->channel_mode; + if(s->lfe_on) + s->output_mode |= AC3_OUTPUT_LFEON; /* skip over portion of header which has already been read */ skip_bits(gbc, 16); // skip the sync_word skip_bits(gbc, 16); // skip crc1 skip_bits(gbc, 8); // skip fscod and frmsizecod skip_bits(gbc, 11); // skip bsid, bsmod, and acmod - if(ctx->channel_mode == AC3_CHMODE_STEREO) { + if(s->channel_mode == AC3_CHMODE_STEREO) { skip_bits(gbc, 2); // skip dsurmod } else { - if((ctx->channel_mode & 1) && ctx->channel_mode != AC3_CHMODE_MONO) + if((s->channel_mode & 1) && s->channel_mode != AC3_CHMODE_MONO) skip_bits(gbc, 2); // skip cmixlev - if(ctx->channel_mode & 4) + if(s->channel_mode & 4) skip_bits(gbc, 2); // skip surmixlev } skip_bits1(gbc); // skip lfeon /* read the rest of the bsi. read twice for dual mono mode. */ - i = !(ctx->channel_mode); + i = !(s->channel_mode); do { skip_bits(gbc, 5); // skip dialog normalization if (get_bits1(gbc)) @@ -396,20 +396,20 @@ static int ac3_parse_header(AC3DecodeContext *ctx) /* set stereo downmixing coefficients reference: Section 7.8.2 Downmixing Into Two Channels */ - for(i=0; i<ctx->fbw_channels; i++) { - ctx->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[ctx->channel_mode][i][0]]; - ctx->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[ctx->channel_mode][i][1]]; + for(i=0; i<s->fbw_channels; i++) { + s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]]; + s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]]; } - if(ctx->channel_mode > 1 && ctx->channel_mode & 1) { - ctx->downmix_coeffs[1][0] = ctx->downmix_coeffs[1][1] = center_mix_level; + if(s->channel_mode > 1 && s->channel_mode & 1) { + s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = center_mix_level; } - if(ctx->channel_mode == AC3_CHMODE_2F1R || ctx->channel_mode == AC3_CHMODE_3F1R) { - int nf = ctx->channel_mode - 2; - ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf][1] = surround_mix_level * LEVEL_MINUS_3DB; + if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) { + int nf = s->channel_mode - 2; + s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = surround_mix_level * LEVEL_MINUS_3DB; } - if(ctx->channel_mode == AC3_CHMODE_2F2R || ctx->channel_mode == AC3_CHMODE_3F2R) { - int nf = ctx->channel_mode - 4; - ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf+1][1] = surround_mix_level; + if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) { + int nf = s->channel_mode - 4; + s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = surround_mix_level; } return 0; @@ -450,23 +450,23 @@ static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps, * range using the coupling coefficients and coupling coordinates. * reference: Section 7.4.3 Coupling Coordinate Format */ -static void uncouple_channels(AC3DecodeContext *ctx) +static void uncouple_channels(AC3DecodeContext *s) { int i, j, ch, bnd, subbnd; subbnd = -1; - i = ctx->start_freq[CPL_CH]; - for(bnd=0; bnd<ctx->num_cpl_bands; bnd++) { + i = s->start_freq[CPL_CH]; + for(bnd=0; bnd<s->num_cpl_bands; bnd++) { do { subbnd++; for(j=0; j<12; j++) { - for(ch=1; ch<=ctx->fbw_channels; ch++) { - if(ctx->channel_in_cpl[ch]) - ctx->transform_coeffs[ch][i] = ctx->transform_coeffs[CPL_CH][i] * ctx->cpl_coords[ch][bnd] * 8.0f; + for(ch=1; ch<=s->fbw_channels; ch++) { + if(s->channel_in_cpl[ch]) + s->transform_coeffs[ch][i] = s->transform_coeffs[CPL_CH][i] * s->cpl_coords[ch][bnd] * 8.0f; } i++; } - } while(ctx->cpl_band_struct[subbnd]); + } while(s->cpl_band_struct[subbnd]); } } @@ -486,25 +486,25 @@ typedef struct { * Get the transform coefficients for a particular channel * reference: Section 7.3 Quantization and Decoding of Mantissas */ -static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m) +static int get_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m) { - GetBitContext *gbc = &ctx->gbc; + GetBitContext *gbc = &s->gbc; int i, gcode, tbap, start, end; uint8_t *exps; uint8_t *bap; float *coeffs; - exps = ctx->dexps[ch_index]; - bap = ctx->bap[ch_index]; - coeffs = ctx->transform_coeffs[ch_index]; - start = ctx->start_freq[ch_index]; - end = ctx->end_freq[ch_index]; + exps = s->dexps[ch_index]; + bap = s->bap[ch_index]; + coeffs = s->transform_coeffs[ch_index]; + start = s->start_freq[ch_index]; + end = s->end_freq[ch_index]; for (i = start; i < end; i++) { tbap = bap[i]; switch (tbap) { case 0: - coeffs[i] = ((av_random(&ctx->dith_state) & 0xFFFF) / 65535.0f) - 0.5f; + coeffs[i] = ((av_random(&s->dith_state) & 0xFFFF) / 65535.0f) - 0.5f; break; case 1: @@ -562,27 +562,27 @@ static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_gro * Remove random dithering from coefficients with zero-bit mantissas * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0) */ -static void remove_dithering(AC3DecodeContext *ctx) { +static void remove_dithering(AC3DecodeContext *s) { int ch, i; int end=0; float *coeffs; uint8_t *bap; - for(ch=1; ch<=ctx->fbw_channels; ch++) { - if(!ctx->dither_flag[ch]) { - coeffs = ctx->transform_coeffs[ch]; - bap = ctx->bap[ch]; - if(ctx->channel_in_cpl[ch]) - end = ctx->start_freq[CPL_CH]; + for(ch=1; ch<=s->fbw_channels; ch++) { + if(!s->dither_flag[ch]) { + coeffs = s->transform_coeffs[ch]; + bap = s->bap[ch]; + if(s->channel_in_cpl[ch]) + end = s->start_freq[CPL_CH]; else - end = ctx->end_freq[ch]; + end = s->end_freq[ch]; for(i=0; i<end; i++) { if(bap[i] == 0) coeffs[i] = 0.0f; } - if(ctx->channel_in_cpl[ch]) { - bap = ctx->bap[CPL_CH]; - for(; i<ctx->end_freq[CPL_CH]; i++) { + if(s->channel_in_cpl[ch]) { + bap = s->bap[CPL_CH]; + for(; i<s->end_freq[CPL_CH]; i++) { if(bap[i] == 0) coeffs[i] = 0.0f; } @@ -594,7 +594,7 @@ static void remove_dithering(AC3DecodeContext *ctx) { /** * Get the transform coefficients. */ -static int get_transform_coeffs(AC3DecodeContext * ctx) +static int get_transform_coeffs(AC3DecodeContext *s) { int ch, end; int got_cplchan = 0; @@ -602,33 +602,33 @@ static int get_transform_coeffs(AC3DecodeContext * ctx) m.b1ptr = m.b2ptr = m.b4ptr = 3; - for (ch = 1; ch <= ctx->channels; ch++) { + for (ch = 1; ch <= s->channels; ch++) { /* transform coefficients for full-bandwidth channel */ - if (get_transform_coeffs_ch(ctx, ch, &m)) + if (get_transform_coeffs_ch(s, ch, &m)) return -1; /* tranform coefficients for coupling channel come right after the coefficients for the first coupled channel*/ - if (ctx->channel_in_cpl[ch]) { + if (s->channel_in_cpl[ch]) { if (!got_cplchan) { - if (get_transform_coeffs_ch(ctx, CPL_CH, &m)) { - av_log(ctx->avctx, AV_LOG_ERROR, "error in decoupling channels\n"); + if (get_transform_coeffs_ch(s, CPL_CH, &m)) { + av_log(s->avctx, AV_LOG_ERROR, "error in decoupling channels\n"); return -1; } - uncouple_channels(ctx); + uncouple_channels(s); got_cplchan = 1; } - end = ctx->end_freq[CPL_CH]; + end = s->end_freq[CPL_CH]; } else { - end = ctx->end_freq[ch]; + end = s->end_freq[ch]; } do - ctx->transform_coeffs[ch][end] = 0; + s->transform_coeffs[ch][end] = 0; while(++end < 256); } /* if any channel doesn't use dithering, zero appropriate coefficients */ - if(!ctx->dither_all) - remove_dithering(ctx); + if(!s->dither_all) + remove_dithering(s); return 0; } @@ -637,22 +637,22 @@ static int get_transform_coeffs(AC3DecodeContext * ctx) * Stereo rematrixing. * reference: Section 7.5.4 Rematrixing : Decoding Technique */ -static void do_rematrixing(AC3DecodeContext *ctx) +static void do_rematrixing(AC3DecodeContext *s) { int bnd, i; int end, bndend; float tmp0, tmp1; - end = FFMIN(ctx->end_freq[1], ctx->end_freq[2]); + end = FFMIN(s->end_freq[1], s->end_freq[2]); - for(bnd=0; bnd<ctx->num_rematrixing_bands; bnd++) { - if(ctx->rematrixing_flags[bnd]) { + for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) { + if(s->rematrixing_flags[bnd]) { bndend = FFMIN(end, rematrix_band_tab[bnd+1]); for(i=rematrix_band_tab[bnd]; i<bndend; i++) { - tmp0 = ctx->transform_coeffs[1][i]; - tmp1 = ctx->transform_coeffs[2][i]; - ctx->transform_coeffs[1][i] = tmp0 + tmp1; - ctx->transform_coeffs[2][i] = tmp0 - tmp1; + tmp0 = s->transform_coeffs[1][i]; + tmp1 = s->transform_coeffs[2][i]; + s->transform_coeffs[1][i] = tmp0 + tmp1; + s->transform_coeffs[2][i] = tmp0 - tmp1; } } } @@ -661,21 +661,21 @@ static void do_rematrixing(AC3DecodeContext *ctx) /** * Perform the 256-point IMDCT */ -static void do_imdct_256(AC3DecodeContext *ctx, int chindex) +static void do_imdct_256(AC3DecodeContext *s, int chindex) { int i, k; DECLARE_ALIGNED_16(float, x[128]); FFTComplex z[2][64]; - float *o_ptr = ctx->tmp_output; + float *o_ptr = s->tmp_output; for(i=0; i<2; i++) { /* de-interleave coefficients */ for(k=0; k<128; k++) { - x[k] = ctx->transform_coeffs[chindex][2*k+i]; + x[k] = s->transform_coeffs[chindex][2*k+i]; } /* run standard IMDCT */ - ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct); + s->imdct_256.fft.imdct_calc(&s->imdct_256, o_ptr, x, s->tmp_imdct); /* reverse the post-rotation & reordering from standard IMDCT */ for(k=0; k<32; k++) { @@ -704,32 +704,32 @@ static void do_imdct_256(AC3DecodeContext *ctx, int chindex) * Convert frequency domain coefficients to time-domain audio samples. * reference: Section 7.9.4 Transformation Equations */ -static inline void do_imdct(AC3DecodeContext *ctx) +static inline void do_imdct(AC3DecodeContext *s) { int ch; int channels; /* Don't perform the IMDCT on the LFE channel unless it's used in the output */ - channels = ctx->fbw_channels; - if(ctx->output_mode & AC3_OUTPUT_LFEON) + channels = s->fbw_channels; + if(s->output_mode & AC3_OUTPUT_LFEON) channels++; for (ch=1; ch<=channels; ch++) { - if (ctx->block_switch[ch]) { - do_imdct_256(ctx, ch); + if (s->block_switch[ch]) { + do_imdct_256(s, ch); } else { - ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output, - ctx->transform_coeffs[ch], - ctx->tmp_imdct); + s->imdct_512.fft.imdct_calc(&s->imdct_512, s->tmp_output, + s->transform_coeffs[ch], + s->tmp_imdct); } /* For the first half of the block, apply the window, add the delay from the previous block, and send to output */ - ctx->dsp.vector_fmul_add_add(ctx->output[ch-1], ctx->tmp_output, - ctx->window, ctx->delay[ch-1], 0, 256, 1); + s->dsp.vector_fmul_add_add(s->output[ch-1], s->tmp_output, + s->window, s->delay[ch-1], 0, 256, 1); /* For the second half of the block, apply the window and store the samples to delay, to be combined with the next block */ - ctx->dsp.vector_fmul_reverse(ctx->delay[ch-1], ctx->tmp_output+256, - ctx->window, 256); + s->dsp.vector_fmul_reverse(s->delay[ch-1], s->tmp_output+256, + s->window, 256); } } @@ -764,182 +764,182 @@ static void ac3_downmix(float samples[AC3_MAX_CHANNELS][256], int fbw_channels, /** * Parse an audio block from AC-3 bitstream. */ -static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk) +static int ac3_parse_audio_block(AC3DecodeContext *s, int blk) { - int fbw_channels = ctx->fbw_channels; - int channel_mode = ctx->channel_mode; + int fbw_channels = s->fbw_channels; + int channel_mode = s->channel_mode; int i, bnd, seg, ch; - GetBitContext *gbc = &ctx->gbc; + GetBitContext *gbc = &s->gbc; uint8_t bit_alloc_stages[AC3_MAX_CHANNELS]; memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS); /* block switch flags */ for (ch = 1; ch <= fbw_channels; ch++) - ctx->block_switch[ch] = get_bits1(gbc); + s->block_switch[ch] = get_bits1(gbc); /* dithering flags */ - ctx->dither_all = 1; + s->dither_all = 1; for (ch = 1; ch <= fbw_channels; ch++) { - ctx->dither_flag[ch] = get_bits1(gbc); - if(!ctx->dither_flag[ch]) - ctx->dither_all = 0; + s->dither_flag[ch] = get_bits1(gbc); + if(!s->dither_flag[ch]) + s->dither_all = 0; } /* dynamic range */ - i = !(ctx->channel_mode); + i = !(s->channel_mode); do { if(get_bits1(gbc)) { - ctx->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) * - ctx->avctx->drc_scale)+1.0; + s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) * + s->avctx->drc_scale)+1.0; } else if(blk == 0) { - ctx->dynamic_range[i] = 1.0f; + s->dynamic_range[i] = 1.0f; } } while(i--); /* coupling strategy */ if (get_bits1(gbc)) { memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); - ctx->cpl_in_use = get_bits1(gbc); - if (ctx->cpl_in_use) { + s->cpl_in_use = get_bits1(gbc); + if (s->cpl_in_use) { /* coupling in use */ int cpl_begin_freq, cpl_end_freq; /* determine which channels are coupled */ for (ch = 1; ch <= fbw_channels; ch++) - ctx->channel_in_cpl[ch] = get_bits1(gbc); + s->channel_in_cpl[ch] = get_bits1(gbc); /* phase flags in use */ if (channel_mode == AC3_CHMODE_STEREO) - ctx->phase_flags_in_use = get_bits1(gbc); + s->phase_flags_in_use = get_bits1(gbc); /* coupling frequency range and band structure */ cpl_begin_freq = get_bits(gbc, 4); cpl_end_freq = get_bits(gbc, 4); if (3 + cpl_end_freq - cpl_begin_freq < 0) { - av_log(ctx->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq); + av_log(s->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq); return -1; } - ctx->num_cpl_bands = ctx->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq; - ctx->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37; - ctx->end_freq[CPL_CH] = cpl_end_freq * 12 + 73; - for (bnd = 0; bnd < ctx->num_cpl_subbands - 1; bnd++) { + s->num_cpl_bands = s->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq; + s->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37; + s->end_freq[CPL_CH] = cpl_end_freq * 12 + 73; + for (bnd = 0; bnd < s->num_cpl_subbands - 1; bnd++) { if (get_bits1(gbc)) { - ctx->cpl_band_struct[bnd] = 1; - ctx->num_cpl_bands--; + s->cpl_band_struct[bnd] = 1; + s->num_cpl_bands--; } } } else { /* coupling not in use */ for (ch = 1; ch <= fbw_channels; ch++) - ctx->channel_in_cpl[ch] = 0; + s->channel_in_cpl[ch] = 0; } } /* coupling coordinates */ - if (ctx->cpl_in_use) { + if (s->cpl_in_use) { int cpl_coords_exist = 0; for (ch = 1; ch <= fbw_channels; ch++) { - if (ctx->channel_in_cpl[ch]) { + if (s->channel_in_cpl[ch]) { if (get_bits1(gbc)) { int master_cpl_coord, cpl_coord_exp, cpl_coord_mant; cpl_coords_exist = 1; master_cpl_coord = 3 * get_bits(gbc, 2); - for (bnd = 0; bnd < ctx->num_cpl_bands; bnd++) { + for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { cpl_coord_exp = get_bits(gbc, 4); cpl_coord_mant = get_bits(gbc, 4); if (cpl_coord_exp == 15) - ctx->cpl_coords[ch][bnd] = cpl_coord_mant / 16.0f; + s->cpl_coords[ch][bnd] = cpl_coord_mant / 16.0f; else - ctx->cpl_coords[ch][bnd] = (cpl_coord_mant + 16.0f) / 32.0f; - ctx->cpl_coords[ch][bnd] *= scale_factors[cpl_coord_exp + master_cpl_coord]; + s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16.0f) / 32.0f; + s->cpl_coords[ch][bnd] *= scale_factors[cpl_coord_exp + master_cpl_coord]; } } } } /* phase flags */ - if (channel_mode == AC3_CHMODE_STEREO && ctx->phase_flags_in_use && cpl_coords_exist) { - for (bnd = 0; bnd < ctx->num_cpl_bands; bnd++) { + if (channel_mode == AC3_CHMODE_STEREO && s->phase_flags_in_use && cpl_coords_exist) { + for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { if (get_bits1(gbc)) - ctx->cpl_coords[2][bnd] = -ctx->cpl_coords[2][bnd]; + s->cpl_coords[2][bnd] = -s->cpl_coords[2][bnd]; } } } /* stereo rematrixing strategy and band structure */ if (channel_mode == AC3_CHMODE_STEREO) { - ctx->rematrixing_strategy = get_bits1(gbc); - if (ctx->rematrixing_strategy) { - ctx->num_rematrixing_bands = 4; - if(ctx->cpl_in_use && ctx->start_freq[CPL_CH] <= 61) - ctx->num_rematrixing_bands -= 1 + (ctx->start_freq[CPL_CH] == 37); - for(bnd=0; bnd<ctx->num_rematrixing_bands; bnd++) - ctx->rematrixing_flags[bnd] = get_bits1(gbc); + s->rematrixing_strategy = get_bits1(gbc); + if (s->rematrixing_strategy) { + s->num_rematrixing_bands = 4; + if(s->cpl_in_use && s->start_freq[CPL_CH] <= 61) + s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37); + for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) + s->rematrixing_flags[bnd] = get_bits1(gbc); } } /* exponent strategies for each channel */ - ctx->exp_strategy[CPL_CH] = EXP_REUSE; - ctx->exp_strategy[ctx->lfe_ch] = EXP_REUSE; - for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) { - if(ch == ctx->lfe_ch) - ctx->exp_strategy[ch] = get_bits(gbc, 1); + s->exp_strategy[CPL_CH] = EXP_REUSE; + s->exp_strategy[s->lfe_ch] = EXP_REUSE; + for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { + if(ch == s->lfe_ch) + s->exp_strategy[ch] = get_bits(gbc, 1); else - ctx->exp_strategy[ch] = get_bits(gbc, 2); - if(ctx->exp_strategy[ch] != EXP_REUSE) + s->exp_strategy[ch] = get_bits(gbc, 2); + if(s->exp_strategy[ch] != EXP_REUSE) bit_alloc_stages[ch] = 3; } /* channel bandwidth */ for (ch = 1; ch <= fbw_channels; ch++) { - ctx->start_freq[ch] = 0; - if (ctx->exp_strategy[ch] != EXP_REUSE) { - int prev = ctx->end_freq[ch]; - if (ctx->channel_in_cpl[ch]) - ctx->end_freq[ch] = ctx->start_freq[CPL_CH]; + s->start_freq[ch] = 0; + if (s->exp_strategy[ch] != EXP_REUSE) { + int prev = s->end_freq[ch]; + if (s->channel_in_cpl[ch]) + s->end_freq[ch] = s->start_freq[CPL_CH]; else { int bandwidth_code = get_bits(gbc, 6); if (bandwidth_code > 60) { - av_log(ctx->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code); + av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code); return -1; } - ctx->end_freq[ch] = bandwidth_code * 3 + 73; + s->end_freq[ch] = bandwidth_code * 3 + 73; } - if(blk > 0 && ctx->end_freq[ch] != prev) + if(blk > 0 && s->end_freq[ch] != prev) memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); } } - ctx->start_freq[ctx->lfe_ch] = 0; - ctx->end_freq[ctx->lfe_ch] = 7; + s->start_freq[s->lfe_ch] = 0; + s->end_freq[s->lfe_ch] = 7; /* decode exponents for each channel */ - for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) { - if (ctx->exp_strategy[ch] != EXP_REUSE) { + for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { + if (s->exp_strategy[ch] != EXP_REUSE) { int group_size, num_groups; - group_size = 3 << (ctx->exp_strategy[ch] - 1); + group_size = 3 << (s->exp_strategy[ch] - 1); if(ch == CPL_CH) - num_groups = (ctx->end_freq[ch] - ctx->start_freq[ch]) / group_size; - else if(ch == ctx->lfe_ch) + num_groups = (s->end_freq[ch] - s->start_freq[ch]) / group_size; + else if(ch == s->lfe_ch) num_groups = 2; else - num_groups = (ctx->end_freq[ch] + group_size - 4) / group_size; - ctx->dexps[ch][0] = get_bits(gbc, 4) << !ch; - decode_exponents(gbc, ctx->exp_strategy[ch], num_groups, ctx->dexps[ch][0], - &ctx->dexps[ch][ctx->start_freq[ch]+!!ch]); - if(ch != CPL_CH && ch != ctx->lfe_ch) + num_groups = (s->end_freq[ch] + group_size - 4) / group_size; + s->dexps[ch][0] = get_bits(gbc, 4) << !ch; + decode_exponents(gbc, s->exp_strategy[ch], num_groups, s->dexps[ch][0], + &s->dexps[ch][s->start_freq[ch]+!!ch]); + if(ch != CPL_CH && ch != s->lfe_ch) skip_bits(gbc, 2); /* skip gainrng */ } } /* bit allocation information */ if (get_bits1(gbc)) { - ctx->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> ctx->bit_alloc_params.sr_shift; - ctx->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> ctx->bit_alloc_params.sr_shift; - ctx->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)]; - ctx->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)]; - ctx->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)]; - for(ch=!ctx->cpl_in_use; ch<=ctx->channels; ch++) { + s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift; + s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift; + s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)]; + s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)]; + s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)]; + for(ch=!s->cpl_in_use; ch<=s->channels; ch++) { bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2); } } @@ -948,73 +948,73 @@ static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk) if (get_bits1(gbc)) { int csnr; csnr = (get_bits(gbc, 6) - 15) << 4; - for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) { /* snr offset and fast gain */ - ctx->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2; - ctx->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)]; + for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { /* snr offset and fast gain */ + s->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2; + s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)]; } memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); } /* coupling leak information */ - if (ctx->cpl_in_use && get_bits1(gbc)) { - ctx->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3); - ctx->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3); + if (s->cpl_in_use && get_bits1(gbc)) { + s->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3); + s->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3); bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2); } /* delta bit allocation information */ if (get_bits1(gbc)) { /* delta bit allocation exists (strategy) */ - for (ch = !ctx->cpl_in_use; ch <= fbw_channels; ch++) { - ctx->dba_mode[ch] = get_bits(gbc, 2); - if (ctx->dba_mode[ch] == DBA_RESERVED) { - av_log(ctx->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n"); + for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) { + s->dba_mode[ch] = get_bits(gbc, 2); + if (s->dba_mode[ch] == DBA_RESERVED) { + av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n"); return -1; } bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2); } /* channel delta offset, len and bit allocation */ - for (ch = !ctx->cpl_in_use; ch <= fbw_channels; ch++) { - if (ctx->dba_mode[ch] == DBA_NEW) { - ctx->dba_nsegs[ch] = get_bits(gbc, 3); - for (seg = 0; seg <= ctx->dba_nsegs[ch]; seg++) { - ctx->dba_offsets[ch][seg] = get_bits(gbc, 5); - ctx->dba_lengths[ch][seg] = get_bits(gbc, 4); - ctx->dba_values[ch][seg] = get_bits(gbc, 3); + for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) { + if (s->dba_mode[ch] == DBA_NEW) { + s->dba_nsegs[ch] = get_bits(gbc, 3); + for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) { + s->dba_offsets[ch][seg] = get_bits(gbc, 5); + s->dba_lengths[ch][seg] = get_bits(gbc, 4); + s->dba_values[ch][seg] = get_bits(gbc, 3); } } } } else if(blk == 0) { - for(ch=0; ch<=ctx->channels; ch++) { - ctx->dba_mode[ch] = DBA_NONE; + for(ch=0; ch<=s->channels; ch++) { + s->dba_mode[ch] = DBA_NONE; } } /* Bit allocation */ - for(ch=!ctx->cpl_in_use; ch<=ctx->channels; ch++) { + for(ch=!s->cpl_in_use; ch<=s->channels; ch++) { if(bit_alloc_stages[ch] > 2) { /* Exponent mapping into PSD and PSD integration */ - ff_ac3_bit_alloc_calc_psd(ctx->dexps[ch], - ctx->start_freq[ch], ctx->end_freq[ch], - ctx->psd[ch], ctx->band_psd[ch]); + ff_ac3_bit_alloc_calc_psd(s->dexps[ch], + s->start_freq[ch], s->end_freq[ch], + s->psd[ch], s->band_psd[ch]); } if(bit_alloc_stages[ch] > 1) { /* Compute excitation function, Compute masking curve, and Apply delta bit allocation */ - ff_ac3_bit_alloc_calc_mask(&ctx->bit_alloc_params, ctx->band_psd[ch], - ctx->start_freq[ch], ctx->end_freq[ch], - ctx->fast_gain[ch], (ch == ctx->lfe_ch), - ctx->dba_mode[ch], ctx->dba_nsegs[ch], - ctx->dba_offsets[ch], ctx->dba_lengths[ch], - ctx->dba_values[ch], ctx->mask[ch]); + ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch], + s->start_freq[ch], s->end_freq[ch], + s->fast_gain[ch], (ch == s->lfe_ch), + s->dba_mode[ch], s->dba_nsegs[ch], + s->dba_offsets[ch], s->dba_lengths[ch], + s->dba_values[ch], s->mask[ch]); } if(bit_alloc_stages[ch] > 0) { /* Compute bit allocation */ - ff_ac3_bit_alloc_calc_bap(ctx->mask[ch], ctx->psd[ch], - ctx->start_freq[ch], ctx->end_freq[ch], - ctx->snr_offset[ch], - ctx->bit_alloc_params.floor, - ctx->bap[ch]); + ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch], + s->start_freq[ch], s->end_freq[ch], + s->snr_offset[ch], + s->bit_alloc_params.floor, + s->bap[ch]); } } @@ -1027,43 +1027,43 @@ static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk) /* unpack the transform coefficients this also uncouples channels if coupling is in use. */ - if (get_transform_coeffs(ctx)) { - av_log(ctx->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n"); + if (get_transform_coeffs(s)) { + av_log(s->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n"); return -1; } /* recover coefficients if rematrixing is in use */ - if(ctx->channel_mode == AC3_CHMODE_STEREO) - do_rematrixing(ctx); + if(s->channel_mode == AC3_CHMODE_STEREO) + do_rematrixing(s); /* apply scaling to coefficients (headroom, dynrng) */ - for(ch=1; ch<=ctx->channels; ch++) { - float gain = 2.0f * ctx->mul_bias; - if(ctx->channel_mode == AC3_CHMODE_DUALMONO) { - gain *= ctx->dynamic_range[ch-1]; + for(ch=1; ch<=s->channels; ch++) { + float gain = 2.0f * s->mul_bias; + if(s->channel_mode == AC3_CHMODE_DUALMONO) { + gain *= s->dynamic_range[ch-1]; } else { - gain *= ctx->dynamic_range[0]; + gain *= s->dynamic_range[0]; } - for(i=0; i<ctx->end_freq[ch]; i++) { - ctx->transform_coeffs[ch][i] *= gain; + for(i=0; i<s->end_freq[ch]; i++) { + s->transform_coeffs[ch][i] *= gain; } } - do_imdct(ctx); + do_imdct(s); /* downmix output if needed */ - if(ctx->channels != ctx->out_channels && !((ctx->output_mode & AC3_OUTPUT_LFEON) && - ctx->fbw_channels == ctx->out_channels)) { - ac3_downmix(ctx->output, ctx->fbw_channels, ctx->output_mode, - ctx->downmix_coeffs); + if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) && + s->fbw_channels == s->out_channels)) { + ac3_downmix(s->output, s->fbw_channels, s->output_mode, + s->downmix_coeffs); } /* convert float to 16-bit integer */ - for(ch=0; ch<ctx->out_channels; ch++) { + for(ch=0; ch<s->out_channels; ch++) { for(i=0; i<256; i++) { - ctx->output[ch][i] += ctx->add_bias; + s->output[ch][i] += s->add_bias; } - ctx->dsp.float_to_int16(ctx->int_output[ch], ctx->output[ch], 256); + s->dsp.float_to_int16(s->int_output[ch], s->output[ch], 256); } return 0; @@ -1074,15 +1074,15 @@ static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk) */ static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size) { - AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data; + AC3DecodeContext *s = (AC3DecodeContext *)avctx->priv_data; int16_t *out_samples = (int16_t *)data; int i, blk, ch, err; /* initialize the GetBitContext with the start of valid AC-3 Frame */ - init_get_bits(&ctx->gbc, buf, buf_size * 8); + init_get_bits(&s->gbc, buf, buf_size * 8); /* parse the syncinfo */ - err = ac3_parse_header(ctx); + err = ac3_parse_header(s); if(err) { switch(err) { case AC3_PARSE_ERROR_SYNC: @@ -1104,37 +1104,37 @@ static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, return -1; } - avctx->sample_rate = ctx->sampling_rate; - avctx->bit_rate = ctx->bit_rate; + avctx->sample_rate = s->sampling_rate; + avctx->bit_rate = s->bit_rate; /* check that reported frame size fits in input buffer */ - if(ctx->frame_size > buf_size) { + if(s->frame_size > buf_size) { av_log(avctx, AV_LOG_ERROR, "incomplete frame\n"); return -1; } /* channel config */ - ctx->out_channels = ctx->channels; + s->out_channels = s->channels; if (avctx->request_channels > 0 && avctx->request_channels <= 2 && - avctx->request_channels < ctx->channels) { - ctx->out_channels = avctx->request_channels; - ctx->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO; + avctx->request_channels < s->channels) { + s->out_channels = avctx->request_channels; + s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO; } - avctx->channels = ctx->out_channels; + avctx->channels = s->out_channels; /* parse the audio blocks */ for (blk = 0; blk < NB_BLOCKS; blk++) { - if (ac3_parse_audio_block(ctx, blk)) { + if (ac3_parse_audio_block(s, blk)) { av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n"); *data_size = 0; - return ctx->frame_size; + return s->frame_size; } for (i = 0; i < 256; i++) - for (ch = 0; ch < ctx->out_channels; ch++) - *(out_samples++) = ctx->int_output[ch][i]; + for (ch = 0; ch < s->out_channels; ch++) + *(out_samples++) = s->int_output[ch][i]; } *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t); - return ctx->frame_size; + return s->frame_size; } /** @@ -1142,9 +1142,9 @@ static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, */ static int ac3_decode_end(AVCodecContext *avctx) { - AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data; - ff_mdct_end(&ctx->imdct_512); - ff_mdct_end(&ctx->imdct_256); + AC3DecodeContext *s = (AC3DecodeContext *)avctx->priv_data; + ff_mdct_end(&s->imdct_512); + ff_mdct_end(&s->imdct_256); return 0; } |