aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/aacpsy.c
diff options
context:
space:
mode:
authorAlex Converse <alex.converse@gmail.com>2009-07-08 20:01:31 +0000
committerAlex Converse <alex.converse@gmail.com>2009-07-08 20:01:31 +0000
commit78e65cd7726942a1615ead039abe0bfa79341212 (patch)
tree7003e32f0234d3fb6d7959e9f193e2ec733df5c6 /libavcodec/aacpsy.c
parent5e039e1b4c0fe25c76faa7ea107db60264edb757 (diff)
downloadffmpeg-78e65cd7726942a1615ead039abe0bfa79341212.tar.gz
Merge the AAC encoder from SoC svn. It is still considered experimental.
Originally committed as revision 19375 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/aacpsy.c')
-rw-r--r--libavcodec/aacpsy.c286
1 files changed, 252 insertions, 34 deletions
diff --git a/libavcodec/aacpsy.c b/libavcodec/aacpsy.c
index 45fcad46be..3880266784 100644
--- a/libavcodec/aacpsy.c
+++ b/libavcodec/aacpsy.c
@@ -25,54 +25,25 @@
*/
#include "avcodec.h"
-#include "aacpsy.h"
#include "aactab.h"
+#include "psymodel.h"
/***********************************
* TODOs:
- * General:
- * better audio preprocessing (add DC highpass filter?)
- * more psy models
- * maybe improve coefficient quantization function in some way
- *
- * 3GPP-based psy model:
* thresholds linearization after their modifications for attaining given bitrate
* try other bitrate controlling mechanism (maybe use ratecontrol.c?)
* control quality for quality-based output
**********************************/
/**
- * Quantize one coefficient.
- * @return absolute value of the quantized coefficient
- * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
- */
-static av_always_inline int quant(float coef, const float Q)
-{
- return av_clip((int)(pow(fabsf(coef) * Q, 0.75) + 0.4054), 0, 8191);
-}
-
-static inline float get_approximate_quant_error(float *c, int size, int scale_idx)
-{
- int i;
- int q;
- float coef, unquant, sum = 0.0f;
- const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
- const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
- for(i = 0; i < size; i++){
- coef = fabs(c[i]);
- q = quant(c[i], Q);
- unquant = (q * cbrt(q)) * IQ;
- sum += (coef - unquant) * (coef - unquant);
- }
- return sum;
-}
-
-/**
* constants for 3GPP AAC psychoacoustic model
* @{
*/
#define PSY_3GPP_SPREAD_LOW 1.5f // spreading factor for ascending threshold spreading (15 dB/Bark)
#define PSY_3GPP_SPREAD_HI 3.0f // spreading factor for descending threshold spreading (30 dB/Bark)
+
+#define PSY_3GPP_RPEMIN 0.01f
+#define PSY_3GPP_RPELEV 2.0f
/**
* @}
*/
@@ -83,9 +54,25 @@ static inline float get_approximate_quant_error(float *c, int size, int scale_id
typedef struct Psy3gppBand{
float energy; ///< band energy
float ffac; ///< form factor
+ float thr; ///< energy threshold
+ float min_snr; ///< minimal SNR
+ float thr_quiet; ///< threshold in quiet
}Psy3gppBand;
/**
+ * single/pair channel context for psychoacoustic model
+ */
+typedef struct Psy3gppChannel{
+ Psy3gppBand band[128]; ///< bands information
+ Psy3gppBand prev_band[128]; ///< bands information from the previous frame
+
+ float win_energy; ///< sliding average of channel energy
+ float iir_state[2]; ///< hi-pass IIR filter state
+ uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
+ enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
+}Psy3gppChannel;
+
+/**
* psychoacoustic model frame type-dependent coefficients
*/
typedef struct Psy3gppCoeffs{
@@ -96,9 +83,240 @@ typedef struct Psy3gppCoeffs{
}Psy3gppCoeffs;
/**
+ * 3GPP TS26.403-inspired psychoacoustic model specific data
+ */
+typedef struct Psy3gppContext{
+ Psy3gppCoeffs psy_coef[2];
+ Psy3gppChannel *ch;
+}Psy3gppContext;
+
+/**
* Calculate Bark value for given line.
*/
-static inline float calc_bark(float f)
+static av_cold float calc_bark(float f)
{
return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
}
+
+#define ATH_ADD 4
+/**
+ * Calculate ATH value for given frequency.
+ * Borrowed from Lame.
+ */
+static av_cold float ath(float f, float add)
+{
+ f /= 1000.0f;
+ return 3.64 * pow(f, -0.8)
+ - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4))
+ + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7))
+ + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
+}
+
+static av_cold int psy_3gpp_init(FFPsyContext *ctx){
+ Psy3gppContext *pctx;
+ float barks[1024];
+ int i, j, g, start;
+ float prev, minscale, minath;
+
+ ctx->model_priv_data = av_mallocz(sizeof(Psy3gppContext));
+ pctx = (Psy3gppContext*) ctx->model_priv_data;
+
+ for(i = 0; i < 1024; i++)
+ barks[i] = calc_bark(i * ctx->avctx->sample_rate / 2048.0);
+ minath = ath(3410, ATH_ADD);
+ for(j = 0; j < 2; j++){
+ Psy3gppCoeffs *coeffs = &pctx->psy_coef[j];
+ i = 0;
+ prev = 0.0;
+ for(g = 0; g < ctx->num_bands[j]; g++){
+ i += ctx->bands[j][g];
+ coeffs->barks[g] = (barks[i - 1] + prev) / 2.0;
+ prev = barks[i - 1];
+ }
+ for(g = 0; g < ctx->num_bands[j] - 1; g++){
+ coeffs->spread_low[g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_LOW);
+ coeffs->spread_hi [g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_HI);
+ }
+ start = 0;
+ for(g = 0; g < ctx->num_bands[j]; g++){
+ minscale = ath(ctx->avctx->sample_rate * start / 1024.0, ATH_ADD);
+ for(i = 1; i < ctx->bands[j][g]; i++){
+ minscale = fminf(minscale, ath(ctx->avctx->sample_rate * (start + i) / 1024.0 / 2.0, ATH_ADD));
+ }
+ coeffs->ath[g] = minscale - minath;
+ start += ctx->bands[j][g];
+ }
+ }
+
+ pctx->ch = av_mallocz(sizeof(Psy3gppChannel) * ctx->avctx->channels);
+ return 0;
+}
+
+/**
+ * IIR filter used in block switching decision
+ */
+static float iir_filter(int in, float state[2])
+{
+ float ret;
+
+ ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
+ state[0] = in;
+ state[1] = ret;
+ return ret;
+}
+
+/**
+ * window grouping information stored as bits (0 - new group, 1 - group continues)
+ */
+static const uint8_t window_grouping[9] = {
+ 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
+};
+
+/**
+ * Tell encoder which window types to use.
+ * @see 3GPP TS26.403 5.4.1 "Blockswitching"
+ */
+static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
+ const int16_t *audio, const int16_t *la,
+ int channel, int prev_type)
+{
+ int i, j;
+ int br = ctx->avctx->bit_rate / ctx->avctx->channels;
+ int attack_ratio = br <= 16000 ? 18 : 10;
+ Psy3gppContext *pctx = (Psy3gppContext*) ctx->model_priv_data;
+ Psy3gppChannel *pch = &pctx->ch[channel];
+ uint8_t grouping = 0;
+ FFPsyWindowInfo wi;
+
+ memset(&wi, 0, sizeof(wi));
+ if(la){
+ float s[8], v;
+ int switch_to_eight = 0;
+ float sum = 0.0, sum2 = 0.0;
+ int attack_n = 0;
+ for(i = 0; i < 8; i++){
+ for(j = 0; j < 128; j++){
+ v = iir_filter(audio[(i*128+j)*ctx->avctx->channels], pch->iir_state);
+ sum += v*v;
+ }
+ s[i] = sum;
+ sum2 += sum;
+ }
+ for(i = 0; i < 8; i++){
+ if(s[i] > pch->win_energy * attack_ratio){
+ attack_n = i + 1;
+ switch_to_eight = 1;
+ break;
+ }
+ }
+ pch->win_energy = pch->win_energy*7/8 + sum2/64;
+
+ wi.window_type[1] = prev_type;
+ switch(prev_type){
+ case ONLY_LONG_SEQUENCE:
+ wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
+ break;
+ case LONG_START_SEQUENCE:
+ wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
+ grouping = pch->next_grouping;
+ break;
+ case LONG_STOP_SEQUENCE:
+ wi.window_type[0] = ONLY_LONG_SEQUENCE;
+ break;
+ case EIGHT_SHORT_SEQUENCE:
+ wi.window_type[0] = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
+ grouping = switch_to_eight ? pch->next_grouping : 0;
+ break;
+ }
+ pch->next_grouping = window_grouping[attack_n];
+ }else{
+ for(i = 0; i < 3; i++)
+ wi.window_type[i] = prev_type;
+ grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
+ }
+
+ wi.window_shape = 1;
+ if(wi.window_type[0] != EIGHT_SHORT_SEQUENCE){
+ wi.num_windows = 1;
+ wi.grouping[0] = 1;
+ }else{
+ int lastgrp = 0;
+ wi.num_windows = 8;
+ for(i = 0; i < 8; i++){
+ if(!((grouping >> i) & 1))
+ lastgrp = i;
+ wi.grouping[lastgrp]++;
+ }
+ }
+
+ return wi;
+}
+
+/**
+ * Calculate band thresholds as suggested in 3GPP TS26.403
+ */
+static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, const float *coefs,
+ FFPsyWindowInfo *wi)
+{
+ Psy3gppContext *pctx = (Psy3gppContext*) ctx->model_priv_data;
+ Psy3gppChannel *pch = &pctx->ch[channel];
+ int start = 0;
+ int i, w, g;
+ const int num_bands = ctx->num_bands[wi->num_windows == 8];
+ const uint8_t* band_sizes = ctx->bands[wi->num_windows == 8];
+ Psy3gppCoeffs *coeffs = &pctx->psy_coef[wi->num_windows == 8];
+
+ //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
+ for(w = 0; w < wi->num_windows*16; w += 16){
+ for(g = 0; g < num_bands; g++){
+ Psy3gppBand *band = &pch->band[w+g];
+ band->energy = 0.0f;
+ for(i = 0; i < band_sizes[g]; i++)
+ band->energy += coefs[start+i] * coefs[start+i];
+ band->energy *= 1.0f / (512*512);
+ band->thr = band->energy * 0.001258925f;
+ start += band_sizes[g];
+
+ ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].energy = band->energy;
+ }
+ }
+ //modify thresholds - spread, threshold in quiet - 5.4.3 "Spreaded Energy Calculation"
+ for(w = 0; w < wi->num_windows*16; w += 16){
+ Psy3gppBand *band = &pch->band[w];
+ for(g = 1; g < num_bands; g++){
+ band[g].thr = FFMAX(band[g].thr, band[g-1].thr * coeffs->spread_low[g-1]);
+ }
+ for(g = num_bands - 2; g >= 0; g--){
+ band[g].thr = FFMAX(band[g].thr, band[g+1].thr * coeffs->spread_hi [g]);
+ }
+ for(g = 0; g < num_bands; g++){
+ band[g].thr_quiet = FFMAX(band[g].thr, coeffs->ath[g]);
+ if(wi->num_windows != 8 && wi->window_type[1] != EIGHT_SHORT_SEQUENCE){
+ band[g].thr_quiet = fmaxf(PSY_3GPP_RPEMIN*band[g].thr_quiet,
+ fminf(band[g].thr_quiet,
+ PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
+ }
+ band[g].thr = FFMAX(band[g].thr, band[g].thr_quiet * 0.25);
+
+ ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].threshold = band[g].thr;
+ }
+ }
+ memcpy(pch->prev_band, pch->band, sizeof(pch->band));
+}
+
+static av_cold void psy_3gpp_end(FFPsyContext *apc)
+{
+ Psy3gppContext *pctx = (Psy3gppContext*) apc->model_priv_data;
+ av_freep(&pctx->ch);
+ av_freep(&apc->model_priv_data);
+}
+
+
+const FFPsyModel ff_aac_psy_model =
+{
+ .name = "3GPP TS 26.403-inspired model",
+ .init = psy_3gpp_init,
+ .window = psy_3gpp_window,
+ .analyze = psy_3gpp_analyze,
+ .end = psy_3gpp_end,
+};