diff options
author | Alex Converse <alex.converse@gmail.com> | 2009-07-08 20:36:45 +0000 |
---|---|---|
committer | Alex Converse <alex.converse@gmail.com> | 2009-07-08 20:36:45 +0000 |
commit | fd257dc4c0ee751ecf15830b91d28c15276fe93b (patch) | |
tree | ea435dfa1fdef450eabc9fc2f422624850acff83 /libavcodec/aaccoder.c | |
parent | 78e65cd7726942a1615ead039abe0bfa79341212 (diff) | |
download | ffmpeg-fd257dc4c0ee751ecf15830b91d28c15276fe93b.tar.gz |
Cosmetics: Pretty print the AAC encoder.
Originally committed as revision 19376 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/aaccoder.c')
-rw-r--r-- | libavcodec/aaccoder.c | 338 |
1 files changed, 169 insertions, 169 deletions
diff --git a/libavcodec/aaccoder.c b/libavcodec/aaccoder.c index 763d3b90dd..41d1802fd7 100644 --- a/libavcodec/aaccoder.c +++ b/libavcodec/aaccoder.c @@ -119,18 +119,18 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const int offs[4]; #endif /* USE_REALLY_FULL_SEARCH */ - if(!cb){ - for(i = 0; i < size; i++) + if (!cb) { + for (i = 0; i < size; i++) cost += in[i]*in[i]*lambda; return cost; } #ifndef USE_REALLY_FULL_SEARCH offs[0] = 1; - for(i = 1; i < dim; i++) + for (i = 1; i < dim; i++) offs[i] = offs[i-1]*range; quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval); #endif /* USE_REALLY_FULL_SEARCH */ - for(i = 0; i < size; i += dim){ + for (i = 0; i < size; i += dim) { float mincost; int minidx = 0; int minbits = 0; @@ -138,69 +138,69 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const #ifndef USE_REALLY_FULL_SEARCH int (*quants)[2] = &s->qcoefs[i]; mincost = 0.0f; - for(j = 0; j < dim; j++){ + for (j = 0; j < dim; j++) { mincost += in[i+j]*in[i+j]*lambda; } minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; minbits = ff_aac_spectral_bits[cb-1][minidx]; mincost += minbits; - for(j = 0; j < (1<<dim); j++){ + for (j = 0; j < (1<<dim); j++) { float rd = 0.0f; int curbits; int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; int same = 0; - for(k = 0; k < dim; k++){ - if((j & (1 << k)) && quants[k][0] == quants[k][1]){ + for (k = 0; k < dim; k++) { + if ((j & (1 << k)) && quants[k][0] == quants[k][1]) { same = 1; break; } } - if(same) + if (same) continue; - for(k = 0; k < dim; k++) + for (k = 0; k < dim; k++) curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k]; curbits = ff_aac_spectral_bits[cb-1][curidx]; vec = &ff_aac_codebook_vectors[cb-1][curidx*dim]; #else mincost = INFINITY; vec = ff_aac_codebook_vectors[cb-1]; - for(j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim){ + for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) { float rd = 0.0f; int curbits = ff_aac_spectral_bits[cb-1][j]; #endif /* USE_REALLY_FULL_SEARCH */ - if(IS_CODEBOOK_UNSIGNED(cb)){ - for(k = 0; k < dim; k++){ + if (IS_CODEBOOK_UNSIGNED(cb)) { + for (k = 0; k < dim; k++) { float t = fabsf(in[i+k]); float di; //do not code with escape sequence small values - if(vec[k] == 64.0f && t < 39.0f*IQ){ + if (vec[k] == 64.0f && t < 39.0f*IQ) { rd = INFINITY; break; } - if(vec[k] == 64.0f){//FIXME: slow + if (vec[k] == 64.0f) {//FIXME: slow if (t >= CLIPPED_ESCAPE) { di = t - CLIPPED_ESCAPE; curbits += 21; - }else{ + } else { int c = av_clip(quant(t, Q), 0, 8191); di = t - c*cbrt(c)*IQ; curbits += av_log2(c)*2 - 4 + 1; } - }else{ + } else { di = t - vec[k]*IQ; } - if(vec[k] != 0.0f) + if (vec[k] != 0.0f) curbits++; rd += di*di*lambda; } - }else{ - for(k = 0; k < dim; k++){ + } else { + for (k = 0; k < dim; k++) { float di = in[i+k] - vec[k]*IQ; rd += di*di*lambda; } } rd += curbits; - if(rd < mincost){ + if (rd < mincost) { mincost = rd; minidx = j; minbits = curbits; @@ -208,11 +208,11 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const } cost += mincost; resbits += minbits; - if(cost >= uplim) + if (cost >= uplim) return uplim; } - if(bits) + if (bits) *bits = resbits; return cost; } @@ -234,17 +234,17 @@ static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb, #endif /* USE_REALLY_FULL_SEARCH */ //START_TIMER - if(!cb) + if (!cb) return; #ifndef USE_REALLY_FULL_SEARCH offs[0] = 1; - for(i = 1; i < dim; i++) + for (i = 1; i < dim; i++) offs[i] = offs[i-1]*range; abs_pow34_v(scaled, in, size); quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval); #endif /* USE_REALLY_FULL_SEARCH */ - for(i = 0; i < size; i += dim){ + for (i = 0; i < size; i += dim) { float mincost; int minidx = 0; int minbits = 0; @@ -252,83 +252,83 @@ static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb, #ifndef USE_REALLY_FULL_SEARCH int (*quants)[2] = &s->qcoefs[i]; mincost = 0.0f; - for(j = 0; j < dim; j++){ + for (j = 0; j < dim; j++) { mincost += in[i+j]*in[i+j]*lambda; } minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; minbits = ff_aac_spectral_bits[cb-1][minidx]; mincost += minbits; - for(j = 0; j < (1<<dim); j++){ + for (j = 0; j < (1<<dim); j++) { float rd = 0.0f; int curbits; int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; int same = 0; - for(k = 0; k < dim; k++){ - if((j & (1 << k)) && quants[k][0] == quants[k][1]){ + for (k = 0; k < dim; k++) { + if ((j & (1 << k)) && quants[k][0] == quants[k][1]) { same = 1; break; } } - if(same) + if (same) continue; - for(k = 0; k < dim; k++) + for (k = 0; k < dim; k++) curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k]; curbits = ff_aac_spectral_bits[cb-1][curidx]; vec = &ff_aac_codebook_vectors[cb-1][curidx*dim]; #else vec = ff_aac_codebook_vectors[cb-1]; mincost = INFINITY; - for(j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim){ + for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) { float rd = 0.0f; int curbits = ff_aac_spectral_bits[cb-1][j]; int curidx = j; #endif /* USE_REALLY_FULL_SEARCH */ - if(IS_CODEBOOK_UNSIGNED(cb)){ - for(k = 0; k < dim; k++){ + if (IS_CODEBOOK_UNSIGNED(cb)) { + for (k = 0; k < dim; k++) { float t = fabsf(in[i+k]); float di; //do not code with escape sequence small values - if(vec[k] == 64.0f && t < 39.0f*IQ){ + if (vec[k] == 64.0f && t < 39.0f*IQ) { rd = INFINITY; break; } - if(vec[k] == 64.0f){//FIXME: slow + if (vec[k] == 64.0f) {//FIXME: slow if (t >= CLIPPED_ESCAPE) { di = t - CLIPPED_ESCAPE; curbits += 21; - }else{ + } else { int c = av_clip(quant(t, Q), 0, 8191); di = t - c*cbrt(c)*IQ; curbits += av_log2(c)*2 - 4 + 1; } - }else{ + } else { di = t - vec[k]*IQ; } - if(vec[k] != 0.0f) + if (vec[k] != 0.0f) curbits++; rd += di*di*lambda; } - }else{ - for(k = 0; k < dim; k++){ + } else { + for (k = 0; k < dim; k++) { float di = in[i+k] - vec[k]*IQ; rd += di*di*lambda; } } rd += curbits; - if(rd < mincost){ + if (rd < mincost) { mincost = rd; minidx = curidx; minbits = curbits; } } put_bits(pb, ff_aac_spectral_bits[cb-1][minidx], ff_aac_spectral_codes[cb-1][minidx]); - if(IS_CODEBOOK_UNSIGNED(cb)) - for(j = 0; j < dim; j++) - if(ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f) + if (IS_CODEBOOK_UNSIGNED(cb)) + for (j = 0; j < dim; j++) + if (ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f) put_bits(pb, 1, in[i+j] < 0.0f); - if(cb == ESC_BT){ - for(j = 0; j < 2; j++){ - if(ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f){ + if (cb == ESC_BT) { + for (j = 0; j < 2; j++) { + if (ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f) { int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191); int len = av_log2(coef); @@ -370,29 +370,29 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce abs_pow34_v(s->scoefs, sce->coeffs, 1024); start = win*128; - for(cb = 0; cb < 12; cb++){ + for (cb = 0; cb < 12; cb++) { path[0][cb].cost = 0.0f; path[0][cb].prev_idx = -1; path[0][cb].run = 0; } - for(swb = 0; swb < max_sfb; swb++){ + for (swb = 0; swb < max_sfb; swb++) { start2 = start; size = sce->ics.swb_sizes[swb]; - if(sce->zeroes[win*16 + swb]){ - for(cb = 0; cb < 12; cb++){ + if (sce->zeroes[win*16 + swb]) { + for (cb = 0; cb < 12; cb++) { path[swb+1][cb].prev_idx = cb; path[swb+1][cb].cost = path[swb][cb].cost; path[swb+1][cb].run = path[swb][cb].run + 1; } - }else{ + } else { float minrd = next_minrd; int mincb = next_mincb; next_minrd = INFINITY; next_mincb = 0; - for(cb = 0; cb < 12; cb++){ + for (cb = 0; cb < 12; cb++) { float cost_stay_here, cost_get_here; float rd = 0.0f; - for(w = 0; w < group_len; w++){ + for (w = 0; w < group_len; w++) { FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb]; rd += quantize_band_cost(s, sce->coeffs + start + w*128, s->scoefs + start + w*128, size, @@ -401,7 +401,7 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce } cost_stay_here = path[swb][cb].cost + rd; cost_get_here = minrd + rd + run_bits + 4; - if( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run] + if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run] != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1]) cost_stay_here += run_bits; if (cost_get_here < cost_stay_here) { @@ -425,12 +425,12 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce //convert resulting path from backward-linked list stack_len = 0; idx = 0; - for(cb = 1; cb < 12; cb++){ - if(path[max_sfb][cb].cost < path[max_sfb][idx].cost) + for (cb = 1; cb < 12; cb++) { + if (path[max_sfb][cb].cost < path[max_sfb][idx].cost) idx = cb; } ppos = max_sfb; - while(ppos > 0){ + while(ppos > 0) { cb = idx; stackrun[stack_len] = path[ppos][cb].run; stackcb [stack_len] = cb; @@ -440,16 +440,16 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce } //perform actual band info encoding start = 0; - for(i = stack_len - 1; i >= 0; i--){ + for (i = stack_len - 1; i >= 0; i--) { put_bits(&s->pb, 4, stackcb[i]); count = stackrun[i]; memset(sce->zeroes + win*16 + start, !stackcb[i], count); //XXX: memset when band_type is also uint8_t - for(j = 0; j < count; j++){ + for (j = 0; j < count; j++) { sce->band_type[win*16 + start] = stackcb[i]; start++; } - while(count >= run_esc){ + while(count >= run_esc) { put_bits(&s->pb, run_bits, run_esc); count -= run_esc; } @@ -482,13 +482,13 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, int minq; float mincost; - for(i = 0; i < 256; i++){ + for (i = 0; i < 256; i++) { paths[i].cost = 0.0f; paths[i].prev = -1; paths[i].min_val = i; paths[i].max_val = i; } - for(i = 256; i < 256*121; i++){ + for (i = 256; i < 256*121; i++) { paths[i].cost = INFINITY; paths[i].prev = -2; paths[i].min_val = INT_MAX; @@ -496,9 +496,9 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, } idx = 256; abs_pow34_v(s->scoefs, sce->coeffs, 1024); - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = w*128; - for(g = 0; g < sce->ics.num_swb; g++){ + for (g = 0; g < sce->ics.num_swb; g++) { const float *coefs = sce->coeffs + start; float qmin, qmax; int nz = 0; @@ -506,53 +506,53 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, bandaddr[idx >> 8] = w*16+g; qmin = INT_MAX; qmax = 0.0f; - for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; - if(band->energy <= band->threshold || band->threshold == 0.0f){ + if (band->energy <= band->threshold || band->threshold == 0.0f) { sce->zeroes[(w+w2)*16+g] = 1; continue; } sce->zeroes[(w+w2)*16+g] = 0; nz = 1; - for(i = 0; i < sce->ics.swb_sizes[g]; i++){ + for (i = 0; i < sce->ics.swb_sizes[g]; i++) { float t = fabsf(coefs[w2*128+i]); - if(t > 0.0f) qmin = fminf(qmin, t); + if (t > 0.0f) qmin = fminf(qmin, t); qmax = fmaxf(qmax, t); } } - if(nz){ + if (nz) { int minscale, maxscale; float minrd = INFINITY; //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); //maximum scalefactor index is when maximum coefficient after quantizing is still not zero maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); - for(q = minscale; q < maxscale; q++){ + for (q = minscale; q < maxscale; q++) { float dists[12], dist; memset(dists, 0, sizeof(dists)); - for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; int cb; - for(cb = 0; cb <= ESC_BT; cb++){ + for (cb = 0; cb <= ESC_BT; cb++) { dists[cb] += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g], q, cb, lambda / band->threshold, INFINITY, NULL); } } dist = dists[0]; - for(i = 1; i <= ESC_BT; i++) + for (i = 1; i <= ESC_BT; i++) dist = fminf(dist, dists[i]); minrd = fminf(minrd, dist); - for(i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++){ + for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) { float cost; int minv, maxv; - if(isinf(paths[idx - 256 + i].cost)) + if (isinf(paths[idx - 256 + i].cost)) continue; cost = paths[idx - 256 + i].cost + dist + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO]; minv = FFMIN(paths[idx - 256 + i].min_val, q); maxv = FFMAX(paths[idx - 256 + i].max_val, q); - if(cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF){ + if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) { paths[idx + q].cost = cost; paths[idx + q].prev = idx - 256 + i; paths[idx + q].min_val = minv; @@ -560,24 +560,24 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, } } } - }else{ - for(q = 0; q < 256; q++){ - if(!isinf(paths[idx - 256 + q].cost)){ + } else { + for (q = 0; q < 256; q++) { + if (!isinf(paths[idx - 256 + q].cost)) { paths[idx + q].cost = paths[idx - 256 + q].cost + 1; paths[idx + q].prev = idx - 256 + q; paths[idx + q].min_val = FFMIN(paths[idx - 256 + q].min_val, q); paths[idx + q].max_val = FFMAX(paths[idx - 256 + q].max_val, q); continue; } - for(i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++){ + for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) { float cost; int minv, maxv; - if(isinf(paths[idx - 256 + i].cost)) + if (isinf(paths[idx - 256 + i].cost)) continue; cost = paths[idx - 256 + i].cost + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO]; minv = FFMIN(paths[idx - 256 + i].min_val, q); maxv = FFMAX(paths[idx - 256 + i].max_val, q); - if(cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF){ + if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) { paths[idx + q].cost = cost; paths[idx + q].prev = idx - 256 + i; paths[idx + q].min_val = minv; @@ -594,20 +594,20 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, idx -= 256; mincost = paths[idx].cost; minq = idx; - for(i = 1; i < 256; i++){ - if(paths[idx + i].cost < mincost){ + for (i = 1; i < 256; i++) { + if (paths[idx + i].cost < mincost) { mincost = paths[idx + i].cost; minq = idx + i; } } - while(minq >= 256){ + while(minq >= 256) { sce->sf_idx[bandaddr[minq>>8]] = minq & 0xFF; minq = paths[minq].prev; } //set the same quantizers inside window groups - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) - for(g = 0; g < sce->ics.num_swb; g++) - for(w2 = 1; w2 < sce->ics.group_len[w]; w2++) + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) + for (g = 0; g < sce->ics.num_swb; g++) + for (w2 = 1; w2 < sce->ics.group_len[w]; w2++) sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g]; } @@ -628,14 +628,14 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext * //XXX: some heuristic to determine initial quantizers will reduce search time memset(dists, 0, sizeof(dists)); //determine zero bands and upper limits - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ - for(g = 0; g < sce->ics.num_swb; g++){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { + for (g = 0; g < sce->ics.num_swb; g++) { int nz = 0; float uplim = 0.0f; - for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; uplim += band->threshold; - if(band->energy <= band->threshold || band->threshold == 0.0f){ + if (band->energy <= band->threshold || band->threshold == 0.0f) { sce->zeroes[(w+w2)*16+g] = 1; continue; } @@ -643,14 +643,14 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext * } uplims[w*16+g] = uplim *512; sce->zeroes[w*16+g] = !nz; - if(nz) + if (nz) minthr = fminf(minthr, uplim); allz = FFMAX(allz, nz); } } - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ - for(g = 0; g < sce->ics.num_swb; g++){ - if(sce->zeroes[w*16+g]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { + for (g = 0; g < sce->ics.num_swb; g++) { + if (sce->zeroes[w*16+g]) { sce->sf_idx[w*16+g] = SCALE_ONE_POS; continue; } @@ -658,7 +658,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext * } } - if(!allz) + if (!allz) return; abs_pow34_v(s->scoefs, sce->coeffs, 1024); //perform two-loop search @@ -672,9 +672,9 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext * int prev = -1; tbits = 0; fflag = 0; - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = w*128; - for(g = 0; g < sce->ics.num_swb; g++){ + for (g = 0; g < sce->ics.num_swb; g++) { const float *coefs = sce->coeffs + start; const float *scaled = s->scoefs + start; int bits = 0; @@ -682,13 +682,13 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext * float mindist = INFINITY; int minbits = 0; - if(sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) + if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) continue; minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); - for(cb = 0; cb <= ESC_BT; cb++){ + for (cb = 0; cb <= ESC_BT; cb++) { float dist = 0.0f; int bb = 0; - for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { int b; dist += quantize_band_cost(s, coefs + w2*128, scaled + w2*128, @@ -700,14 +700,14 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext * &b); bb += b; } - if(dist < mindist){ + if (dist < mindist) { mindist = dist; minbits = bb; } } dists[w*16+g] = mindist - minbits; bits = minbits; - if(prev != -1){ + if (prev != -1) { bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO]; } tbits += bits; @@ -715,36 +715,36 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext * prev = sce->sf_idx[w*16+g]; } } - if(tbits > destbits){ - for(i = 0; i < 128; i++){ - if(sce->sf_idx[i] < 218 - qstep){ + if (tbits > destbits) { + for (i = 0; i < 128; i++) { + if (sce->sf_idx[i] < 218 - qstep) { sce->sf_idx[i] += qstep; } } - }else{ - for(i = 0; i < 128; i++){ - if(sce->sf_idx[i] > 60 - qstep){ + } else { + for (i = 0; i < 128; i++) { + if (sce->sf_idx[i] > 60 - qstep) { sce->sf_idx[i] -= qstep; } } } qstep >>= 1; - if(!qstep && tbits > destbits*1.02) + if (!qstep && tbits > destbits*1.02) qstep = 1; - if(sce->sf_idx[0] >= 217)break; + if (sce->sf_idx[0] >= 217)break; }while(qstep); fflag = 0; minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF); - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = w*128; - for(g = 0; g < sce->ics.num_swb; g++){ + for (g = 0; g < sce->ics.num_swb; g++) { int prevsc = sce->sf_idx[w*16+g]; - if(dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) + if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) sce->sf_idx[w*16+g]--; sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF); sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219); - if(sce->sf_idx[w*16+g] != prevsc) + if (sce->sf_idx[w*16+g] != prevsc) fflag = 1; } } @@ -761,29 +761,29 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda; int last = 0, lastband = 0, curband = 0; float avg_energy = 0.0; - if(sce->ics.num_windows == 1){ + if (sce->ics.num_windows == 1) { start = 0; - for(i = 0; i < 1024; i++){ - if(i - start >= sce->ics.swb_sizes[curband]){ + for (i = 0; i < 1024; i++) { + if (i - start >= sce->ics.swb_sizes[curband]) { start += sce->ics.swb_sizes[curband]; curband++; } - if(sce->coeffs[i]){ + if (sce->coeffs[i]) { avg_energy += sce->coeffs[i] * sce->coeffs[i]; last = i; lastband = curband; } } - }else{ - for(w = 0; w < 8; w++){ + } else { + for (w = 0; w < 8; w++) { const float *coeffs = sce->coeffs + w*128; start = 0; - for(i = 0; i < 128; i++){ - if(i - start >= sce->ics.swb_sizes[curband]){ + for (i = 0; i < 128; i++) { + if (i - start >= sce->ics.swb_sizes[curband]) { start += sce->ics.swb_sizes[curband]; curband++; } - if(coeffs[i]){ + if (coeffs[i]) { avg_energy += coeffs[i] * coeffs[i]; last = FFMAX(last, i); lastband = FFMAX(lastband, curband); @@ -793,41 +793,41 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, } last++; avg_energy /= last; - if(avg_energy == 0.0f){ - for(i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++) + if (avg_energy == 0.0f) { + for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++) sce->sf_idx[i] = SCALE_ONE_POS; return; } - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = w*128; - for(g = 0; g < sce->ics.num_swb; g++){ + for (g = 0; g < sce->ics.num_swb; g++) { float *coefs = sce->coeffs + start; const int size = sce->ics.swb_sizes[g]; int start2 = start, end2 = start + size, peakpos = start; float maxval = -1, thr = 0.0f, t; maxq[w*16+g] = 0.0f; - if(g > lastband){ + if (g > lastband) { maxq[w*16+g] = 0.0f; start += size; - for(w2 = 0; w2 < sce->ics.group_len[w]; w2++) + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) memset(coefs + w2*128, 0, sizeof(coefs[0])*size); continue; } - for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ - for(i = 0; i < size; i++){ + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { + for (i = 0; i < size; i++) { float t = coefs[w2*128+i]*coefs[w2*128+i]; maxq[w*16+g] = fmaxf(maxq[w*16+g], fabsf(coefs[w2*128 + i])); thr += t; - if(sce->ics.num_windows == 1 && maxval < t){ + if (sce->ics.num_windows == 1 && maxval < t) { maxval = t; peakpos = start+i; } } } - if(sce->ics.num_windows == 1){ + if (sce->ics.num_windows == 1) { start2 = FFMAX(peakpos - 2, start2); end2 = FFMIN(peakpos + 3, end2); - }else{ + } else { start2 -= start; end2 -= start; } @@ -839,16 +839,16 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, } memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); abs_pow34_v(s->scoefs, sce->coeffs, 1024); - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = w*128; - for(g = 0; g < sce->ics.num_swb; g++){ + for (g = 0; g < sce->ics.num_swb; g++) { const float *coefs = sce->coeffs + start; const float *scaled = s->scoefs + start; const int size = sce->ics.swb_sizes[g]; int scf, prev_scf, step; int min_scf = 0, max_scf = 255; float curdiff; - if(maxq[w*16+g] < 21.544){ + if (maxq[w*16+g] < 21.544) { sce->zeroes[w*16+g] = 1; start += size; continue; @@ -856,11 +856,11 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, sce->zeroes[w*16+g] = 0; scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218); step = 16; - for(;;){ + for (;;) { float dist = 0.0f; int quant_max; - for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { int b; dist += quantize_band_cost(s, coefs + w2*128, scaled + w2*128, @@ -874,24 +874,24 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, } dist *= 1.0f/512.0f; quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]); - if(quant_max >= 8191){ // too much, return to the previous quantizer + if (quant_max >= 8191) { // too much, return to the previous quantizer sce->sf_idx[w*16+g] = prev_scf; break; } prev_scf = scf; curdiff = fabsf(dist - uplim[w*16+g]); - if(curdiff == 0.0f) + if (curdiff == 0.0f) step = 0; else step = fabsf(log2(curdiff)); - if(dist > uplim[w*16+g]) + if (dist > uplim[w*16+g]) step = -step; - if(FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)){ + if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) { sce->sf_idx[w*16+g] = scf; break; } scf += step; - if(step > 0) + if (step > 0) min_scf = scf; else max_scf = scf; @@ -900,17 +900,17 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, } } minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX; - for(i = 1; i < 128; i++){ - if(!sce->sf_idx[i]) + for (i = 1; i < 128; i++) { + if (!sce->sf_idx[i]) sce->sf_idx[i] = sce->sf_idx[i-1]; else minq = FFMIN(minq, sce->sf_idx[i]); } - if(minq == INT_MAX) minq = 0; + if (minq == INT_MAX) minq = 0; minq = FFMIN(minq, SCALE_MAX_POS); maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS); - for(i = 126; i >= 0; i--){ - if(!sce->sf_idx[i]) + for (i = 126; i >= 0; i--) { + if (!sce->sf_idx[i]) sce->sf_idx[i] = sce->sf_idx[i+1]; sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf); } @@ -923,15 +923,15 @@ static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, int minq = 255; memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = w*128; - for(g = 0; g < sce->ics.num_swb; g++){ - for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + for (g = 0; g < sce->ics.num_swb; g++) { + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; - if(band->energy <= band->threshold){ + if (band->energy <= band->threshold) { sce->sf_idx[(w+w2)*16+g] = 218; sce->zeroes[(w+w2)*16+g] = 1; - }else{ + } else { sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218); sce->zeroes[(w+w2)*16+g] = 0; } @@ -939,13 +939,13 @@ static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, } } } - for(i = 0; i < 128; i++){ + for (i = 0; i < 128; i++) { sce->sf_idx[i] = 140;//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1); } //set the same quantizers inside window groups - for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) - for(g = 0; g < sce->ics.num_swb; g++) - for(w2 = 1; w2 < sce->ics.group_len[w]; w2++) + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) + for (g = 0; g < sce->ics.num_swb; g++) + for (w2 = 1; w2 < sce->ics.group_len[w]; w2++) sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g]; } @@ -956,18 +956,18 @@ static void search_for_ms(AACEncContext *s, ChannelElement *cpe, const float lam float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3; SingleChannelElement *sce0 = &cpe->ch[0]; SingleChannelElement *sce1 = &cpe->ch[1]; - if(!cpe->common_window) + if (!cpe->common_window) return; - for(w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]){ - for(g = 0; g < sce0->ics.num_swb; g++){ - if(!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]){ + for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) { + for (g = 0; g < sce0->ics.num_swb; g++) { + if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) { float dist1 = 0.0f, dist2 = 0.0f; - for(w2 = 0; w2 < sce0->ics.group_len[w]; w2++){ + for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g]; FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g]; float minthr = fminf(band0->threshold, band1->threshold); float maxthr = fmaxf(band0->threshold, band1->threshold); - for(i = 0; i < sce0->ics.swb_sizes[g]; i++){ + for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { M[i] = (sce0->coeffs[start+w2*128+i] + sce1->coeffs[start+w2*128+i])*0.5; S[i] = sce0->coeffs[start+w2*128+i] |