diff options
author | Alex Converse <alex.converse@gmail.com> | 2009-07-08 20:01:31 +0000 |
---|---|---|
committer | Alex Converse <alex.converse@gmail.com> | 2009-07-08 20:01:31 +0000 |
commit | 78e65cd7726942a1615ead039abe0bfa79341212 (patch) | |
tree | 7003e32f0234d3fb6d7959e9f193e2ec733df5c6 /libavcodec/aaccoder.c | |
parent | 5e039e1b4c0fe25c76faa7ea107db60264edb757 (diff) | |
download | ffmpeg-78e65cd7726942a1615ead039abe0bfa79341212.tar.gz |
Merge the AAC encoder from SoC svn. It is still considered experimental.
Originally committed as revision 19375 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/aaccoder.c')
-rw-r--r-- | libavcodec/aaccoder.c | 1037 |
1 files changed, 1037 insertions, 0 deletions
diff --git a/libavcodec/aaccoder.c b/libavcodec/aaccoder.c new file mode 100644 index 0000000000..763d3b90dd --- /dev/null +++ b/libavcodec/aaccoder.c @@ -0,0 +1,1037 @@ +/* + * AAC coefficients encoder + * Copyright (C) 2008-2009 Konstantin Shishkov + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +/** + * @file libavcodec/aaccoder.c + * AAC coefficients encoder + */ + +/*********************************** + * TODOs: + * speedup quantizer selection + * add sane pulse detection + ***********************************/ + +#include "avcodec.h" +#include "put_bits.h" +#include "aac.h" +#include "aacenc.h" +#include "aactab.h" + +/** bits needed to code codebook run value for long windows */ +static const uint8_t run_value_bits_long[64] = { + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15 +}; + +/** bits needed to code codebook run value for short windows */ +static const uint8_t run_value_bits_short[16] = { + 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9 +}; + +static const uint8_t* run_value_bits[2] = { + run_value_bits_long, run_value_bits_short +}; + + +/** + * Quantize one coefficient. + * @return absolute value of the quantized coefficient + * @see 3GPP TS26.403 5.6.2 "Scalefactor determination" + */ +static av_always_inline int quant(float coef, const float Q) +{ + return pow(coef * Q, 0.75) + 0.4054; +} + +static void quantize_bands(int (*out)[2], const float *in, const float *scaled, int size, float Q34, int is_signed, int maxval) +{ + int i; + double qc; + for (i = 0; i < size; i++) { + qc = scaled[i] * Q34; + out[i][0] = (int)FFMIN((int)qc, maxval); + out[i][1] = (int)FFMIN((int)(qc + 0.4054), maxval); + if (is_signed && in[i] < 0.0f) { + out[i][0] = -out[i][0]; + out[i][1] = -out[i][1]; + } + } +} + +static void abs_pow34_v(float *out, const float* in, const int size) +{ +#ifndef USE_REALLY_FULL_SEARCH + int i; + for (i = 0; i < size; i++) { + out[i] = pow(fabsf(in[i]), 0.75); + } +#endif /* USE_REALLY_FULL_SEARCH */ +} + +static av_always_inline int quant2(float coef, const float Q) +{ + return pow(coef * Q, 0.75); +} + +static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17}; +static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16}; + +/** + * Calculate rate distortion cost for quantizing with given codebook + * + * @return quantization distortion + */ +static float quantize_band_cost(struct AACEncContext *s, const float *in, const float *scaled, int size, int scale_idx, int cb, + const float lambda, const float uplim, int *bits) +{ + const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512]; + const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512]; + const float CLIPPED_ESCAPE = 165140.0f*IQ; + int i, j, k; + float cost = 0; + const int dim = cb < FIRST_PAIR_BT ? 4 : 2; + int resbits = 0; +#ifndef USE_REALLY_FULL_SEARCH + const float Q34 = pow(Q, 0.75); + const int range = aac_cb_range[cb]; + const int maxval = aac_cb_maxval[cb]; + int offs[4]; +#endif /* USE_REALLY_FULL_SEARCH */ + + if(!cb){ + for(i = 0; i < size; i++) + cost += in[i]*in[i]*lambda; + return cost; + } +#ifndef USE_REALLY_FULL_SEARCH + offs[0] = 1; + for(i = 1; i < dim; i++) + offs[i] = offs[i-1]*range; + quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval); +#endif /* USE_REALLY_FULL_SEARCH */ + for(i = 0; i < size; i += dim){ + float mincost; + int minidx = 0; + int minbits = 0; + const float *vec; +#ifndef USE_REALLY_FULL_SEARCH + int (*quants)[2] = &s->qcoefs[i]; + mincost = 0.0f; + for(j = 0; j < dim; j++){ + mincost += in[i+j]*in[i+j]*lambda; + } + minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; + minbits = ff_aac_spectral_bits[cb-1][minidx]; + mincost += minbits; + for(j = 0; j < (1<<dim); j++){ + float rd = 0.0f; + int curbits; + int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; + int same = 0; + for(k = 0; k < dim; k++){ + if((j & (1 << k)) && quants[k][0] == quants[k][1]){ + same = 1; + break; + } + } + if(same) + continue; + for(k = 0; k < dim; k++) + curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k]; + curbits = ff_aac_spectral_bits[cb-1][curidx]; + vec = &ff_aac_codebook_vectors[cb-1][curidx*dim]; +#else + mincost = INFINITY; + vec = ff_aac_codebook_vectors[cb-1]; + for(j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim){ + float rd = 0.0f; + int curbits = ff_aac_spectral_bits[cb-1][j]; +#endif /* USE_REALLY_FULL_SEARCH */ + if(IS_CODEBOOK_UNSIGNED(cb)){ + for(k = 0; k < dim; k++){ + float t = fabsf(in[i+k]); + float di; + //do not code with escape sequence small values + if(vec[k] == 64.0f && t < 39.0f*IQ){ + rd = INFINITY; + break; + } + if(vec[k] == 64.0f){//FIXME: slow + if (t >= CLIPPED_ESCAPE) { + di = t - CLIPPED_ESCAPE; + curbits += 21; + }else{ + int c = av_clip(quant(t, Q), 0, 8191); + di = t - c*cbrt(c)*IQ; + curbits += av_log2(c)*2 - 4 + 1; + } + }else{ + di = t - vec[k]*IQ; + } + if(vec[k] != 0.0f) + curbits++; + rd += di*di*lambda; + } + }else{ + for(k = 0; k < dim; k++){ + float di = in[i+k] - vec[k]*IQ; + rd += di*di*lambda; + } + } + rd += curbits; + if(rd < mincost){ + mincost = rd; + minidx = j; + minbits = curbits; + } + } + cost += mincost; + resbits += minbits; + if(cost >= uplim) + return uplim; + } + + if(bits) + *bits = resbits; + return cost; +} + +static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb, const float *in, int size, + int scale_idx, int cb, const float lambda) +{ + const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512]; + const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512]; + const float CLIPPED_ESCAPE = 165140.0f*IQ; + const int dim = (cb < FIRST_PAIR_BT) ? 4 : 2; + int i, j, k; +#ifndef USE_REALLY_FULL_SEARCH + const float Q34 = pow(Q, 0.75); + const int range = aac_cb_range[cb]; + const int maxval = aac_cb_maxval[cb]; + int offs[4]; + float *scaled = s->scoefs; +#endif /* USE_REALLY_FULL_SEARCH */ + +//START_TIMER + if(!cb) + return; + +#ifndef USE_REALLY_FULL_SEARCH + offs[0] = 1; + for(i = 1; i < dim; i++) + offs[i] = offs[i-1]*range; + abs_pow34_v(scaled, in, size); + quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval); +#endif /* USE_REALLY_FULL_SEARCH */ + for(i = 0; i < size; i += dim){ + float mincost; + int minidx = 0; + int minbits = 0; + const float *vec; +#ifndef USE_REALLY_FULL_SEARCH + int (*quants)[2] = &s->qcoefs[i]; + mincost = 0.0f; + for(j = 0; j < dim; j++){ + mincost += in[i+j]*in[i+j]*lambda; + } + minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; + minbits = ff_aac_spectral_bits[cb-1][minidx]; + mincost += minbits; + for(j = 0; j < (1<<dim); j++){ + float rd = 0.0f; + int curbits; + int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; + int same = 0; + for(k = 0; k < dim; k++){ + if((j & (1 << k)) && quants[k][0] == quants[k][1]){ + same = 1; + break; + } + } + if(same) + continue; + for(k = 0; k < dim; k++) + curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k]; + curbits = ff_aac_spectral_bits[cb-1][curidx]; + vec = &ff_aac_codebook_vectors[cb-1][curidx*dim]; +#else + vec = ff_aac_codebook_vectors[cb-1]; + mincost = INFINITY; + for(j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim){ + float rd = 0.0f; + int curbits = ff_aac_spectral_bits[cb-1][j]; + int curidx = j; +#endif /* USE_REALLY_FULL_SEARCH */ + if(IS_CODEBOOK_UNSIGNED(cb)){ + for(k = 0; k < dim; k++){ + float t = fabsf(in[i+k]); + float di; + //do not code with escape sequence small values + if(vec[k] == 64.0f && t < 39.0f*IQ){ + rd = INFINITY; + break; + } + if(vec[k] == 64.0f){//FIXME: slow + if (t >= CLIPPED_ESCAPE) { + di = t - CLIPPED_ESCAPE; + curbits += 21; + }else{ + int c = av_clip(quant(t, Q), 0, 8191); + di = t - c*cbrt(c)*IQ; + curbits += av_log2(c)*2 - 4 + 1; + } + }else{ + di = t - vec[k]*IQ; + } + if(vec[k] != 0.0f) + curbits++; + rd += di*di*lambda; + } + }else{ + for(k = 0; k < dim; k++){ + float di = in[i+k] - vec[k]*IQ; + rd += di*di*lambda; + } + } + rd += curbits; + if(rd < mincost){ + mincost = rd; + minidx = curidx; + minbits = curbits; + } + } + put_bits(pb, ff_aac_spectral_bits[cb-1][minidx], ff_aac_spectral_codes[cb-1][minidx]); + if(IS_CODEBOOK_UNSIGNED(cb)) + for(j = 0; j < dim; j++) + if(ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f) + put_bits(pb, 1, in[i+j] < 0.0f); + if(cb == ESC_BT){ + for(j = 0; j < 2; j++){ + if(ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f){ + int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191); + int len = av_log2(coef); + + put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2); + put_bits(pb, len, coef & ((1 << len) - 1)); + } + } + } + } +//STOP_TIMER("quantize_and_encode") +} + +/** + * structure used in optimal codebook search + */ +typedef struct BandCodingPath { + int prev_idx; ///< pointer to the previous path point + int codebook; ///< codebook for coding band run + float cost; ///< path cost + int run; +} BandCodingPath; + +/** + * Encode band info for single window group bands. + */ +static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce, + int win, int group_len, const float lambda) +{ + BandCodingPath path[120][12]; + int w, swb, cb, start, start2, size; + int i, j; + const int max_sfb = sce->ics.max_sfb; + const int run_bits = sce->ics.num_windows == 1 ? 5 : 3; + const int run_esc = (1 << run_bits) - 1; + int idx, ppos, count; + int stackrun[120], stackcb[120], stack_len; + float next_minrd = INFINITY; + int next_mincb = 0; + + abs_pow34_v(s->scoefs, sce->coeffs, 1024); + start = win*128; + for(cb = 0; cb < 12; cb++){ + path[0][cb].cost = 0.0f; + path[0][cb].prev_idx = -1; + path[0][cb].run = 0; + } + for(swb = 0; swb < max_sfb; swb++){ + start2 = start; + size = sce->ics.swb_sizes[swb]; + if(sce->zeroes[win*16 + swb]){ + for(cb = 0; cb < 12; cb++){ + path[swb+1][cb].prev_idx = cb; + path[swb+1][cb].cost = path[swb][cb].cost; + path[swb+1][cb].run = path[swb][cb].run + 1; + } + }else{ + float minrd = next_minrd; + int mincb = next_mincb; + next_minrd = INFINITY; + next_mincb = 0; + for(cb = 0; cb < 12; cb++){ + float cost_stay_here, cost_get_here; + float rd = 0.0f; + for(w = 0; w < group_len; w++){ + FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb]; + rd += quantize_band_cost(s, sce->coeffs + start + w*128, + s->scoefs + start + w*128, size, + sce->sf_idx[(win+w)*16+swb], cb, + lambda / band->threshold, INFINITY, NULL); + } + cost_stay_here = path[swb][cb].cost + rd; + cost_get_here = minrd + rd + run_bits + 4; + if( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run] + != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1]) + cost_stay_here += run_bits; + if (cost_get_here < cost_stay_here) { + path[swb+1][cb].prev_idx = mincb; + path[swb+1][cb].cost = cost_get_here; + path[swb+1][cb].run = 1; + } else { + path[swb+1][cb].prev_idx = cb; + path[swb+1][cb].cost = cost_stay_here; + path[swb+1][cb].run = path[swb][cb].run + 1; + } + if (path[swb+1][cb].cost < next_minrd) { + next_minrd = path[swb+1][cb].cost; + next_mincb = cb; + } + } + } + start += sce->ics.swb_sizes[swb]; + } + + //convert resulting path from backward-linked list + stack_len = 0; + idx = 0; + for(cb = 1; cb < 12; cb++){ + if(path[max_sfb][cb].cost < path[max_sfb][idx].cost) + idx = cb; + } + ppos = max_sfb; + while(ppos > 0){ + cb = idx; + stackrun[stack_len] = path[ppos][cb].run; + stackcb [stack_len] = cb; + idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx; + ppos -= path[ppos][cb].run; + stack_len++; + } + //perform actual band info encoding + start = 0; + for(i = stack_len - 1; i >= 0; i--){ + put_bits(&s->pb, 4, stackcb[i]); + count = stackrun[i]; + memset(sce->zeroes + win*16 + start, !stackcb[i], count); + //XXX: memset when band_type is also uint8_t + for(j = 0; j < count; j++){ + sce->band_type[win*16 + start] = stackcb[i]; + start++; + } + while(count >= run_esc){ + put_bits(&s->pb, run_bits, run_esc); + count -= run_esc; + } + put_bits(&s->pb, run_bits, count); + } +} + +static void encode_window_bands_info_fixed(AACEncContext *s, SingleChannelElement *sce, + int win, int group_len, const float lambda) +{ + encode_window_bands_info(s, sce, win, group_len, 1.0f); +} + + +typedef struct TrellisPath { + float cost; + int prev; + int min_val; + int max_val; +} TrellisPath; + +static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, + SingleChannelElement *sce, const float lambda) +{ + int q, w, w2, g, start = 0; + int i; + int idx; + TrellisPath paths[256*121]; + int bandaddr[121]; + int minq; + float mincost; + + for(i = 0; i < 256; i++){ + paths[i].cost = 0.0f; + paths[i].prev = -1; + paths[i].min_val = i; + paths[i].max_val = i; + } + for(i = 256; i < 256*121; i++){ + paths[i].cost = INFINITY; + paths[i].prev = -2; + paths[i].min_val = INT_MAX; + paths[i].max_val = 0; + } + idx = 256; + abs_pow34_v(s->scoefs, sce->coeffs, 1024); + for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + start = w*128; + for(g = 0; g < sce->ics.num_swb; g++){ + const float *coefs = sce->coeffs + start; + float qmin, qmax; + int nz = 0; + + bandaddr[idx >> 8] = w*16+g; + qmin = INT_MAX; + qmax = 0.0f; + for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; + if(band->energy <= band->threshold || band->threshold == 0.0f){ + sce->zeroes[(w+w2)*16+g] = 1; + continue; + } + sce->zeroes[(w+w2)*16+g] = 0; + nz = 1; + for(i = 0; i < sce->ics.swb_sizes[g]; i++){ + float t = fabsf(coefs[w2*128+i]); + if(t > 0.0f) qmin = fminf(qmin, t); + qmax = fmaxf(qmax, t); + } + } + if(nz){ + int minscale, maxscale; + float minrd = INFINITY; + //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped + minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); + //maximum scalefactor index is when maximum coefficient after quantizing is still not zero + maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); + for(q = minscale; q < maxscale; q++){ + float dists[12], dist; + memset(dists, 0, sizeof(dists)); + for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; + int cb; + for(cb = 0; cb <= ESC_BT; cb++){ + dists[cb] += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g], + q, cb, lambda / band->threshold, INFINITY, NULL); + } + } + dist = dists[0]; + for(i = 1; i <= ESC_BT; i++) + dist = fminf(dist, dists[i]); + minrd = fminf(minrd, dist); + + for(i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++){ + float cost; + int minv, maxv; + if(isinf(paths[idx - 256 + i].cost)) + continue; + cost = paths[idx - 256 + i].cost + dist + + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO]; + minv = FFMIN(paths[idx - 256 + i].min_val, q); + maxv = FFMAX(paths[idx - 256 + i].max_val, q); + if(cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF){ + paths[idx + q].cost = cost; + paths[idx + q].prev = idx - 256 + i; + paths[idx + q].min_val = minv; + paths[idx + q].max_val = maxv; + } + } + } + }else{ + for(q = 0; q < 256; q++){ + if(!isinf(paths[idx - 256 + q].cost)){ + paths[idx + q].cost = paths[idx - 256 + q].cost + 1; + paths[idx + q].prev = idx - 256 + q; + paths[idx + q].min_val = FFMIN(paths[idx - 256 + q].min_val, q); + paths[idx + q].max_val = FFMAX(paths[idx - 256 + q].max_val, q); + continue; + } + for(i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++){ + float cost; + int minv, maxv; + if(isinf(paths[idx - 256 + i].cost)) + continue; + cost = paths[idx - 256 + i].cost + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO]; + minv = FFMIN(paths[idx - 256 + i].min_val, q); + maxv = FFMAX(paths[idx - 256 + i].max_val, q); + if(cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF){ + paths[idx + q].cost = cost; + paths[idx + q].prev = idx - 256 + i; + paths[idx + q].min_val = minv; + paths[idx + q].max_val = maxv; + } + } + } + } + sce->zeroes[w*16+g] = !nz; + start += sce->ics.swb_sizes[g]; + idx += 256; + } + } + idx -= 256; + mincost = paths[idx].cost; + minq = idx; + for(i = 1; i < 256; i++){ + if(paths[idx + i].cost < mincost){ + mincost = paths[idx + i].cost; + minq = idx + i; + } + } + while(minq >= 256){ + sce->sf_idx[bandaddr[minq>>8]] = minq & 0xFF; + minq = paths[minq].prev; + } + //set the same quantizers inside window groups + for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) + for(g = 0; g < sce->ics.num_swb; g++) + for(w2 = 1; w2 < sce->ics.group_len[w]; w2++) + sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g]; +} + +/** + * two-loop quantizers search taken from ISO 13818-7 Appendix C + */ +static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *s, + SingleChannelElement *sce, const float lambda) +{ + int start = 0, i, w, w2, g; + int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels; + float dists[128], uplims[128]; + int fflag, minscaler; + int its = 0; + int allz = 0; + float minthr = INFINITY; + + //XXX: some heuristic to determine initial quantizers will reduce search time + memset(dists, 0, sizeof(dists)); + //determine zero bands and upper limits + for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + for(g = 0; g < sce->ics.num_swb; g++){ + int nz = 0; + float uplim = 0.0f; + for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; + uplim += band->threshold; + if(band->energy <= band->threshold || band->threshold == 0.0f){ + sce->zeroes[(w+w2)*16+g] = 1; + continue; + } + nz = 1; + } + uplims[w*16+g] = uplim *512; + sce->zeroes[w*16+g] = !nz; + if(nz) + minthr = fminf(minthr, uplim); + allz = FFMAX(allz, nz); + } + } + for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + for(g = 0; g < sce->ics.num_swb; g++){ + if(sce->zeroes[w*16+g]){ + sce->sf_idx[w*16+g] = SCALE_ONE_POS; + continue; + } + sce->sf_idx[w*16+g] = SCALE_ONE_POS + fminf(log2(uplims[w*16+g]/minthr)*4,59); + } + } + + if(!allz) + return; + abs_pow34_v(s->scoefs, sce->coeffs, 1024); + //perform two-loop search + //outer loop - improve quality + do{ + int tbits, qstep; + minscaler = sce->sf_idx[0]; + //inner loop - quantize spectrum to fit into given number of bits + qstep = its ? 1 : 32; + do{ + int prev = -1; + tbits = 0; + fflag = 0; + for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + start = w*128; + for(g = 0; g < sce->ics.num_swb; g++){ + const float *coefs = sce->coeffs + start; + const float *scaled = s->scoefs + start; + int bits = 0; + int cb; + float mindist = INFINITY; + int minbits = 0; + + if(sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) + continue; + minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); + for(cb = 0; cb <= ESC_BT; cb++){ + float dist = 0.0f; + int bb = 0; + for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + int b; + dist += quantize_band_cost(s, coefs + w2*128, + scaled + w2*128, + sce->ics.swb_sizes[g], + sce->sf_idx[w*16+g], + ESC_BT, + 1.0, + INFINITY, + &b); + bb += b; + } + if(dist < mindist){ + mindist = dist; + minbits = bb; + } + } + dists[w*16+g] = mindist - minbits; + bits = minbits; + if(prev != -1){ + bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO]; + } + tbits += bits; + start += sce->ics.swb_sizes[g]; + prev = sce->sf_idx[w*16+g]; + } + } + if(tbits > destbits){ + for(i = 0; i < 128; i++){ + if(sce->sf_idx[i] < 218 - qstep){ + sce->sf_idx[i] += qstep; + } + } + }else{ + for(i = 0; i < 128; i++){ + if(sce->sf_idx[i] > 60 - qstep){ + sce->sf_idx[i] -= qstep; + } + } + } + qstep >>= 1; + if(!qstep && tbits > destbits*1.02) + qstep = 1; + if(sce->sf_idx[0] >= 217)break; + }while(qstep); + + fflag = 0; + minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF); + for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + start = w*128; + for(g = 0; g < sce->ics.num_swb; g++){ + int prevsc = sce->sf_idx[w*16+g]; + if(dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) + sce->sf_idx[w*16+g]--; + sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF); + sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219); + if(sce->sf_idx[w*16+g] != prevsc) + fflag = 1; + } + } + its++; + }while(fflag && its < 10); +} + +static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, + SingleChannelElement *sce, const float lambda) +{ + int start = 0, i, w, w2, g; + float uplim[128], maxq[128]; + int minq, maxsf; + float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda; + int last = 0, lastband = 0, curband = 0; + float avg_energy = 0.0; + if(sce->ics.num_windows == 1){ + start = 0; + for(i = 0; i < 1024; i++){ + if(i - start >= sce->ics.swb_sizes[curband]){ + start += sce->ics.swb_sizes[curband]; + curband++; + } + if(sce->coeffs[i]){ + avg_energy += sce->coeffs[i] * sce->coeffs[i]; + last = i; + lastband = curband; + } + } + }else{ + for(w = 0; w < 8; w++){ + const float *coeffs = sce->coeffs + w*128; + start = 0; + for(i = 0; i < 128; i++){ + if(i - start >= sce->ics.swb_sizes[curband]){ + start += sce->ics.swb_sizes[curband]; + curband++; + } + if(coeffs[i]){ + avg_energy += coeffs[i] * coeffs[i]; + last = FFMAX(last, i); + lastband = FFMAX(lastband, curband); + } + } + } + } + last++; + avg_energy /= last; + if(avg_energy == 0.0f){ + for(i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++) + sce->sf_idx[i] = SCALE_ONE_POS; + return; + } + for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + start = w*128; + for(g = 0; g < sce->ics.num_swb; g++){ + float *coefs = sce->coeffs + start; + const int size = sce->ics.swb_sizes[g]; + int start2 = start, end2 = start + size, peakpos = start; + float maxval = -1, thr = 0.0f, t; + maxq[w*16+g] = 0.0f; + if(g > lastband){ + maxq[w*16+g] = 0.0f; + start += size; + for(w2 = 0; w2 < sce->ics.group_len[w]; w2++) + memset(coefs + w2*128, 0, sizeof(coefs[0])*size); + continue; + } + for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + for(i = 0; i < size; i++){ + float t = coefs[w2*128+i]*coefs[w2*128+i]; + maxq[w*16+g] = fmaxf(maxq[w*16+g], fabsf(coefs[w2*128 + i])); + thr += t; + if(sce->ics.num_windows == 1 && maxval < t){ + maxval = t; + peakpos = start+i; + } + } + } + if(sce->ics.num_windows == 1){ + start2 = FFMAX(peakpos - 2, start2); + end2 = FFMIN(peakpos + 3, end2); + }else{ + start2 -= start; + end2 -= start; + } + start += size; + thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband); + t = 1.0 - (1.0 * start2 / last); + uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075); + } + } + memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); + abs_pow34_v(s->scoefs, sce->coeffs, 1024); + for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + start = w*128; + for(g = 0; g < sce->ics.num_swb; g++){ + const float *coefs = sce->coeffs + start; + const float *scaled = s->scoefs + start; + const int size = sce->ics.swb_sizes[g]; + int scf, prev_scf, step; + int min_scf = 0, max_scf = 255; + float curdiff; + if(maxq[w*16+g] < 21.544){ + sce->zeroes[w*16+g] = 1; + start += size; + continue; + } + sce->zeroes[w*16+g] = 0; + scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218); + step = 16; + for(;;){ + float dist = 0.0f; + int quant_max; + + for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + int b; + dist += quantize_band_cost(s, coefs + w2*128, + scaled + w2*128, + sce->ics.swb_sizes[g], + scf, + ESC_BT, + 1.0, + INFINITY, + &b); + dist -= b; + } + dist *= 1.0f/512.0f; + quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]); + if(quant_max >= 8191){ // too much, return to the previous quantizer + sce->sf_idx[w*16+g] = prev_scf; + break; + } + prev_scf = scf; + curdiff = fabsf(dist - uplim[w*16+g]); + if(curdiff == 0.0f) + step = 0; + else + step = fabsf(log2(curdiff)); + if(dist > uplim[w*16+g]) + step = -step; + if(FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)){ + sce->sf_idx[w*16+g] = scf; + break; + } + scf += step; + if(step > 0) + min_scf = scf; + else + max_scf = scf; + } + start += size; + } + } + minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX; + for(i = 1; i < 128; i++){ + if(!sce->sf_idx[i]) + sce->sf_idx[i] = sce->sf_idx[i-1]; + else + minq = FFMIN(minq, sce->sf_idx[i]); + } + if(minq == INT_MAX) minq = 0; + minq = FFMIN(minq, SCALE_MAX_POS); + maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS); + for(i = 126; i >= 0; i--){ + if(!sce->sf_idx[i]) + sce->sf_idx[i] = sce->sf_idx[i+1]; + sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf); + } +} + +static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, + SingleChannelElement *sce, const float lambda) +{ + int start = 0, i, w, w2, g; + int minq = 255; + + memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); + for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ + start = w*128; + for(g = 0; g < sce->ics.num_swb; g++){ + for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ + FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; + if(band->energy <= band->threshold){ + sce->sf_idx[(w+w2)*16+g] = 218; + sce->zeroes[(w+w2)*16+g] = 1; + }else{ + sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218); + sce->zeroes[(w+w2)*16+g] = 0; + } + minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]); + } + } + } + for(i = 0; i < 128; i++){ + sce->sf_idx[i] = 140;//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1); + } + //set the same quantizers inside window groups + for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) + for(g = 0; g < sce->ics.num_swb; g++) + for(w2 = 1; w2 < sce->ics.group_len[w]; w2++) + sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g]; +} + +static void search_for_ms(AACEncContext *s, ChannelElement *cpe, const float lambda) +{ + int start = 0, i, w, w2, g; + float M[128], S[128]; + float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3; + SingleChannelElement *sce0 = &cpe->ch[0]; + SingleChannelElement *sce1 = &cpe->ch[1]; + if(!cpe->common_window) + return; + for(w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]){ + for(g = 0; g < sce0->ics.num_swb; g++){ + if(!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]){ + float dist1 = 0.0f, dist2 = 0.0f; + for(w2 = 0; w2 < sce0->ics.group_len[w]; w2++){ + FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g]; + FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g]; + float minthr = fminf(band0->threshold, band1->threshold); + float maxthr = fmaxf(band0->threshold, band1->threshold); + for(i = 0; i < sce0->ics.swb_sizes[g]; i++){ + M[i] = (sce0->coeffs[start+w2*128+i] + + sce1->coeffs[start+w2*128+i])*0.5; + S[i] = sce0->coeffs[start+w2*128+i] + - sce1->coeffs[start+w2*128+i]; + } + abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]); + abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]); + abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]); + abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]); + dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128, + L34, + sce0->ics.swb_sizes[g], + sce0->sf_idx[(w+w2)*16+g], + sce0->band_type[(w+w2)*16+g], + lambda / band0->threshold, INFINITY, NULL); + dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128, + R34, + sce1->ics.swb_sizes[g], + sce1->sf_idx[(w+w2)*16+g], + sce1->band_type[(w+w2)*16+g], + lambda / band1->threshold, INFINITY, NULL); + dist2 += quantize_band_cost(s, M, + M34, + sce0->ics.swb_sizes[g], + sce0->sf_idx[(w+w2)*16+g], + sce0->band_type[(w+w2)*16+g], + lambda / maxthr, INFINITY, NULL); + dist2 += quantize_band_cost(s, S, + S34, + sce1->ics.swb_sizes[g], + sce1->sf_idx[(w+w2)*16+g], + sce1->band_type[(w+w2)*16+g], + lambda / minthr, INFINITY, NULL); + } + cpe->ms_mask[w*16+g] = dist2 < dist1; + } + start += sce0->ics.swb_sizes[g]; + } + } +} + +AACCoefficientsEncoder ff_aac_coders[] = { + { + search_for_quantizers_faac, + encode_window_bands_info_fixed, + quantize_and_encode_band, +// search_for_ms, + }, + { + search_for_quantizers_anmr, + encode_window_bands_info, + quantize_and_encode_band, +// search_for_ms, + }, + { + search_for_quantizers_twoloop, + encode_window_bands_info, + quantize_and_encode_band, +// search_for_ms, + }, + { + search_for_quantizers_fast, + encode_window_bands_info, + quantize_and_encode_band, +// search_for_ms, + }, +}; |