diff options
author | Fabrice Bellard <fabrice@bellard.org> | 2000-12-20 00:02:47 +0000 |
---|---|---|
committer | Fabrice Bellard <fabrice@bellard.org> | 2000-12-20 00:02:47 +0000 |
commit | 9aeeeb63f7e1ab7b0b7bb839a5f258667a2d2d78 (patch) | |
tree | 133769894d45da35e05ded6ea39d33bb81e7ae18 /libav/jrevdct.c | |
parent | 77bb6835ba752bb9335d208963a53227bbb1bc63 (diff) | |
download | ffmpeg-9aeeeb63f7e1ab7b0b7bb839a5f258667a2d2d78.tar.gz |
Initial revision
Originally committed as revision 2 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libav/jrevdct.c')
-rw-r--r-- | libav/jrevdct.c | 1584 |
1 files changed, 1584 insertions, 0 deletions
diff --git a/libav/jrevdct.c b/libav/jrevdct.c new file mode 100644 index 0000000000..26715b0b18 --- /dev/null +++ b/libav/jrevdct.c @@ -0,0 +1,1584 @@ +/* + * jrevdct.c + * + * Copyright (C) 1991, 1992, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains the basic inverse-DCT transformation subroutine. + * + * This implementation is based on an algorithm described in + * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT + * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, + * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. + * The primary algorithm described there uses 11 multiplies and 29 adds. + * We use their alternate method with 12 multiplies and 32 adds. + * The advantage of this method is that no data path contains more than one + * multiplication; this allows a very simple and accurate implementation in + * scaled fixed-point arithmetic, with a minimal number of shifts. + * + * I've made lots of modifications to attempt to take advantage of the + * sparse nature of the DCT matrices we're getting. Although the logic + * is cumbersome, it's straightforward and the resulting code is much + * faster. + * + * A better way to do this would be to pass in the DCT block as a sparse + * matrix, perhaps with the difference cases encoded. + */ + +typedef int INT32; + +/* Definition of Contant integer scale factor. */ +#define CONST_BITS 13 + +/* Misc DCT definitions */ +#define DCTSIZE 8 /* The basic DCT block is 8x8 samples */ +#define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */ + +#define GLOBAL /* a function referenced thru EXTERNs */ + +typedef int DCTELEM; +typedef DCTELEM DCTBLOCK[DCTSIZE2]; + +void j_rev_dct (DCTELEM *data); + + +#define GLOBAL /* a function referenced thru EXTERNs */ +#define ORIG_DCT 1 + +/* We assume that right shift corresponds to signed division by 2 with + * rounding towards minus infinity. This is correct for typical "arithmetic + * shift" instructions that shift in copies of the sign bit. But some + * C compilers implement >> with an unsigned shift. For these machines you + * must define RIGHT_SHIFT_IS_UNSIGNED. + * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity. + * It is only applied with constant shift counts. SHIFT_TEMPS must be + * included in the variables of any routine using RIGHT_SHIFT. + */ + +#ifdef RIGHT_SHIFT_IS_UNSIGNED +#define SHIFT_TEMPS INT32 shift_temp; +#define RIGHT_SHIFT(x,shft) \ + ((shift_temp = (x)) < 0 ? \ + (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \ + (shift_temp >> (shft))) +#else +#define SHIFT_TEMPS +#define RIGHT_SHIFT(x,shft) ((x) >> (shft)) +#endif + +/* + * This routine is specialized to the case DCTSIZE = 8. + */ + +#if DCTSIZE != 8 + Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ +#endif + + +/* + * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT + * on each column. Direct algorithms are also available, but they are + * much more complex and seem not to be any faster when reduced to code. + * + * The poop on this scaling stuff is as follows: + * + * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) + * larger than the true IDCT outputs. The final outputs are therefore + * a factor of N larger than desired; since N=8 this can be cured by + * a simple right shift at the end of the algorithm. The advantage of + * this arrangement is that we save two multiplications per 1-D IDCT, + * because the y0 and y4 inputs need not be divided by sqrt(N). + * + * We have to do addition and subtraction of the integer inputs, which + * is no problem, and multiplication by fractional constants, which is + * a problem to do in integer arithmetic. We multiply all the constants + * by CONST_SCALE and convert them to integer constants (thus retaining + * CONST_BITS bits of precision in the constants). After doing a + * multiplication we have to divide the product by CONST_SCALE, with proper + * rounding, to produce the correct output. This division can be done + * cheaply as a right shift of CONST_BITS bits. We postpone shifting + * as long as possible so that partial sums can be added together with + * full fractional precision. + * + * The outputs of the first pass are scaled up by PASS1_BITS bits so that + * they are represented to better-than-integral precision. These outputs + * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word + * with the recommended scaling. (To scale up 12-bit sample data further, an + * intermediate INT32 array would be needed.) + * + * To avoid overflow of the 32-bit intermediate results in pass 2, we must + * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis + * shows that the values given below are the most effective. + */ + +#ifdef EIGHT_BIT_SAMPLES +#define PASS1_BITS 2 +#else +#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ +#endif + +#define ONE ((INT32) 1) + +#define CONST_SCALE (ONE << CONST_BITS) + +/* Convert a positive real constant to an integer scaled by CONST_SCALE. + * IMPORTANT: if your compiler doesn't do this arithmetic at compile time, + * you will pay a significant penalty in run time. In that case, figure + * the correct integer constant values and insert them by hand. + */ + +#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5)) + +/* Descale and correctly round an INT32 value that's scaled by N bits. + * We assume RIGHT_SHIFT rounds towards minus infinity, so adding + * the fudge factor is correct for either sign of X. + */ + +#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) +#define SCALE(x,n) ((INT32)(x) << n) + +/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. + * For 8-bit samples with the recommended scaling, all the variable + * and constant values involved are no more than 16 bits wide, so a + * 16x16->32 bit multiply can be used instead of a full 32x32 multiply; + * this provides a useful speedup on many machines. + * There is no way to specify a 16x16->32 multiply in portable C, but + * some C compilers will do the right thing if you provide the correct + * combination of casts. + * NB: for 12-bit samples, a full 32-bit multiplication will be needed. + */ + +#ifdef EIGHT_BIT_SAMPLES +#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ +#define MULTIPLY(var,const) (((INT16) (var)) * ((INT16) (const))) +#endif +#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ +#define MULTIPLY(var,const) (((INT16) (var)) * ((INT32) (const))) +#endif +#endif + +#if 0 +/* force a multiplication for x86 where a multiply is fast). We + force the non constant operand to be in a register because + otherwise it may be a 16 bit memory reference, which is not allowed + by imull */ +#define MULTIPLY(a,b) \ +({\ + int res;\ + asm("imull %2,%1,%0" : "=r" (res) : "r" ((int)(a)), "i" (b));\ + res;\ +}) +#endif + +#ifndef MULTIPLY /* default definition */ +#define MULTIPLY(var,const) ((var) * (const)) +#endif + + +#ifndef ORIG_DCT + +#undef SSMUL +#define SSMUL(var1,var2) ((INT16)(var1) * (INT32)(INT16)(var2)) + +/* Precomputed idct value arrays. */ + +STATIC DCTELEM PreIDCT[64][64]; + +/* Pre compute singleton coefficient IDCT values. */ +void init_pre_idct() { + int i; + + for (i = 0; i < 64; i++) { + memset ((char *) PreIDCT[i], 0, 64 * sizeof(DCTELEM)); + PreIDCT[i][i] = 2048; + j_rev_dct (PreIDCT[i]); + } +} + +/* + * Perform the inverse DCT on one block of coefficients. + */ + +void j_rev_dct_sparse (data, pos) + DCTBLOCK data; + int pos; +{ + register DCTELEM *dataptr; + short int val; + DCTELEM *ndataptr; + int coeff, rr; + + /* If DC Coefficient. */ + + if (pos == 0) { + register INT32 *dp; + register INT32 v; + + dp = (INT32*)data; + v = *data; + /* Compute 32 bit value to assign. + * This speeds things up a bit */ + if (v < 0) + val = (short)((v - 3) >> 3); + else + val = (short)((v + 4) >> 3); + v = val | ((INT32)val << 16); + dp[0] = v; dp[1] = v; dp[2] = v; dp[3] = v; + dp[4] = v; dp[5] = v; dp[6] = v; dp[7] = v; + dp[8] = v; dp[9] = v; dp[10] = v; dp[11] = v; + dp[12] = v; dp[13] = v; dp[14] = v; dp[15] = v; + dp[16] = v; dp[17] = v; dp[18] = v; dp[19] = v; + dp[20] = v; dp[21] = v; dp[22] = v; dp[23] = v; + dp[24] = v; dp[25] = v; dp[26] = v; dp[27] = v; + dp[28] = v; dp[29] = v; dp[30] = v; dp[31] = v; + return; + } + + /* Some other coefficient. */ + dataptr = (DCTELEM *)data; + coeff = dataptr[pos]; + ndataptr = PreIDCT[pos]; + + for (rr = 0; rr < 4; rr++) { + dataptr[0] = (DCTELEM)(SSMUL (ndataptr[0] , coeff) >> (CONST_BITS-2)); + dataptr[1] = (DCTELEM)(SSMUL (ndataptr[1] , coeff) >> (CONST_BITS-2)); + dataptr[2] = (DCTELEM)(SSMUL (ndataptr[2] , coeff) >> (CONST_BITS-2)); + dataptr[3] = (DCTELEM)(SSMUL (ndataptr[3] , coeff) >> (CONST_BITS-2)); + dataptr[4] = (DCTELEM)(SSMUL (ndataptr[4] , coeff) >> (CONST_BITS-2)); + dataptr[5] = (DCTELEM)(SSMUL (ndataptr[5] , coeff) >> (CONST_BITS-2)); + dataptr[6] = (DCTELEM)(SSMUL (ndataptr[6] , coeff) >> (CONST_BITS-2)); + dataptr[7] = (DCTELEM)(SSMUL (ndataptr[7] , coeff) >> (CONST_BITS-2)); + dataptr[8] = (DCTELEM)(SSMUL (ndataptr[8] , coeff) >> (CONST_BITS-2)); + dataptr[9] = (DCTELEM)(SSMUL (ndataptr[9] , coeff) >> (CONST_BITS-2)); + dataptr[10] = (DCTELEM)(SSMUL (ndataptr[10], coeff) >> (CONST_BITS-2)); + dataptr[11] = (DCTELEM)(SSMUL (ndataptr[11], coeff) >> (CONST_BITS-2)); + dataptr[12] = (DCTELEM)(SSMUL (ndataptr[12], coeff) >> (CONST_BITS-2)); + dataptr[13] = (DCTELEM)(SSMUL (ndataptr[13], coeff) >> (CONST_BITS-2)); + dataptr[14] = (DCTELEM)(SSMUL (ndataptr[14], coeff) >> (CONST_BITS-2)); + dataptr[15] = (DCTELEM)(SSMUL (ndataptr[15], coeff) >> (CONST_BITS-2)); + dataptr += 16; + ndataptr += 16; + } +} + + +void j_rev_dct (data) + DCTBLOCK data; +{ + INT32 tmp0, tmp1, tmp2, tmp3; + INT32 tmp10, tmp11, tmp12, tmp13; + INT32 z1, z2, z3, z4, z5; + int d0, d1, d2, d3, d4, d5, d6, d7; + register DCTELEM *dataptr; + int rowctr; + SHIFT_TEMPS; + + /* Pass 1: process rows. */ + /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ + /* furthermore, we scale the results by 2**PASS1_BITS. */ + + dataptr = data; + + for (rowctr = DCTSIZE - 1; rowctr >= 0; rowctr--) { + /* Due to quantization, we will usually find that many of the input + * coefficients are zero, especially the AC terms. We can exploit this + * by short-circuiting the IDCT calculation for any row in which all + * the AC terms are zero. In that case each output is equal to the + * DC coefficient (with scale factor as needed). + * With typical images and quantization tables, half or more of the + * row DCT calculations can be simplified this way. + */ + + register INT32 *idataptr = (INT32*)dataptr; + d0 = dataptr[0]; + d1 = dataptr[1]; + if ((d1 == 0) && (idataptr[1] | idataptr[2] | idataptr[3]) == 0) { + /* AC terms all zero */ + if (d0) { + /* Compute a 32 bit value to assign. */ + DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS); + register INT32 v = (dcval & 0xffff) | + (((INT32)dcval << 16) & 0xffff0000L); + + idataptr[0] = v; + idataptr[1] = v; + idataptr[2] = v; + idataptr[3] = v; + } + + dataptr += DCTSIZE; /* advance pointer to next row */ + continue; + } + d2 = dataptr[2]; + d3 = dataptr[3]; + d4 = dataptr[4]; + d5 = dataptr[5]; + d6 = dataptr[6]; + d7 = dataptr[7]; + + /* Even part: reverse the even part of the forward DCT. */ + /* The rotator is sqrt(2)*c(-6). */ + if (d6) { + if (d4) { + if (d2) { + if (d0) { + /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ + z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); + tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); + tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); + + tmp0 = SCALE (d0 + d4, CONST_BITS); + tmp1 = SCALE (d0 - d4, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } else { + /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */ + z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); + tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); + tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); + + tmp0 = SCALE (d4, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp2 - tmp0; + tmp12 = -(tmp0 + tmp2); + } + } else { + if (d0) { + /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ + tmp2 = MULTIPLY(d6, - FIX(1.306562965)); + tmp3 = MULTIPLY(d6, FIX(0.541196100)); + + tmp0 = SCALE (d0 + d4, CONST_BITS); + tmp1 = SCALE (d0 - d4, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } else { + /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */ + tmp2 = MULTIPLY(d6, -FIX(1.306562965)); + tmp3 = MULTIPLY(d6, FIX(0.541196100)); + + tmp0 = SCALE (d4, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp2 - tmp0; + tmp12 = -(tmp0 + tmp2); + } + } + } else { + if (d2) { + if (d0) { + /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */ + z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); + tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); + tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); + + tmp0 = SCALE (d0, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp0 + tmp2; + tmp12 = tmp0 - tmp2; + } else { + /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */ + z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); + tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); + tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); + + tmp10 = tmp3; + tmp13 = -tmp3; + tmp11 = tmp2; + tmp12 = -tmp2; + } + } else { + if (d0) { + /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */ + tmp2 = MULTIPLY(d6, - FIX(1.306562965)); + tmp3 = MULTIPLY(d6, FIX(0.541196100)); + + tmp0 = SCALE (d0, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp0 + tmp2; + tmp12 = tmp0 - tmp2; + } else { + /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */ + tmp2 = MULTIPLY(d6, - FIX(1.306562965)); + tmp3 = MULTIPLY(d6, FIX(0.541196100)); + + tmp10 = tmp3; + tmp13 = -tmp3; + tmp11 = tmp2; + tmp12 = -tmp2; + } + } + } + } else { + if (d4) { + if (d2) { + if (d0) { + /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ + tmp2 = MULTIPLY(d2, FIX(0.541196100)); + tmp3 = MULTIPLY(d2, FIX(1.306562965)); + + tmp0 = SCALE (d0 + d4, CONST_BITS); + tmp1 = SCALE (d0 - d4, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } else { + /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */ + tmp2 = MULTIPLY(d2, FIX(0.541196100)); + tmp3 = MULTIPLY(d2, FIX(1.306562965)); + + tmp0 = SCALE (d4, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp2 - tmp0; + tmp12 = -(tmp0 + tmp2); + } + } else { + if (d0) { + /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ + tmp10 = tmp13 = SCALE (d0 + d4, CONST_BITS); + tmp11 = tmp12 = SCALE (d0 - d4, CONST_BITS); + } else { + /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */ + tmp10 = tmp13 = SCALE (d4, CONST_BITS); + tmp11 = tmp12 = -tmp10; + } + } + } else { + if (d2) { + if (d0) { + /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */ + tmp2 = MULTIPLY(d2, FIX(0.541196100)); + tmp3 = MULTIPLY(d2, FIX(1.306562965)); + + tmp0 = SCALE (d0, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp0 + tmp2; + tmp12 = tmp0 - tmp2; + } else { + /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */ + tmp2 = MULTIPLY(d2, FIX(0.541196100)); + tmp3 = MULTIPLY(d2, FIX(1.306562965)); + + tmp10 = tmp3; + tmp13 = -tmp3; + tmp11 = tmp2; + tmp12 = -tmp2; + } + } else { + if (d0) { + /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */ + tmp10 = tmp13 = tmp11 = tmp12 = SCALE (d0, CONST_BITS); + } else { + /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */ + tmp10 = tmp13 = tmp11 = tmp12 = 0; + } + } + } + } + + + /* Odd part per figure 8; the matrix is unitary and hence its + * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. + */ + + if (d7) { + if (d5) { + if (d3) { + if (d1) { + /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ + z1 = d7 + d1; + z2 = d5 + d3; + z3 = d7 + d3; + z4 = d5 + d1; + z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); + + tmp0 = MULTIPLY(d7, FIX(0.298631336)); + tmp1 = MULTIPLY(d5, FIX(2.053119869)); + tmp2 = MULTIPLY(d3, FIX(3.072711026)); + tmp3 = MULTIPLY(d1, FIX(1.501321110)); + z1 = MULTIPLY(z1, - FIX(0.899976223)); + z2 = MULTIPLY(z2, - FIX(2.562915447)); + z3 = MULTIPLY(z3, - FIX(1.961570560)); + z4 = MULTIPLY(z4, - FIX(0.390180644)); + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + } else { + /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ + z1 = d7; + z2 = d5 + d3; + z3 = d7 + d3; + z5 = MULTIPLY(z3 + d5, FIX(1.175875602)); + + tmp0 = MULTIPLY(d7, FIX(0.298631336)); + tmp1 = MULTIPLY(d5, FIX(2.053119869)); + tmp2 = MULTIPLY(d3, FIX(3.072711026)); + z1 = MULTIPLY(d7, - FIX(0.899976223)); + z2 = MULTIPLY(z2, - FIX(2.562915447)); + z3 = MULTIPLY(z3, - FIX(1.961570560)); + z4 = MULTIPLY(d5, - FIX(0.390180644)); + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 = z1 + z4; + } + } else { + if (d1) { + /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ + z1 = d7 + d1; + z2 = d5; + z3 = d7; + z4 = d5 + d1; + z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); + + tmp0 = MULTIPLY(d7, FIX(0.298631336)); + tmp1 = MULTIPLY(d5, FIX(2.053119869)); + tmp3 = MULTIPLY(d1, FIX(1.501321110)); + z1 = MULTIPLY(z1, - FIX(0.899976223)); + z2 = MULTIPLY(d5, - FIX(2.562915447)); + z3 = MULTIPLY(d7, - FIX(1.961570560)); + z4 = MULTIPLY(z4, - FIX(0.390180644)); + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 = z2 + z3; + tmp3 += z1 + z4; + } else { + /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ + tmp0 = MULTIPLY(d7, - FIX(0.601344887)); + z1 = MULTIPLY(d7, - FIX(0.899976223)); + z3 = MULTIPLY(d7, - FIX(1.961570560)); + tmp1 = MULTIPLY(d5, - FIX(0.509795578)); + z2 = MULTIPLY(d5, - FIX(2.562915447)); + z4 = MULTIPLY(d5, - FIX(0.390180644)); + z5 = MULTIPLY(d5 + d7, FIX(1.175875602)); + + z3 += z5; + z4 += z5; + + tmp0 += z3; + tmp1 += z4; + tmp2 = z2 + z3; + tmp3 = z1 + z4; + } + } + } else { + if (d3) { + if (d1) { + /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ + z1 = d7 + d1; + z3 = d7 + d3; + z5 = MULTIPLY(z3 + d1, FIX(1.175875602)); + + tmp0 = MULTIPLY(d7, FIX(0.298631336)); + tmp2 = MULTIPLY(d3, FIX(3.072711026)); + tmp3 = MULTIPLY(d1, FIX(1.501321110)); + z1 = MULTIPLY(z1, - FIX(0.899976223)); + z2 = MULTIPLY(d3, - FIX(2.562915447)); + z3 = MULTIPLY(z3, - FIX(1.961570560)); + z4 = MULTIPLY(d1, - FIX(0.390180644)); + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 = z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + } else { + /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ + z3 = d7 + d3; + + tmp0 = MULTIPLY(d7, - FIX(0.601344887)); + z1 = MULTIPLY(d7, - FIX(0.899976223)); + tmp2 = MULTIPLY(d3, FIX(0.509795579)); + z2 = MULTIPLY(d3, - FIX(2.562915447)); + z5 = MULTIPLY(z3, FIX(1.175875602)); + z3 = MULTIPLY(z3, - FIX(0.785694958)); + + tmp0 += z3; + tmp1 = z2 + z5; + tmp2 += z3; + tmp3 = z1 + z5; + } + } else { + if (d1) { + /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ + z1 = d7 + d1; + z5 = MULTIPLY(z1, FIX(1.175875602)); + + z1 = MULTIPLY(z1, FIX(0.275899379)); + z3 = MULTIPLY(d7, - FIX(1.961570560)); + tmp0 = MULTIPLY(d7, - FIX(1.662939224)); + z4 = MULTIPLY(d1, - FIX(0.390180644)); + tmp3 = MULTIPLY(d1, FIX(1.111140466)); + + tmp0 += z1; + tmp1 = z4 + z5; + tmp2 = z3 + z5; + tmp3 += z1; + } else { + /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ + tmp0 = MULTIPLY(d7, - FIX(1.387039845)); + tmp1 = MULTIPLY(d7, FIX(1.175875602)); + tmp2 = MULTIPLY(d7, - FIX(0.785694958)); + tmp3 = MULTIPLY(d7, FIX(0.275899379)); + } + } + } + } else { + if (d5) { + if (d3) { + if (d1) { + /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ + z2 = d5 + d3; + z4 = d5 + d1; + z5 = MULTIPLY(d3 + z4, FIX(1.175875602)); + + tmp1 = MULTIPLY(d5, FIX(2.053119869)); + tmp2 = MULTIPLY(d3, FIX(3.072711026)); + tmp3 = MULTIPLY(d1, FIX(1.501321110)); + z1 = MULTIPLY(d1, - FIX(0.899976223)); + z2 = MULTIPLY(z2, - FIX(2.562915447)); + z3 = MULTIPLY(d3, - FIX(1.961570560)); + z4 = MULTIPLY(z4, - FIX(0.390180644)); + + z3 += z5; + z4 += z5; + + tmp0 = z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + } else { + /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ + z2 = d5 + d3; + + z5 = MULTIPLY(z2, FIX(1.175875602)); + tmp1 = MULTIPLY(d5, FIX(1.662939225)); + z4 = MULTIPLY(d5, - FIX(0.390180644)); + z2 = MULTIPLY(z2, - FIX(1.387039845)); + tmp2 = MULTIPLY(d3, FIX(1.111140466)); + z3 = MULTIPLY(d3, - FIX(1.961570560)); + + tmp0 = z3 + z5; + tmp1 += z2; + tmp2 += z2; + tmp3 = z4 + z5; + } + } else { + if (d1) { + /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ + z4 = d5 + d1; + + z5 = MULTIPLY(z4, FIX(1.175875602)); + z1 = MULTIPLY(d1, - FIX(0.899976223)); + tmp3 = MULTIPLY(d1, FIX(0.601344887)); + tmp1 = MULTIPLY(d5, - FIX(0.509795578)); + z2 = MULTIPLY(d5, - FIX(2.562915447)); + z4 = MULTIPLY(z4, FIX(0.785694958)); + + tmp0 = z1 + z5; + tmp1 += z4; + tmp2 = z2 + z5; + tmp3 += z4; + } else { + /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ + tmp0 = MULTIPLY(d5, FIX(1.175875602)); + tmp1 = MULTIPLY(d5, FIX(0.275899380)); + tmp2 = MULTIPLY(d5, - FIX(1.387039845)); + tmp3 = MULTIPLY(d5, FIX(0.785694958)); + } + } + } else { + if (d3) { + if (d1) { + /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ + z5 = d1 + d3; + tmp3 = MULTIPLY(d1, FIX(0.211164243)); + tmp2 = MULTIPLY(d3, - FIX(1.451774981)); + z1 = MULTIPLY(d1, FIX(1.061594337)); + z2 = MULTIPLY(d3, - FIX(2.172734803)); + z4 = MULTIPLY(z5, FIX(0.785694958)); + z5 = MULTIPLY(z5, FIX(1.175875602)); + + tmp0 = z1 - z4; + tmp1 = z2 + z4; + tmp2 += z5; + tmp3 += z5; + } else { + /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ + tmp0 = MULTIPLY(d3, - FIX(0.785694958)); + tmp1 = MULTIPLY(d3, - FIX(1.387039845)); + tmp2 = MULTIPLY(d3, - FIX(0.275899379)); + tmp3 = MULTIPLY(d3, FIX(1.175875602)); + } + } else { + if (d1) { + /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ + tmp0 = MULTIPLY(d1, FIX(0.275899379)); + tmp1 = MULTIPLY(d1, FIX(0.785694958)); + tmp2 = MULTIPLY(d1, FIX(1.175875602)); + tmp3 = MULTIPLY(d1, FIX(1.387039845)); + } else { + /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ + tmp0 = tmp1 = tmp2 = tmp3 = 0; + } + } + } + } + + /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ + + dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); + dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); + dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); + dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); + dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); + dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); + dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); + dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); + + dataptr += DCTSIZE; /* advance pointer to next row */ + } + + /* Pass 2: process columns. */ + /* Note that we must descale the results by a factor of 8 == 2**3, */ + /* and also undo the PASS1_BITS scaling. */ + + dataptr = data; + for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { + /* Columns of zeroes can be exploited in the same way as we did with rows. + * However, the row calculation has created many nonzero AC terms, so the + * simplification applies less often (typically 5% to 10% of the time). + * On machines with very fast multiplication, it's possible that the + * test takes more time than it's worth. In that case this section + * may be commented out. + */ + + d0 = dataptr[DCTSIZE*0]; + d1 = dataptr[DCTSIZE*1]; + d2 = dataptr[DCTSIZE*2]; + d3 = dataptr[DCTSIZE*3]; + d4 = dataptr[DCTSIZE*4]; + d5 = dataptr[DCTSIZE*5]; + d6 = dataptr[DCTSIZE*6]; + d7 = dataptr[DCTSIZE*7]; + + /* Even part: reverse the even part of the forward DCT. */ + /* The rotator is sqrt(2)*c(-6). */ + if (d6) { + if (d4) { + if (d2) { + if (d0) { + /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ + z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); + tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); + tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); + + tmp0 = SCALE (d0 + d4, CONST_BITS); + tmp1 = SCALE (d0 - d4, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } else { + /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */ + z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); + tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); + tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); + + tmp0 = SCALE (d4, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp2 - tmp0; + tmp12 = -(tmp0 + tmp2); + } + } else { + if (d0) { + /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ + tmp2 = MULTIPLY(d6, - FIX(1.306562965)); + tmp3 = MULTIPLY(d6, FIX(0.541196100)); + + tmp0 = SCALE (d0 + d4, CONST_BITS); + tmp1 = SCALE (d0 - d4, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } else { + /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */ + tmp2 = MULTIPLY(d6, -FIX(1.306562965)); + tmp3 = MULTIPLY(d6, FIX(0.541196100)); + + tmp0 = SCALE (d4, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp2 - tmp0; + tmp12 = -(tmp0 + tmp2); + } + } + } else { + if (d2) { + if (d0) { + /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */ + z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); + tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); + tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); + + tmp0 = SCALE (d0, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp0 + tmp2; + tmp12 = tmp0 - tmp2; + } else { + /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */ + z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); + tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); + tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); + + tmp10 = tmp3; + tmp13 = -tmp3; + tmp11 = tmp2; + tmp12 = -tmp2; + } + } else { + if (d0) { + /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */ + tmp2 = MULTIPLY(d6, - FIX(1.306562965)); + tmp3 = MULTIPLY(d6, FIX(0.541196100)); + + tmp0 = SCALE (d0, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp0 + tmp2; + tmp12 = tmp0 - tmp2; + } else { + /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */ + tmp2 = MULTIPLY(d6, - FIX(1.306562965)); + tmp3 = MULTIPLY(d6, FIX(0.541196100)); + + tmp10 = tmp3; + tmp13 = -tmp3; + tmp11 = tmp2; + tmp12 = -tmp2; + } + } + } + } else { + if (d4) { + if (d2) { + if (d0) { + /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ + tmp2 = MULTIPLY(d2, FIX(0.541196100)); + tmp3 = MULTIPLY(d2, FIX(1.306562965)); + + tmp0 = SCALE (d0 + d4, CONST_BITS); + tmp1 = SCALE (d0 - d4, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } else { + /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */ + tmp2 = MULTIPLY(d2, FIX(0.541196100)); + tmp3 = MULTIPLY(d2, FIX(1.306562965)); + + tmp0 = SCALE (d4, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp2 - tmp0; + tmp12 = -(tmp0 + tmp2); + } + } else { + if (d0) { + /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ + tmp10 = tmp13 = SCALE (d0 + d4, CONST_BITS); + tmp11 = tmp12 = SCALE (d0 - d4, CONST_BITS); + } else { + /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */ + tmp10 = tmp13 = SCALE (d4, CONST_BITS); + tmp11 = tmp12 = -tmp10; + } + } + } else { + if (d2) { + if (d0) { + /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */ + tmp2 = MULTIPLY(d2, FIX(0.541196100)); + tmp3 = MULTIPLY(d2, FIX(1.306562965)); + + tmp0 = SCALE (d0, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp0 + tmp2; + tmp12 = tmp0 - tmp2; + } else { + /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */ + tmp2 = MULTIPLY(d2, FIX(0.541196100)); + tmp3 = MULTIPLY(d2, FIX(1.306562965)); + + tmp10 = tmp3; + tmp13 = -tmp3; + tmp11 = tmp2; + tmp12 = -tmp2; + } + } else { + if (d0) { + /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */ + tmp10 = tmp13 = tmp11 = tmp12 = SCALE (d0, CONST_BITS); + } else { + /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */ + tmp10 = tmp13 = tmp11 = tmp12 = 0; + } + } + } + } + + /* Odd part per figure 8; the matrix is unitary and hence its + * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. + */ + if (d7) { + if (d5) { + if (d3) { + if (d1) { + /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ + z1 = d7 + d1; + z2 = d5 + d3; + z3 = d7 + d3; + z4 = d5 + d1; + z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); + + tmp0 = MULTIPLY(d7, FIX(0.298631336)); + tmp1 = MULTIPLY(d5, FIX(2.053119869)); + tmp2 = MULTIPLY(d3, FIX(3.072711026)); + tmp3 = MULTIPLY(d1, FIX(1.501321110)); + z1 = MULTIPLY(z1, - FIX(0.899976223)); + z2 = MULTIPLY(z2, - FIX(2.562915447)); + z3 = MULTIPLY(z3, - FIX(1.961570560)); + z4 = MULTIPLY(z4, - FIX(0.390180644)); + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + } else { + /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ + z1 = d7; + z2 = d5 + d3; + z3 = d7 + d3; + z5 = MULTIPLY(z3 + d5, FIX(1.175875602)); + + tmp0 = MULTIPLY(d7, FIX(0.298631336)); + tmp1 = MULTIPLY(d5, FIX(2.053119869)); + tmp2 = MULTIPLY(d3, FIX(3.072711026)); + z1 = MULTIPLY(d7, - FIX(0.899976223)); + z2 = MULTIPLY(z2, - FIX(2.562915447)); + z3 = MULTIPLY(z3, - FIX(1.961570560)); + z4 = MULTIPLY(d5, - FIX(0.390180644)); + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 = z1 + z4; + } + } else { + if (d1) { + /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ + z1 = d7 + d1; + z2 = d5; + z3 = d7; + z4 = d5 + d1; + z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); + + tmp0 = MULTIPLY(d7, FIX(0.298631336)); + tmp1 = MULTIPLY(d5, FIX(2.053119869)); + tmp3 = MULTIPLY(d1, FIX(1.501321110)); + z1 = MULTIPLY(z1, - FIX(0.899976223)); + z2 = MULTIPLY(d5, - FIX(2.562915447)); + z3 = MULTIPLY(d7, - FIX(1.961570560)); + z4 = MULTIPLY(z4, - FIX(0.390180644)); + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 = z2 + z3; + tmp3 += z1 + z4; + } else { + /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ + tmp0 = MULTIPLY(d7, - FIX(0.601344887)); + z1 = MULTIPLY(d7, - FIX(0.899976223)); + z3 = MULTIPLY(d7, - FIX(1.961570560)); + tmp1 = MULTIPLY(d5, - FIX(0.509795578)); + z2 = MULTIPLY(d5, - FIX(2.562915447)); + z4 = MULTIPLY(d5, - FIX(0.390180644)); + z5 = MULTIPLY(d5 + d7, FIX(1.175875602)); + + z3 += z5; + z4 += z5; + + tmp0 += z3; + tmp1 += z4; + tmp2 = z2 + z3; + tmp3 = z1 + z4; + } + } + } else { + if (d3) { + if (d1) { + /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ + z1 = d7 + d1; + z3 = d7 + d3; + z5 = MULTIPLY(z3 + d1, FIX(1.175875602)); + + tmp0 = MULTIPLY(d7, FIX(0.298631336)); + tmp2 = MULTIPLY(d3, FIX(3.072711026)); + tmp3 = MULTIPLY(d1, FIX(1.501321110)); + z1 = MULTIPLY(z1, - FIX(0.899976223)); + z2 = MULTIPLY(d3, - FIX(2.562915447)); + z3 = MULTIPLY(z3, - FIX(1.961570560)); + z4 = MULTIPLY(d1, - FIX(0.390180644)); + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 = z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + } else { + /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ + z3 = d7 + d3; + + tmp0 = MULTIPLY(d7, - FIX(0.601344887)); + z1 = MULTIPLY(d7, - FIX(0.899976223)); + tmp2 = MULTIPLY(d3, FIX(0.509795579)); + z2 = MULTIPLY(d3, - FIX(2.562915447)); + z5 = MULTIPLY(z3, FIX(1.175875602)); + z3 = MULTIPLY(z3, - FIX(0.785694958)); + + tmp0 += z3; + tmp1 = z2 + z5; + tmp2 += z3; + tmp3 = z1 + z5; + } + } else { + if (d1) { + /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ + z1 = d7 + d1; + z5 = MULTIPLY(z1, FIX(1.175875602)); + + z1 = MULTIPLY(z1, FIX(0.275899379)); + z3 = MULTIPLY(d7, - FIX(1.961570560)); + tmp0 = MULTIPLY(d7, - FIX(1.662939224)); + z4 = MULTIPLY(d1, - FIX(0.390180644)); + tmp3 = MULTIPLY(d1, FIX(1.111140466)); + + tmp0 += z1; + tmp1 = z4 + z5; + tmp2 = z3 + z5; + tmp3 += z1; + } else { + /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ + tmp0 = MULTIPLY(d7, - FIX(1.387039845)); + tmp1 = MULTIPLY(d7, FIX(1.175875602)); + tmp2 = MULTIPLY(d7, - FIX(0.785694958)); + tmp3 = MULTIPLY(d7, FIX(0.275899379)); + } + } + } + } else { + if (d5) { + if (d3) { + if (d1) { + /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ + z2 = d5 + d3; + z4 = d5 + d1; + z5 = MULTIPLY(d3 + z4, FIX(1.175875602)); + + tmp1 = MULTIPLY(d5, FIX(2.053119869)); + tmp2 = MULTIPLY(d3, FIX(3.072711026)); + tmp3 = MULTIPLY(d1, FIX(1.501321110)); + z1 = MULTIPLY(d1, - FIX(0.899976223)); + z2 = MULTIPLY(z2, - FIX(2.562915447)); + z3 = MULTIPLY(d3, - FIX(1.961570560)); + z4 = MULTIPLY(z4, - FIX(0.390180644)); + + z3 += z5; + z4 += z5; + + tmp0 = z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + } else { + /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ + z2 = d5 + d3; + + z5 = MULTIPLY(z2, FIX(1.175875602)); + tmp1 = MULTIPLY(d5, FIX(1.662939225)); + z4 = MULTIPLY(d5, - FIX(0.390180644)); + z2 = MULTIPLY(z2, - FIX(1.387039845)); + tmp2 = MULTIPLY(d3, FIX(1.111140466)); + z3 = MULTIPLY(d3, - FIX(1.961570560)); + + tmp0 = z3 + z5; + tmp1 += z2; + tmp2 += z2; + tmp3 = z4 + z5; + } + } else { + if (d1) { + /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ + z4 = d5 + d1; + + z5 = MULTIPLY(z4, FIX(1.175875602)); + z1 = MULTIPLY(d1, - FIX(0.899976223)); + tmp3 = MULTIPLY(d1, FIX(0.601344887)); + tmp1 = MULTIPLY(d5, - FIX(0.509795578)); + z2 = MULTIPLY(d5, - FIX(2.562915447)); + z4 = MULTIPLY(z4, FIX(0.785694958)); + + tmp0 = z1 + z5; + tmp1 += z4; + tmp2 = z2 + z5; + tmp3 += z4; + } else { + /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ + tmp0 = MULTIPLY(d5, FIX(1.175875602)); + tmp1 = MULTIPLY(d5, FIX(0.275899380)); + tmp2 = MULTIPLY(d5, - FIX(1.387039845)); + tmp3 = MULTIPLY(d5, FIX(0.785694958)); + } + } + } else { + if (d3) { + if (d1) { + /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ + z5 = d1 + d3; + tmp3 = MULTIPLY(d1, FIX(0.211164243)); + tmp2 = MULTIPLY(d3, - FIX(1.451774981)); + z1 = MULTIPLY(d1, FIX(1.061594337)); + z2 = MULTIPLY(d3, - FIX(2.172734803)); + z4 = MULTIPLY(z5, FIX(0.785694958)); + z5 = MULTIPLY(z5, FIX(1.175875602)); + + tmp0 = z1 - z4; + tmp1 = z2 + z4; + tmp2 += z5; + tmp3 += z5; + } else { + /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ + tmp0 = MULTIPLY(d3, - FIX(0.785694958)); + tmp1 = MULTIPLY(d3, - FIX(1.387039845)); + tmp2 = MULTIPLY(d3, - FIX(0.275899379)); + tmp3 = MULTIPLY(d3, FIX(1.175875602)); + } + } else { + if (d1) { + /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ + tmp0 = MULTIPLY(d1, FIX(0.275899379)); + tmp1 = MULTIPLY(d1, FIX(0.785694958)); + tmp2 = MULTIPLY(d1, FIX(1.175875602)); + tmp3 = MULTIPLY(d1, FIX(1.387039845)); + } else { + /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ + tmp0 = tmp1 = tmp2 = tmp3 = 0; + } + } + } + } + + /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ + + dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0, + CONST_BITS+PASS1_BITS+3); + + dataptr++; /* advance pointer to next column */ + } +} + +#else + +/*---- debugging/tracing macros ----*/ + +#if _MSC_VER +#pragma optimize("",on) +#if _MSC_VER > 700 +/*#pragma optimize("l",off)*/ +#endif +#endif + +#define idct_single_pos0() +#define idct_zero_col_stat() +#define idct_zero_row_stat() +#define idct_nonzero_col_stat() +#define idct_nonzero_row_stat() +#define DUMP_COEFS(p) +#define TRACE(args) +#define FAST_DCTPTRS 1 + +#if 0 /* to count cases */ +void idct_single_pos0 (void) { static int count; count++; } +void idct_zero_col_stat (void) { static int count; count++; } +void idct_zero_row_stat (void) { static int count; count++; } +void idct_nonzero_col_stat (void) { static int count; count++; } +void idct_nonzero_row_stat (void) { static int count; count++; } +#undef idct_single_pos0 +#undef idct_zero_col_stat +#undef idct_zero_row_stat +#undef idct_nonzero_col_stat +#undef idct_nonzero_row_stat +#endif + +void init_pre_idct (void) { } + +void j_rev_dct_sparse (DCTBLOCK data, int pos) +{ + /* If just DC Coefficient. */ + + if (pos == 0) { + register DCTELEM *dp, *dq; + DCTELEM dcval; + + idct_single_pos0(); + + dp = data; + dcval = dp[0]; + if (dcval < 0) + dcval = (short)((dcval - 3) >> 3); + else + dcval = (short)((dcval + 4) >> 3); + + if (dcval) { + for (dq = dp + 64; dp < dq; dp += 8) { + dp[3] = dp[2] = dp[1] = dp[0] = dcval; + dp[7] = dp[6] = dp[5] = dp[4] = dcval; + } + } + return; + } + + /* Some other coeff */ + j_rev_dct (data); +} + +#ifndef OPTIMIZE_ASM +void j_rev_dct (DCTBLOCK data) +{ + INT32 tmp0, tmp1, tmp2, tmp3; + INT32 tmp10, tmp11, tmp12, tmp13; + INT32 z1, z2, z3, z4, z5; + register DCTELEM *dp; + int rowctr; + SHIFT_TEMPS; + + /* Pass 1: process rows. */ + /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ + /* furthermore, we scale the results by 2**PASS1_BITS. */ + + DUMP_COEFS(data); + + dp = data; + for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--, dp += DCTSIZE) { + /* Due to quantization, we will usually find that many of the input + * coefficients are zero, especially the AC terms. We can exploit this + * by short-circuiting the IDCT calculation for any row in which all + * the AC terms are zero. In that case each output is equal to the + * DC coefficient (with scale factor as needed). + * With typical images and quantization tables, half or more of the + * row DCT calculations can be simplified this way. + */ + +#if FAST_DCTPTRS +#define d0 dp[0] +#define d1 dp[1] +#define d2 dp[2] +#define d3 dp[3] +#define d4 dp[4] +#define d5 dp[5] +#define d6 dp[6] +#define d7 dp[7] +#else + int d0 = dp[0]; + int d1 = dp[1]; + int d2 = dp[2]; + int d3 = dp[3]; + int d4 = dp[4]; + int d5 = dp[5]; + int d6 = dp[6]; + int d7 = dp[7]; +#endif + +#ifndef NO_ZERO_ROW_TEST + if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) { + /* AC terms all zero */ + DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS); + + if (d0) { + dp[0] = dcval; + dp[1] = dcval; + dp[2] = dcval; + dp[3] = dcval; + dp[4] = dcval; + dp[5] = dcval; + dp[6] = dcval; + dp[7] = dcval; + } + idct_zero_row_stat(); + continue; + } +#endif + + idct_nonzero_row_stat(); + + /* Even part: reverse the even part of the forward DCT. */ + /* The rotator is sqrt(2)*c(-6). */ + + z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); + tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); + tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); + + tmp0 = SCALE (d0 + d4, CONST_BITS); + tmp1 = SCALE (d0 - d4, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + + /* Odd part per figure 8; the matrix is unitary and hence its + * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. + */ + + z1 = d7 + d1; + z2 = d5 + d3; + z3 = d7 + d3; + z4 = d5 + d1; + z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); /* sqrt(2) * c3 */ + + tmp0 = MULTIPLY(d7, FIX(0.298631336)); /* sqrt(2) * (-c1+c3+c5-c7) */ + tmp1 = MULTIPLY(d5, FIX(2.053119869)); /* sqrt(2) * ( c1+c3-c5+c7) */ + tmp2 = MULTIPLY(d3, FIX(3.072711026)); /* sqrt(2) * ( c1+c3+c5-c7) */ + tmp3 = MULTIPLY(d1, FIX(1.501321110)); /* sqrt(2) * ( c1+c3-c5-c7) */ + z1 = MULTIPLY(z1, - FIX(0.899976223)); /* sqrt(2) * (c7-c3) */ + z2 = MULTIPLY(z2, - FIX(2.562915447)); /* sqrt(2) * (-c1-c3) */ + z3 = MULTIPLY(z3, - FIX(1.961570560)); /* sqrt(2) * (-c3-c5) */ + z4 = MULTIPLY(z4, - FIX(0.390180644)); /* sqrt(2) * (c5-c3) */ + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + + /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ + + dp[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); + dp[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); + dp[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); + dp[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); + dp[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); + dp[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); + dp[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); + dp[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); + } +#if FAST_DCTPTRS +#undef d0 +#undef d1 +#undef d2 +#undef d3 +#undef d4 +#undef d5 +#undef d6 +#undef d7 +#endif + + /* Pass 2: process columns. */ + /* Note that we must descale the results by a factor of 8 == 2**3, */ + /* and also undo the PASS1_BITS scaling. */ + + dp = data; + for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--, dp++) { + /* Columns of zeroes can be exploited in the same way as we did with rows. + * However, the row calculation has created many nonzero AC terms, so the + * simplification applies less often (typically 5% to 10% of the time). + * On machines with very fast multiplication, it's possible that the + * test takes more time than it's worth. In that case this section + * may be commented out. + */ + +#if FAST_DCTPTRS +#define d0 dp[DCTSIZE*0] +#define d1 dp[DCTSIZE*1] +#define d2 dp[DCTSIZE*2] +#define d3 dp[DCTSIZE*3] +#define d4 dp[DCTSIZE*4] +#define d5 dp[DCTSIZE*5] +#define d6 dp[DCTSIZE*6] +#define d7 dp[DCTSIZE*7] +#else + int d0 = dp[DCTSIZE*0]; + int d1 = dp[DCTSIZE*1]; + int d2 = dp[DCTSIZE*2]; + int d3 = dp[DCTSIZE*3]; + int d4 = dp[DCTSIZE*4]; + int d5 = dp[DCTSIZE*5]; + int d6 = dp[DCTSIZE*6]; + int d7 = dp[DCTSIZE*7]; +#endif + +#ifndef NO_ZERO_COLUMN_TEST + if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) { + /* AC terms all zero */ + DCTELEM dcval = (DCTELEM) DESCALE((INT32) d0, PASS1_BITS+3); + + if (d0) { + dp[DCTSIZE*0] = dcval; + dp[DCTSIZE*1] = dcval; + dp[DCTSIZE*2] = dcval; + dp[DCTSIZE*3] = dcval; + dp[DCTSIZE*4] = dcval; + dp[DCTSIZE*5] = dcval; + dp[DCTSIZE*6] = dcval; + dp[DCTSIZE*7] = dcval; + } + idct_zero_col_stat(); + continue; + } +#endif + + idct_nonzero_col_stat(); + + /* Even part: reverse the even part of the forward DCT. */ + /* The rotator is sqrt(2)*c(-6). */ + + z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); + tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); + tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); + + tmp0 = SCALE (d0 + d4, CONST_BITS); + tmp1 = SCALE (d0 - d4, CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + + /* Odd part per figure 8; the matrix is unitary and hence its + * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. + */ + + z1 = d7 + d1; + z2 = d5 + d3; + z3 = d7 + d3; + z4 = d5 + d1; + z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); /* sqrt(2) * c3 */ + + tmp0 = MULTIPLY(d7, FIX(0.298631336)); /* sqrt(2) * (-c1+c3+c5-c7) */ + tmp1 = MULTIPLY(d5, FIX(2.053119869)); /* sqrt(2) * ( c1+c3-c5+c7) */ + tmp2 = MULTIPLY(d3, FIX(3.072711026)); /* sqrt(2) * ( c1+c3+c5-c7) */ + tmp3 = MULTIPLY(d1, FIX(1.501321110)); /* sqrt(2) * ( c1+c3-c5-c7) */ + z1 = MULTIPLY(z1, - FIX(0.899976223)); /* sqrt(2) * (c7-c3) */ + z2 = MULTIPLY(z2, - FIX(2.562915447)); /* sqrt(2) * (-c1-c3) */ + z3 = MULTIPLY(z3, - FIX(1.961570560)); /* sqrt(2) * (-c3-c5) */ + z4 = MULTIPLY(z4, - FIX(0.390180644)); /* sqrt(2) * (c5-c3) */ + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + + /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ + + dp[DCTSIZE*0] = (DCTELEM)DESCALE(tmp10 + tmp3, CONST_BITS+PASS1_BITS+3); + dp[DCTSIZE*7] = (DCTELEM)DESCALE(tmp10 - tmp3, CONST_BITS+PASS1_BITS+3); + dp[DCTSIZE*1] = (DCTELEM)DESCALE(tmp11 + tmp2, CONST_BITS+PASS1_BITS+3); + dp[DCTSIZE*6] = (DCTELEM)DESCALE(tmp11 - tmp2, CONST_BITS+PASS1_BITS+3); + dp[DCTSIZE*2] = (DCTELEM)DESCALE(tmp12 + tmp1, CONST_BITS+PASS1_BITS+3); + dp[DCTSIZE*5] = (DCTELEM)DESCALE(tmp12 - tmp1, CONST_BITS+PASS1_BITS+3); + dp[DCTSIZE*3] = (DCTELEM)DESCALE(tmp13 + tmp0, CONST_BITS+PASS1_BITS+3); + dp[DCTSIZE*4] = (DCTELEM)DESCALE(tmp13 - tmp0, CONST_BITS+PASS1_BITS+3); + } +#if FAST_DCTPTRS +#undef d0 +#undef d1 +#undef d2 +#undef d3 +#undef d4 +#undef d5 +#undef d6 +#undef d7 +#endif +} +#endif /* optimize.asm */ + +#endif |