diff options
author | Mingyu Yin <mingyu.yin@intel.com> | 2020-09-22 15:11:09 +0800 |
---|---|---|
committer | Guo, Yejun <yejun.guo@intel.com> | 2020-09-29 14:19:55 +0800 |
commit | ad2546e3b33eabeeeeed7d1b1f5e804181e819b7 (patch) | |
tree | da1715f0fb27398f8290b50ef70ef4985da14ad0 | |
parent | adcdf0bc6057a99989a28bb3d1ba65e8b66eff3d (diff) | |
download | ffmpeg-ad2546e3b33eabeeeeed7d1b1f5e804181e819b7.tar.gz |
dnn/native: add native support for dense
Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
-rw-r--r-- | libavfilter/dnn/Makefile | 1 | ||||
-rw-r--r-- | libavfilter/dnn/dnn_backend_native.h | 2 | ||||
-rw-r--r-- | libavfilter/dnn/dnn_backend_native_layer_conv2d.h | 1 | ||||
-rw-r--r-- | libavfilter/dnn/dnn_backend_native_layer_dense.c | 151 | ||||
-rw-r--r-- | libavfilter/dnn/dnn_backend_native_layer_dense.h | 37 | ||||
-rw-r--r-- | libavfilter/dnn/dnn_backend_native_layers.c | 2 | ||||
-rw-r--r-- | tests/dnn/.gitignore | 1 | ||||
-rw-r--r-- | tests/dnn/dnn-layer-dense-test.c | 131 | ||||
-rw-r--r-- | tools/python/convert_from_tensorflow.py | 126 |
9 files changed, 443 insertions, 9 deletions
diff --git a/libavfilter/dnn/Makefile b/libavfilter/dnn/Makefile index ee08cc5243..b0b76301ec 100644 --- a/libavfilter/dnn/Makefile +++ b/libavfilter/dnn/Makefile @@ -3,6 +3,7 @@ OBJS-$(CONFIG_DNN) += dnn/dnn_io_proc.o OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layers.o OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_avgpool.o +OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_dense.o OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_pad.o OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_conv2d.o OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_depth2space.o diff --git a/libavfilter/dnn/dnn_backend_native.h b/libavfilter/dnn/dnn_backend_native.h index 2f8d73fcf6..2d02c063d4 100644 --- a/libavfilter/dnn/dnn_backend_native.h +++ b/libavfilter/dnn/dnn_backend_native.h @@ -45,11 +45,13 @@ typedef enum { DLT_MATH_BINARY = 5, DLT_MATH_UNARY = 6, DLT_AVG_POOL = 7, + DLT_DENSE = 8, DLT_COUNT } DNNLayerType; typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | DOT_OUTPUT} DNNOperandType; typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNPaddingParam; +typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc; typedef struct Layer{ DNNLayerType type; diff --git a/libavfilter/dnn/dnn_backend_native_layer_conv2d.h b/libavfilter/dnn/dnn_backend_native_layer_conv2d.h index 72319f2ebe..1295028c46 100644 --- a/libavfilter/dnn/dnn_backend_native_layer_conv2d.h +++ b/libavfilter/dnn/dnn_backend_native_layer_conv2d.h @@ -23,7 +23,6 @@ #include "dnn_backend_native.h" -typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc; typedef struct ConvolutionalParams{ int32_t input_num, output_num, kernel_size; diff --git a/libavfilter/dnn/dnn_backend_native_layer_dense.c b/libavfilter/dnn/dnn_backend_native_layer_dense.c new file mode 100644 index 0000000000..1029137792 --- /dev/null +++ b/libavfilter/dnn/dnn_backend_native_layer_dense.c @@ -0,0 +1,151 @@ +/* + * Copyright (c) 2020 + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +#include "libavutil/avassert.h" +#include "dnn_backend_native_layer_dense.h" + +int dnn_load_layer_dense(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) +{ + DenseParams *dense_params; + int kernel_size; + int dnn_size = 0; + dense_params = av_malloc(sizeof(*dense_params)); + if (!dense_params) + return 0; + + dense_params->activation = (int32_t)avio_rl32(model_file_context); + dense_params->input_num = (int32_t)avio_rl32(model_file_context); + dense_params->output_num = (int32_t)avio_rl32(model_file_context); + dense_params->has_bias = (int32_t)avio_rl32(model_file_context); + dnn_size += 16; + + kernel_size = dense_params->input_num * dense_params->output_num; + dnn_size += kernel_size * 4; + if (dense_params->has_bias) + dnn_size += dense_params->output_num * 4; + + if (dnn_size > file_size || dense_params->input_num <= 0 || + dense_params->output_num <= 0){ + av_freep(&dense_params); + return 0; + } + + dense_params->kernel = av_malloc(kernel_size * sizeof(float)); + if (!dense_params->kernel) { + av_freep(&dense_params); + return 0; + } + for (int i = 0; i < kernel_size; ++i) { + dense_params->kernel[i] = av_int2float(avio_rl32(model_file_context)); + } + + dense_params->biases = NULL; + if (dense_params->has_bias) { + dense_params->biases = av_malloc(dense_params->output_num * sizeof(float)); + if (!dense_params->biases){ + av_freep(&dense_params->kernel); + av_freep(&dense_params); + return 0; + } + for (int i = 0; i < dense_params->output_num; ++i){ + dense_params->biases[i] = av_int2float(avio_rl32(model_file_context)); + } + } + + layer->params = dense_params; + + layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); + layer->output_operand_index = (int32_t)avio_rl32(model_file_context); + dnn_size += 8; + + if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { + return 0; + } + + return dnn_size; +} + +int dnn_execute_layer_dense(DnnOperand *operands, const int32_t *input_operand_indexes, + int32_t output_operand_index, const void *parameters, NativeContext *ctx) +{ + float *output; + int32_t input_operand_index = input_operand_indexes[0]; + int number = operands[input_operand_index].dims[0]; + int height = operands[input_operand_index].dims[1]; + int width = operands[input_operand_index].dims[2]; + int channel = operands[input_operand_index].dims[3]; + const float *input = operands[input_operand_index].data; + const DenseParams *dense_params = (const DenseParams *)parameters; + + int src_linesize = width * channel; + DnnOperand *output_operand = &operands[output_operand_index]; + output_operand->dims[0] = number; + output_operand->dims[1] = height; + output_operand->dims[2] = width; + output_operand->dims[3] = dense_params->output_num; + output_operand->data_type = operands[input_operand_index].data_type; + output_operand->length = calculate_operand_data_length(output_operand); + if (output_operand->length <= 0) { + av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); + return DNN_ERROR; + } + output_operand->data = av_realloc(output_operand->data, output_operand->length); + if (!output_operand->data) { + av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); + return DNN_ERROR; + } + output = output_operand->data; + + av_assert0(channel == dense_params->input_num); + + for (int y = 0; y < height; ++y) { + for (int x = 0; x < width; ++x) { + for (int n_filter = 0; n_filter < dense_params->output_num; ++n_filter) { + if (dense_params->has_bias) + output[n_filter] = dense_params->biases[n_filter]; + else + output[n_filter] = 0.f; + + for (int ch = 0; ch < dense_params->input_num; ++ch) { + float input_pel; + input_pel = input[y * src_linesize + x * dense_params->input_num + ch]; + output[n_filter] += input_pel * dense_params->kernel[n_filter*dense_params->input_num + ch]; + } + switch (dense_params->activation){ + case RELU: + output[n_filter] = FFMAX(output[n_filter], 0.0); + break; + case TANH: + output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f; + break; + case SIGMOID: + output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter])); + break; + case NONE: + break; + case LEAKY_RELU: + output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0); + } + } + output += dense_params->output_num; + } + } + return 0; +} diff --git a/libavfilter/dnn/dnn_backend_native_layer_dense.h b/libavfilter/dnn/dnn_backend_native_layer_dense.h new file mode 100644 index 0000000000..f98284b154 --- /dev/null +++ b/libavfilter/dnn/dnn_backend_native_layer_dense.h @@ -0,0 +1,37 @@ +/* + * Copyright (c) 2020 + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DENSE_H +#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DENSE_H + +#include "dnn_backend_native.h" + +typedef struct DenseParams{ + int32_t input_num, output_num; + DNNActivationFunc activation; + int32_t has_bias; + float *kernel; + float *biases; +} DenseParams; + +int dnn_load_layer_dense(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); +int dnn_execute_layer_dense(DnnOperand *operands, const int32_t *input_operand_indexes, + int32_t output_operand_index, const void *parameters, NativeContext *ctx); +#endif diff --git a/libavfilter/dnn/dnn_backend_native_layers.c b/libavfilter/dnn/dnn_backend_native_layers.c index 4f42f62abb..638a94e9a3 100644 --- a/libavfilter/dnn/dnn_backend_native_layers.c +++ b/libavfilter/dnn/dnn_backend_native_layers.c @@ -27,6 +27,7 @@ #include "dnn_backend_native_layer_mathbinary.h" #include "dnn_backend_native_layer_mathunary.h" #include "dnn_backend_native_layer_avgpool.h" +#include "dnn_backend_native_layer_dense.h" LayerFunc layer_funcs[DLT_COUNT] = { {NULL, NULL}, @@ -37,4 +38,5 @@ LayerFunc layer_funcs[DLT_COUNT] = { {dnn_execute_layer_math_binary, dnn_load_layer_math_binary}, {dnn_execute_layer_math_unary, dnn_load_layer_math_unary}, {dnn_execute_layer_avg_pool, dnn_load_layer_avg_pool}, + {dnn_execute_layer_dense, dnn_load_layer_dense}, }; diff --git a/tests/dnn/.gitignore b/tests/dnn/.gitignore index b847a01177..03b04d6653 100644 --- a/tests/dnn/.gitignore +++ b/tests/dnn/.gitignore @@ -5,3 +5,4 @@ /dnn-layer-mathbinary-test /dnn-layer-mathunary-test /dnn-layer-avgpool-test +/dnn-layer-dense-test diff --git a/tests/dnn/dnn-layer-dense-test.c b/tests/dnn/dnn-layer-dense-test.c new file mode 100644 index 0000000000..2c11ec5218 --- /dev/null +++ b/tests/dnn/dnn-layer-dense-test.c @@ -0,0 +1,131 @@ +/* + * Copyright (c) 2020 + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +#include <stdio.h> +#include <string.h> +#include <math.h> +#include "libavfilter/dnn/dnn_backend_native_layer_dense.h" + +#define EPSON 0.00001 + +static int test(void) +{ + // the input data and expected data are generated with below python code. + /* + x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) + y = tf.layers.dense(input_x, 3, activation=tf.nn.sigmoid, bias_initializer=tf.keras.initializers.he_normal()) + data = np.random.rand(1, 5, 6, 3); + + sess=tf.Session() + sess.run(tf.global_variables_initializer()) + + weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()]) + kernel = weights['dense/kernel:0'] + kernel = np.transpose(kernel, [1, 0]) + print("kernel:") + print(kernel.shape) + print(list(kernel.flatten())) + + bias = weights['dense/bias:0'] + print("bias:") + print(bias.shape) + print(list(bias.flatten())) + + output = sess.run(y, feed_dict={x: data}) + + print("input:") + print(data.shape) + print(list(data.flatten())) + + print("output:") + print(output.shape) + print(list(output.flatten())) + */ + + ConvolutionalParams params; + DnnOperand operands[2]; + int32_t input_indexes[1]; + float input[1*5*6*3] = { + 0.5552418686576308, 0.20653189262022464, 0.31115120939398877, 0.5897014433221428, 0.37340078861060655, 0.6470921693941893, 0.8039950367872679, 0.8762700891949274, + 0.6556655583829558, 0.5911096107039339, 0.18640250865290997, 0.2803248779238966, 0.31586613136402053, 0.9447300740056483, 0.9443980824873418, 0.8158851991115941, + 0.5631010340387631, 0.9407402251929046, 0.6485434876551682, 0.5631376966470001, 0.17581924875609634, 0.7033802439103178, 0.04802402495561675, 0.9183681450194972, + 0.46059317944364, 0.07964160481596883, 0.871787076270302, 0.973743142324361, 0.15923146943258415, 0.8212946080584571, 0.5415954459227064, 0.9552813822803975, + 0.4908552668172057, 0.33723691635292274, 0.46588057864910026, 0.8994239961321776, 0.09845220457674186, 0.1713400292123486, 0.39570294912818826, 0.08018956486392803, + 0.5290478278169032, 0.7141906125920976, 0.0320878067840098, 0.6412406575332606, 0.0075712007102423096, 0.7150828462386156, 0.1311989216968138, 0.4706847944253756, + 0.5447610794883336, 0.3430923933318001, 0.536082357943209, 0.4371629342483694, 0.40227962985019927, 0.3553806249465469, 0.031806622424259245, 0.7053916426174, + 0.3261570237309813, 0.419500213292063, 0.3155691223480851, 0.05664028113178088, 0.3636491555914486, 0.8502419746667123, 0.9836596530684955, 0.1628681802975801, + 0.09410832912479894, 0.28407218939480294, 0.7983417928813697, 0.24132158596506748, 0.8154729498062224, 0.29173768373895637, 0.13407102008052096, 0.18705786678800385, + 0.7167943621295573, 0.09222004247174376, 0.2319220738766018, 0.17708964382285064, 0.1391440370249517, 0.3254088083499256, 0.4013916894718289, 0.4819742663322323, + 0.15080103744648077, 0.9302407847555013, 0.9397597961319524, 0.5719200825550793, 0.9538938024682824, 0.9583882089203861, 0.5168861091262276, 0.1926396841842669, + 0.6781176744337578, 0.719366447288566 + }; + float expected_output[1*5*6*3] = { + -0.3921688, -0.9243112, -0.29659146, -0.64000785, -0.9466343, -0.62125254, -0.71759033, -0.9171336, -0.735589, -0.34365994, + -0.92100817, -0.23903961, -0.8962277, -0.9521279, -0.90962386, -0.7488303, -0.9563761, -0.7701762, -0.40800542, -0.87684774, + -0.3339763, -0.6354543, -0.97068924, -0.6246325, -0.6992075, -0.9706726, -0.6818918, -0.51864433, -0.9592881, -0.51187396, + -0.7423632, -0.89911884, -0.7457824, -0.82009757, -0.96402895, -0.8235518, -0.61980766, -0.94494647, -0.5410502, -0.8281218, + -0.95508635, -0.8201453, -0.5937325, -0.8679507, -0.500767, -0.39430764, -0.93967676, -0.32183182, -0.58913624, -0.939717, + -0.55179894, -0.55004454, -0.9214453, -0.4889004, -0.75294703, -0.9118363, -0.7200309, -0.3248641, -0.8878874, -0.18977344, + -0.8873837, -0.9571257, -0.90145934, -0.50521654, -0.93739635, -0.39051685, -0.61143184, -0.9591179, -0.605999, -0.40008977, + -0.92219675, -0.26732883, -0.19607787, -0.9172511, -0.07068595, -0.5409857, -0.9387041, -0.44181606, -0.4705004, -0.8899935, + -0.37997037, -0.66105115, -0.89754754, -0.68141997, -0.6324047, -0.886776, -0.65066385, -0.8334821, -0.94801456, -0.83297 + }; + float *output; + float kernel[3*3] = { + 0.56611896, -0.5144603, -0.82600045, 0.19219112, 0.3835776, -0.7475352, 0.5209291, -0.6301091, -0.99442935}; + float bias[3] = {-0.3654299, -1.5711838, -0.15546428}; + + params.activation = TANH; + params.has_bias = 1; + params.biases = bias; + params.input_num = 3; + params.kernel = kernel; + params.output_num = 3; + + operands[0].data = input; + operands[0].dims[0] = 1; + operands[0].dims[1] = 5; + operands[0].dims[2] = 6; + operands[0].dims[3] = 3; + operands[1].data = NULL; + + input_indexes[0] = 0; + dnn_execute_layer_dense(operands, input_indexes, 1, ¶ms, NULL); + + output = operands[1].data; + for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { + if (fabs(output[i] - expected_output[i]) > EPSON) { + printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); + av_freep(&output); + return 1; + } + } + + av_freep(&output); + return 0; +} + +int main(int argc, char **argv) +{ + if (test()) + return 1; + + return 0; +} diff --git a/tools/python/convert_from_tensorflow.py b/tools/python/convert_from_tensorflow.py index 1762091fdd..1a5d93fbb7 100644 --- a/tools/python/convert_from_tensorflow.py +++ b/tools/python/convert_from_tensorflow.py @@ -48,9 +48,9 @@ class Operand(object): self.used_count = self.used_count + 1 def __str__(self): - return "{}: (name: {}, iotype: {}, dtype: {}, dims: ({},{},{},{}) used_count: {})".format(self.index, + return "{}: (name: {}, iotype: {}, dtype: {}, dims: {}, used_count: {})".format(self.index, self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype], - self.dims[0], self.dims[1], self.dims[2], self.dims[3], self.used_count) + self.dims, self.used_count) def __lt__(self, other): return self.index < other.index @@ -71,8 +71,10 @@ class TFConverter: self.converted_nodes = set() self.conv2d_scope_names = set() self.conv2d_scopename_inputname_dict = {} + self.dense_scope_names = set() + self.dense_scopename_inputname_dict = {} self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, - 'MathBinary':5, 'MathUnary':6, 'AvgPool':7} + 'MathBinary':5, 'MathUnary':6, 'AvgPool':7, 'MatMul':8} self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4, 'FloorMod':5} self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4, 'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10, @@ -126,6 +128,22 @@ class TFConverter: return knode, bnode, dnode, anode + def get_dense_params(self, dense_scope_name): + knode = self.name_node_dict[dense_scope_name + '/kernel'] + bnode = self.name_node_dict.get(dense_scope_name + '/bias') + # the BiasAdd name is possible be changed into the output name, + # if activation is None, and BiasAdd.next is the last op which is Identity + anode = None + if bnode: + if dense_scope_name + '/BiasAdd' in self.edges: + anode = self.edges[dense_scope_name + '/BiasAdd'][0] + if anode.op not in self.conv_activations: + anode = None + else: + anode = None + return knode, bnode, anode + + def dump_complex_conv2d_to_file(self, node, f): assert(node.op == 'Conv2D') self.layer_number = self.layer_number + 1 @@ -181,6 +199,57 @@ class TFConverter: output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT) np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) + def dump_dense_to_file(self, node, f): + assert(node.op == 'MatMul') + self.layer_number = self.layer_number + 1 + self.converted_nodes.add(node.name) + + scope_name = TFConverter.get_scope_name(node.name) + #knode for kernel, bnode for bias, anode for activation + knode, bnode, anode = self.get_dense_params(scope_name.split('/')[0]) + + if bnode is not None: + has_bias = 1 + btensor = bnode.attr['value'].tensor + if btensor.tensor_shape.dim[0].size == 1: + bias = struct.pack("f", btensor.float_val[0]) + else: + bias = btensor.tensor_content + else: + has_bias = 0 + + if anode is not None: + activation = anode.op + else: + activation = 'None' + + ktensor = knode.attr['value'].tensor + in_channels = ktensor.tensor_shape.dim[0].size + out_channels = ktensor.tensor_shape.dim[1].size + if in_channels * out_channels == 1: + kernel = np.float32(ktensor.float_val[0]) + else: + kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32) + kernel = kernel.reshape(in_channels, out_channels) + kernel = np.transpose(kernel, [1, 0]) + + np.array([self.op2code[node.op], self.conv_activations[activation], in_channels, out_channels, has_bias], dtype=np.uint32).tofile(f) + kernel.tofile(f) + if has_bias: + f.write(bias) + + input_name = self.dense_scopename_inputname_dict[scope_name.split('/')[0]] + input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) + + if anode is not None: + output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT) + else: + if bnode is not None: + output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT) + else: + output_operand_index = self.add_operand(self.edges[scope_name+'/concat_1'][0].name, Operand.IOTYPE_OUTPUT) + np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) + def dump_simple_conv2d_to_file(self, node, f): assert(node.op == 'Conv2D') @@ -343,9 +412,19 @@ class TFConverter: if node.op == 'Conv2D': self.dump_complex_conv2d_to_file(node, f) continue + if self.in_dense_scope(node.name): + if node.op == 'MatMul': + self.dump_dense_to_file(node, f) + continue + if node.op == 'Conv2D': self.dump_simple_conv2d_to_file(node, f) + continue + if node.name in self.output_names: + input_name = self.id_different_scope_dict[node.name] + if TFConverter.get_scope_name(input_name)!=TFConverter.get_scope_name(node.name): + continue if node.op == 'AvgPool': self.dump_avg_pool_to_file(node, f) elif node.op == 'DepthToSpace': @@ -367,7 +446,7 @@ class TFConverter: np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f) f.write(operand.name.encode('utf-8')) np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f) - np.array([operand.dims[0], operand.dims[1], operand.dims[2], operand.dims[3]], dtype=np.uint32).tofile(f) + np.array(operand.dims, dtype=np.uint32).tofile(f) def dump_to_file(self): @@ -396,6 +475,7 @@ class TFConverter: def remove_identity(self): + self.id_different_scope_dict = {} id_nodes = [] id_dict = {} for node in self.nodes: @@ -408,6 +488,7 @@ class TFConverter: self.name_node_dict[input].name = name self.name_node_dict[name] = self.name_node_dict[input] del self.name_node_dict[input] + self.id_different_scope_dict[name] = input else: id_dict[name] = input @@ -449,8 +530,18 @@ class TFConverter: return False - def generate_conv2d_scope_info(self): - # mostly, conv2d is a sub block in graph, get the scope name + def in_dense_scope(self, name): + inner_scope = TFConverter.get_scope_name(name) + if inner_scope == "": + return False; + for scope in self.dense_scope_names: + index = inner_scope.find(scope) + if index == 0: + return True + return False + + def generate_sub_block_op_scope_info(self): + # mostly, conv2d/dense is a sub block in graph, get the scope name for node in self.nodes: if node.op == 'Conv2D': scope = TFConverter.get_scope_name(node.name) @@ -461,8 +552,17 @@ class TFConverter: if scope + '/kernel' not in self.name_node_dict: continue self.conv2d_scope_names.add(scope) + elif node.op == 'MatMul': + scope = TFConverter.get_scope_name(node.name) + # for the case tf.nn.dense is called directly + if scope == '': + continue + # for the case tf.nn.dense is called within a scope + if scope + '/kernel' not in self.name_node_dict and scope.split('/Tensordot')[0] + '/kernel' not in self.name_node_dict: + continue + self.dense_scope_names.add(scope.split('/Tensordot')[0]) - # get the input name to the conv2d sub block + # get the input name to the conv2d/dense sub block for node in self.nodes: scope = TFConverter.get_scope_name(node.name) if scope in self.conv2d_scope_names: @@ -470,6 +570,16 @@ class TFConverter: for inp in node.input: if TFConverter.get_scope_name(inp) != scope: self.conv2d_scopename_inputname_dict[scope] = inp + elif scope in self.dense_scope_names: + if node.op == 'MatMul' or node.op == 'Shape': + for inp in node.input: + if TFConverter.get_scope_name(inp) != scope: + self.dense_scopename_inputname_dict[scope] = inp + elif scope.split('/Tensordot')[0] in self.dense_scope_names: + if node.op == 'Transpose': + for inp in node.input: + if TFConverter.get_scope_name(inp).find(scope)<0 and TFConverter.get_scope_name(inp).find(scope.split('/')[0])<0: + self.dense_scopename_inputname_dict[scope.split('/Tensordot')[0]] = inp def run(self): @@ -477,7 +587,7 @@ class TFConverter: self.generate_output_names() self.remove_identity() self.generate_edges() - self.generate_conv2d_scope_info() + self.generate_sub_block_op_scope_info() if self.dump4tb: self.dump_for_tensorboard() |