diff options
author | Loren Merritt <lorenm@u.washington.edu> | 2013-06-18 21:30:41 +0000 |
---|---|---|
committer | Luca Barbato <lu_zero@gentoo.org> | 2013-06-29 13:23:57 +0200 |
commit | 41578f70cf8aec8e7565fba1ca7e07f3dc46c3d2 (patch) | |
tree | b492794cae47938289c3210e7b2a249c1843dcdf | |
parent | cc6714bb16b1f0716ba43701d47273dbe9657b8b (diff) | |
download | ffmpeg-41578f70cf8aec8e7565fba1ca7e07f3dc46c3d2.tar.gz |
lpc: use function pointers, in preparation for asm
Signed-off-by: Luca Barbato <lu_zero@gentoo.org>
-rw-r--r-- | libavcodec/lpc.c | 4 | ||||
-rw-r--r-- | libavutil/lls.c | 26 | ||||
-rw-r--r-- | libavutil/lls.h | 15 |
3 files changed, 29 insertions, 16 deletions
diff --git a/libavcodec/lpc.c b/libavcodec/lpc.c index c098b0f0f6..f60976be94 100644 --- a/libavcodec/lpc.c +++ b/libavcodec/lpc.c @@ -212,7 +212,7 @@ int ff_lpc_calc_coefs(LPCContext *s, if(pass){ double eval, inv, rinv; - eval= avpriv_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1); + eval= m[(pass-1)&1].evaluate_lls(&m[(pass-1)&1], var+1, max_order-1); eval= (512>>pass) + fabs(eval - var[0]); inv = 1/eval; rinv = sqrt(inv); @@ -222,7 +222,7 @@ int ff_lpc_calc_coefs(LPCContext *s, }else weight++; - avpriv_update_lls(&m[pass&1], var); + m[pass&1].update_lls(&m[pass&1], var); } avpriv_solve_lls(&m[pass&1], 0.001, 0); } diff --git a/libavutil/lls.c b/libavutil/lls.c index 2061e6a5a9..5a3e4485c8 100644 --- a/libavutil/lls.c +++ b/libavutil/lls.c @@ -32,13 +32,7 @@ #include "version.h" #include "lls.h" -av_cold void avpriv_init_lls(LLSModel *m, int indep_count) -{ - memset(m, 0, sizeof(LLSModel)); - m->indep_count = indep_count; -} - -void avpriv_update_lls(LLSModel *m, double *var) +static void update_lls(LLSModel *m, double *var) { int i, j; @@ -106,7 +100,7 @@ void avpriv_solve_lls(LLSModel *m, double threshold, unsigned short min_order) } } -double avpriv_evaluate_lls(LLSModel *m, double *param, int order) +static double evaluate_lls(LLSModel *m, double *param, int order) { int i; double out = 0; @@ -117,6 +111,14 @@ double avpriv_evaluate_lls(LLSModel *m, double *param, int order) return out; } +av_cold void avpriv_init_lls(LLSModel *m, int indep_count) +{ + memset(m, 0, sizeof(LLSModel)); + m->indep_count = indep_count; + m->update_lls = update_lls; + m->evaluate_lls = evaluate_lls; +} + #if FF_API_LLS_PRIVATE av_cold void av_init_lls(LLSModel *m, int indep_count) { @@ -124,7 +126,7 @@ av_cold void av_init_lls(LLSModel *m, int indep_count) } void av_update_lls(LLSModel *m, double *param, double decay) { - avpriv_update_lls(m, param); + m->update_lls(m, param); } void av_solve_lls(LLSModel *m, double threshold, int min_order) { @@ -132,7 +134,7 @@ void av_solve_lls(LLSModel *m, double threshold, int min_order) } double av_evaluate_lls(LLSModel *m, double *param, int order) { - return avpriv_evaluate_lls(m, param, order); + return m->evaluate_lls(m, param, order); } #endif /* FF_API_LLS_PRIVATE */ @@ -159,10 +161,10 @@ int main(void) var[1] = var[0] + av_lfg_get(&lfg) / (double) UINT_MAX - 0.5; var[2] = var[1] + av_lfg_get(&lfg) / (double) UINT_MAX - 0.5; var[3] = var[2] + av_lfg_get(&lfg) / (double) UINT_MAX - 0.5; - avpriv_update_lls(&m, var); + m.update_lls(&m, var); avpriv_solve_lls(&m, 0.001, 0); for (order = 0; order < 3; order++) { - eval = avpriv_evaluate_lls(&m, var + 1, order); + eval = m.evaluate_lls(&m, var + 1, order); printf("real:%9f order:%d pred:%9f var:%f coeffs:%f %9f %9f\n", var[0], order, eval, sqrt(m.variance[order] / (i + 1)), m.coeff[order][0], m.coeff[order][1], diff --git a/libavutil/lls.h b/libavutil/lls.h index 9c71cf9e6e..81834402f7 100644 --- a/libavutil/lls.h +++ b/libavutil/lls.h @@ -37,12 +37,23 @@ typedef struct LLSModel { double coeff[MAX_VARS][MAX_VARS]; double variance[MAX_VARS]; int indep_count; + /** + * Take the outer-product of var[] with itself, and add to the covariance matrix. + * @param m this context + * @param var training samples, starting with the value to be predicted + */ + void (*update_lls)(struct LLSModel *m, double *var); + /** + * Inner product of var[] and the LPC coefs. + * @param m this context + * @param var training samples, excluding the value to be predicted + * @param order lpc order + */ + double (*evaluate_lls)(struct LLSModel *m, double *var, int order); } LLSModel; void avpriv_init_lls(LLSModel *m, int indep_count); -void avpriv_update_lls(LLSModel *m, double *param); void avpriv_solve_lls(LLSModel *m, double threshold, unsigned short min_order); -double avpriv_evaluate_lls(LLSModel *m, double *param, int order); #if FF_API_LLS_PRIVATE void av_init_lls(LLSModel *m, int indep_count); |