aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorJustin Ruggles <justin.ruggles@gmail.com>2011-01-03 16:08:56 +0000
committerJustin Ruggles <justin.ruggles@gmail.com>2011-01-03 16:08:56 +0000
commitad6b2c1f6d38dcf6754c6a98b60cb635d10be20c (patch)
treef4db0dd6d9d985313089e798a0cfb2a9f39910be
parentf03424a782f39856c66577b106a8c0c9ab5c1da9 (diff)
downloadffmpeg-ad6b2c1f6d38dcf6754c6a98b60cb635d10be20c.tar.gz
Move fixed-point parts of the AC-3 encoder to separate files.
Originally committed as revision 26206 to svn://svn.ffmpeg.org/ffmpeg/trunk
-rw-r--r--libavcodec/Makefile2
-rw-r--r--libavcodec/ac3enc.c436
-rw-r--r--libavcodec/ac3enc_fixed.c428
-rw-r--r--libavcodec/ac3enc_fixed.h60
4 files changed, 505 insertions, 421 deletions
diff --git a/libavcodec/Makefile b/libavcodec/Makefile
index 43ab458449..3d13e4a0d3 100644
--- a/libavcodec/Makefile
+++ b/libavcodec/Makefile
@@ -54,7 +54,7 @@ OBJS-$(CONFIG_AAC_ENCODER) += aacenc.o aaccoder.o \
mpeg4audio.o
OBJS-$(CONFIG_AASC_DECODER) += aasc.o msrledec.o
OBJS-$(CONFIG_AC3_DECODER) += ac3dec.o ac3dec_data.o ac3.o
-OBJS-$(CONFIG_AC3_ENCODER) += ac3enc.o ac3tab.o ac3.o
+OBJS-$(CONFIG_AC3_ENCODER) += ac3enc_fixed.o ac3tab.o ac3.o
OBJS-$(CONFIG_ALAC_DECODER) += alac.o
OBJS-$(CONFIG_ALAC_ENCODER) += alacenc.o
OBJS-$(CONFIG_ALS_DECODER) += alsdec.o bgmc.o mpeg4audio.o
diff --git a/libavcodec/ac3enc.c b/libavcodec/ac3enc.c
index 49fd853609..ec678ee6f4 100644
--- a/libavcodec/ac3enc.c
+++ b/libavcodec/ac3enc.c
@@ -43,35 +43,11 @@
/** Scale a float value by 2^bits and convert to an integer. */
#define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits)))
-typedef int16_t SampleType;
-typedef int32_t CoefType;
-#define SCALE_COEF(a) (a)
-
-/** Scale a float value by 2^15, convert to an integer, and clip to range -32767..32767. */
-#define FIX15(a) av_clip(SCALE_FLOAT(a, 15), -32767, 32767)
+#include "ac3enc_fixed.h"
/**
- * Compex number.
- * Used in fixed-point MDCT calculation.
- */
-typedef struct IComplex {
- int16_t re,im;
-} IComplex;
-
-typedef struct AC3MDCTContext {
- const int16_t *window; ///< MDCT window function
- int nbits; ///< log2(transform size)
- int16_t *costab; ///< FFT cos table
- int16_t *sintab; ///< FFT sin table
- int16_t *xcos1; ///< MDCT cos table
- int16_t *xsin1; ///< MDCT sin table
- int16_t *rot_tmp; ///< temp buffer for pre-rotated samples
- IComplex *cplx_tmp; ///< temp buffer for complex pre-rotated samples
-} AC3MDCTContext;
-
-/**
* Data for a single audio block.
*/
typedef struct AC3Block {
@@ -154,6 +130,21 @@ typedef struct AC3EncodeContext {
} AC3EncodeContext;
+/* prototypes for functions in ac3enc_fixed.c */
+
+static av_cold void mdct_end(AC3MDCTContext *mdct);
+
+static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct,
+ int nbits);
+
+static void mdct512(AC3MDCTContext *mdct, CoefType *out, SampleType *in);
+
+static void apply_window(SampleType *output, const SampleType *input,
+ const SampleType *window, int n);
+
+static int normalize_samples(AC3EncodeContext *s);
+
+
/**
* LUT for number of exponent groups.
* exponent_group_tab[exponent strategy-1][number of coefficients]
@@ -234,291 +225,6 @@ static void deinterleave_input_samples(AC3EncodeContext *s,
/**
- * Finalize MDCT and free allocated memory.
- */
-static av_cold void mdct_end(AC3MDCTContext *mdct)
-{
- mdct->nbits = 0;
- av_freep(&mdct->costab);
- av_freep(&mdct->sintab);
- av_freep(&mdct->xcos1);
- av_freep(&mdct->xsin1);
- av_freep(&mdct->rot_tmp);
- av_freep(&mdct->cplx_tmp);
-}
-
-
-/**
- * Initialize FFT tables.
- * @param ln log2(FFT size)
- */
-static av_cold int fft_init(AVCodecContext *avctx, AC3MDCTContext *mdct, int ln)
-{
- int i, n, n2;
- float alpha;
-
- n = 1 << ln;
- n2 = n >> 1;
-
- FF_ALLOC_OR_GOTO(avctx, mdct->costab, n2 * sizeof(*mdct->costab), fft_alloc_fail);
- FF_ALLOC_OR_GOTO(avctx, mdct->sintab, n2 * sizeof(*mdct->sintab), fft_alloc_fail);
-
- for (i = 0; i < n2; i++) {
- alpha = 2.0 * M_PI * i / n;
- mdct->costab[i] = FIX15(cos(alpha));
- mdct->sintab[i] = FIX15(sin(alpha));
- }
-
- return 0;
-fft_alloc_fail:
- mdct_end(mdct);
- return AVERROR(ENOMEM);
-}
-
-
-/**
- * Initialize MDCT tables.
- * @param nbits log2(MDCT size)
- */
-static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct,
- int nbits)
-{
- int i, n, n4, ret;
-
- n = 1 << nbits;
- n4 = n >> 2;
-
- mdct->nbits = nbits;
-
- ret = fft_init(avctx, mdct, nbits - 2);
- if (ret)
- return ret;
-
- mdct->window = ff_ac3_window;
-
- FF_ALLOC_OR_GOTO(avctx, mdct->xcos1, n4 * sizeof(*mdct->xcos1), mdct_alloc_fail);
- FF_ALLOC_OR_GOTO(avctx, mdct->xsin1, n4 * sizeof(*mdct->xsin1), mdct_alloc_fail);
- FF_ALLOC_OR_GOTO(avctx, mdct->rot_tmp, n * sizeof(*mdct->rot_tmp), mdct_alloc_fail);
- FF_ALLOC_OR_GOTO(avctx, mdct->cplx_tmp, n4 * sizeof(*mdct->cplx_tmp), mdct_alloc_fail);
-
- for (i = 0; i < n4; i++) {
- float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n;
- mdct->xcos1[i] = FIX15(-cos(alpha));
- mdct->xsin1[i] = FIX15(-sin(alpha));
- }
-
- return 0;
-mdct_alloc_fail:
- mdct_end(mdct);
- return AVERROR(ENOMEM);
-}
-
-
-/** Butterfly op */
-#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
-{ \
- int ax, ay, bx, by; \
- bx = pre1; \
- by = pim1; \
- ax = qre1; \
- ay = qim1; \
- pre = (bx + ax) >> 1; \
- pim = (by + ay) >> 1; \
- qre = (bx - ax) >> 1; \
- qim = (by - ay) >> 1; \
-}
-
-
-/** Complex multiply */
-#define CMUL(pre, pim, are, aim, bre, bim) \
-{ \
- pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15; \
- pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15; \
-}
-
-
-/**
- * Calculate a 2^n point complex FFT on 2^ln points.
- * @param z complex input/output samples
- * @param ln log2(FFT size)
- */
-static void fft(AC3MDCTContext *mdct, IComplex *z, int ln)
-{
- int j, l, np, np2;
- int nblocks, nloops;
- register IComplex *p,*q;
- int tmp_re, tmp_im;
-
- np = 1 << ln;
-
- /* reverse */
- for (j = 0; j < np; j++) {
- int k = av_reverse[j] >> (8 - ln);
- if (k < j)
- FFSWAP(IComplex, z[k], z[j]);
- }
-
- /* pass 0 */
-
- p = &z[0];
- j = np >> 1;
- do {
- BF(p[0].re, p[0].im, p[1].re, p[1].im,
- p[0].re, p[0].im, p[1].re, p[1].im);
- p += 2;
- } while (--j);
-
- /* pass 1 */
-
- p = &z[0];
- j = np >> 2;
- do {
- BF(p[0].re, p[0].im, p[2].re, p[2].im,
- p[0].re, p[0].im, p[2].re, p[2].im);
- BF(p[1].re, p[1].im, p[3].re, p[3].im,
- p[1].re, p[1].im, p[3].im, -p[3].re);
- p+=4;
- } while (--j);
-
- /* pass 2 .. ln-1 */
-
- nblocks = np >> 3;
- nloops = 1 << 2;
- np2 = np >> 1;
- do {
- p = z;
- q = z + nloops;
- for (j = 0; j < nblocks; j++) {
- BF(p->re, p->im, q->re, q->im,
- p->re, p->im, q->re, q->im);
- p++;
- q++;
- for(l = nblocks; l < np2; l += nblocks) {
- CMUL(tmp_re, tmp_im, mdct->costab[l], -mdct->sintab[l], q->re, q->im);
- BF(p->re, p->im, q->re, q->im,
- p->re, p->im, tmp_re, tmp_im);
- p++;
- q++;
- }
- p += nloops;
- q += nloops;
- }
- nblocks = nblocks >> 1;
- nloops = nloops << 1;
- } while (nblocks);
-}
-
-
-/**
- * Calculate a 512-point MDCT
- * @param out 256 output frequency coefficients
- * @param in 512 windowed input audio samples
- */
-static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in)
-{
- int i, re, im, n, n2, n4;
- int16_t *rot = mdct->rot_tmp;
- IComplex *x = mdct->cplx_tmp;
-
- n = 1 << mdct->nbits;
- n2 = n >> 1;
- n4 = n >> 2;
-
- /* shift to simplify computations */
- for (i = 0; i <n4; i++)
- rot[i] = -in[i + 3*n4];
- memcpy(&rot[n4], &in[0], 3*n4*sizeof(*in));
-
- /* pre rotation */
- for (i = 0; i < n4; i++) {
- re = ((int)rot[ 2*i] - (int)rot[ n-1-2*i]) >> 1;
- im = -((int)rot[n2+2*i] - (int)rot[n2-1-2*i]) >> 1;
- CMUL(x[i].re, x[i].im, re, im, -mdct->xcos1[i], mdct->xsin1[i]);
- }
-
- fft(mdct, x, mdct->nbits - 2);
-
- /* post rotation */
- for (i = 0; i < n4; i++) {
- re = x[i].re;
- im = x[i].im;
- CMUL(out[n2-1-2*i], out[2*i], re, im, mdct->xsin1[i], mdct->xcos1[i]);
- }
-}
-
-
-/**
- * Apply KBD window to input samples prior to MDCT.
- */
-static void apply_window(int16_t *output, const int16_t *input,
- const int16_t *window, int n)
-{
- int i;
- int n2 = n >> 1;
-
- for (i = 0; i < n2; i++) {
- output[i] = MUL16(input[i], window[i]) >> 15;
- output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15;
- }
-}
-
-
-/**
- * Calculate the log2() of the maximum absolute value in an array.
- * @param tab input array
- * @param n number of values in the array
- * @return log2(max(abs(tab[])))
- */
-static int log2_tab(int16_t *tab, int n)
-{
- int i, v;
-
- v = 0;
- for (i = 0; i < n; i++)
- v |= abs(tab[i]);
-
- return av_log2(v);
-}
-
-
-/**
- * Left-shift each value in an array by a specified amount.
- * @param tab input array
- * @param n number of values in the array
- * @param lshift left shift amount. a negative value means right shift.
- */
-static void lshift_tab(int16_t *tab, int n, int lshift)
-{
- int i;
-
- if (lshift > 0) {
- for (i = 0; i < n; i++)
- tab[i] <<= lshift;
- } else if (lshift < 0) {
- lshift = -lshift;
- for (i = 0; i < n; i++)
- tab[i] >>= lshift;
- }
-}
-
-
-/**
- * Normalize the input samples to use the maximum available precision.
- * This assumes signed 16-bit input samples. Exponents are reduced by 9 to
- * match the 24-bit internal precision for MDCT coefficients.
- *
- * @return exponent shift
- */
-static int normalize_samples(AC3EncodeContext *s)
-{
- int v = 14 - log2_tab(s->windowed_samples, AC3_WINDOW_SIZE);
- v = FFMAX(0, v);
- lshift_tab(s->windowed_samples, AC3_WINDOW_SIZE, v);
- return v - 9;
-}
-
-
-/**
* Apply the MDCT to input samples to generate frequency coefficients.
* This applies the KBD window and normalizes the input to reduce precision
* loss due to fixed-point calculations.
@@ -1982,113 +1688,3 @@ init_fail:
ac3_encode_close(avctx);
return ret;
}
-
-
-#ifdef TEST
-/*************************************************************************/
-/* TEST */
-
-#include "libavutil/lfg.h"
-
-#define MDCT_NBITS 9
-#define MDCT_SAMPLES (1 << MDCT_NBITS)
-#define FN (MDCT_SAMPLES/4)
-
-
-static void fft_test(AC3MDCTContext *mdct, AVLFG *lfg)
-{
- IComplex in[FN], in1[FN];
- int k, n, i;
- float sum_re, sum_im, a;
-
- for (i = 0; i < FN; i++) {
- in[i].re = av_lfg_get(lfg) % 65535 - 32767;
- in[i].im = av_lfg_get(lfg) % 65535 - 32767;
- in1[i] = in[i];
- }
- fft(mdct, in, 7);
-
- /* do it by hand */
- for (k = 0; k < FN; k++) {
- sum_re = 0;
- sum_im = 0;
- for (n = 0; n < FN; n++) {
- a = -2 * M_PI * (n * k) / FN;
- sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
- sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
- }
- av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n",
- k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
- }
-}
-
-
-static void mdct_test(AC3MDCTContext *mdct, AVLFG *lfg)
-{
- int16_t input[MDCT_SAMPLES];
- int32_t output[AC3_MAX_COEFS];
- float input1[MDCT_SAMPLES];
- float output1[AC3_MAX_COEFS];
- float s, a, err, e, emax;
- int i, k, n;
-
- for (i = 0; i < MDCT_SAMPLES; i++) {
- input[i] = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10;
- input1[i] = input[i];
- }
-
- mdct512(mdct, output, input);
-
- /* do it by hand */
- for (k = 0; k < AC3_MAX_COEFS; k++) {
- s = 0;
- for (n = 0; n < MDCT_SAMPLES; n++) {
- a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES));
- s += input1[n] * cos(a);
- }
- output1[k] = -2 * s / MDCT_SAMPLES;
- }
-
- err = 0;
- emax = 0;
- for (i = 0; i < AC3_MAX_COEFS; i++) {
- av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]);
- e = output[i] - output1[i];
- if (e > emax)
- emax = e;
- err += e * e;
- }
- av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax);
-}
-
-
-int main(void)
-{
- AVLFG lfg;
- AC3MDCTContext mdct;
-
- mdct.avctx = NULL;
- av_log_set_level(AV_LOG_DEBUG);
- mdct_init(&mdct, 9);
-
- fft_test(&mdct, &lfg);
- mdct_test(&mdct, &lfg);
-
- return 0;
-}
-#endif /* TEST */
-
-
-AVCodec ac3_encoder = {
- "ac3",
- AVMEDIA_TYPE_AUDIO,
- CODEC_ID_AC3,
- sizeof(AC3EncodeContext),
- ac3_encode_init,
- ac3_encode_frame,
- ac3_encode_close,
- NULL,
- .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
- .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
- .channel_layouts = ac3_channel_layouts,
-};
diff --git a/libavcodec/ac3enc_fixed.c b/libavcodec/ac3enc_fixed.c
new file mode 100644
index 0000000000..6505b7a0ea
--- /dev/null
+++ b/libavcodec/ac3enc_fixed.c
@@ -0,0 +1,428 @@
+/*
+ * The simplest AC-3 encoder
+ * Copyright (c) 2000 Fabrice Bellard
+ * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
+ * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * fixed-point AC-3 encoder.
+ */
+
+#include "ac3enc.c"
+
+
+/** Scale a float value by 2^15, convert to an integer, and clip to range -32767..32767. */
+#define FIX15(a) av_clip(SCALE_FLOAT(a, 15), -32767, 32767)
+
+
+/**
+ * Finalize MDCT and free allocated memory.
+ */
+static av_cold void mdct_end(AC3MDCTContext *mdct)
+{
+ mdct->nbits = 0;
+ av_freep(&mdct->costab);
+ av_freep(&mdct->sintab);
+ av_freep(&mdct->xcos1);
+ av_freep(&mdct->xsin1);
+ av_freep(&mdct->rot_tmp);
+ av_freep(&mdct->cplx_tmp);
+}
+
+
+/**
+ * Initialize FFT tables.
+ * @param ln log2(FFT size)
+ */
+static av_cold int fft_init(AVCodecContext *avctx, AC3MDCTContext *mdct, int ln)
+{
+ int i, n, n2;
+ float alpha;
+
+ n = 1 << ln;
+ n2 = n >> 1;
+
+ FF_ALLOC_OR_GOTO(avctx, mdct->costab, n2 * sizeof(*mdct->costab), fft_alloc_fail);
+ FF_ALLOC_OR_GOTO(avctx, mdct->sintab, n2 * sizeof(*mdct->sintab), fft_alloc_fail);
+
+ for (i = 0; i < n2; i++) {
+ alpha = 2.0 * M_PI * i / n;
+ mdct->costab[i] = FIX15(cos(alpha));
+ mdct->sintab[i] = FIX15(sin(alpha));
+ }
+
+ return 0;
+fft_alloc_fail:
+ mdct_end(mdct);
+ return AVERROR(ENOMEM);
+}
+
+
+/**
+ * Initialize MDCT tables.
+ * @param nbits log2(MDCT size)
+ */
+static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct,
+ int nbits)
+{
+ int i, n, n4, ret;
+
+ n = 1 << nbits;
+ n4 = n >> 2;
+
+ mdct->nbits = nbits;
+
+ ret = fft_init(avctx, mdct, nbits - 2);
+ if (ret)
+ return ret;
+
+ mdct->window = ff_ac3_window;
+
+ FF_ALLOC_OR_GOTO(avctx, mdct->xcos1, n4 * sizeof(*mdct->xcos1), mdct_alloc_fail);
+ FF_ALLOC_OR_GOTO(avctx, mdct->xsin1, n4 * sizeof(*mdct->xsin1), mdct_alloc_fail);
+ FF_ALLOC_OR_GOTO(avctx, mdct->rot_tmp, n * sizeof(*mdct->rot_tmp), mdct_alloc_fail);
+ FF_ALLOC_OR_GOTO(avctx, mdct->cplx_tmp, n4 * sizeof(*mdct->cplx_tmp), mdct_alloc_fail);
+
+ for (i = 0; i < n4; i++) {
+ float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n;
+ mdct->xcos1[i] = FIX15(-cos(alpha));
+ mdct->xsin1[i] = FIX15(-sin(alpha));
+ }
+
+ return 0;
+mdct_alloc_fail:
+ mdct_end(mdct);
+ return AVERROR(ENOMEM);
+}
+
+
+/** Butterfly op */
+#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
+{ \
+ int ax, ay, bx, by; \
+ bx = pre1; \
+ by = pim1; \
+ ax = qre1; \
+ ay = qim1; \
+ pre = (bx + ax) >> 1; \
+ pim = (by + ay) >> 1; \
+ qre = (bx - ax) >> 1; \
+ qim = (by - ay) >> 1; \
+}
+
+
+/** Complex multiply */
+#define CMUL(pre, pim, are, aim, bre, bim) \
+{ \
+ pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15; \
+ pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15; \
+}
+
+
+/**
+ * Calculate a 2^n point complex FFT on 2^ln points.
+ * @param z complex input/output samples
+ * @param ln log2(FFT size)
+ */
+static void fft(AC3MDCTContext *mdct, IComplex *z, int ln)
+{
+ int j, l, np, np2;
+ int nblocks, nloops;
+ register IComplex *p,*q;
+ int tmp_re, tmp_im;
+
+ np = 1 << ln;
+
+ /* reverse */
+ for (j = 0; j < np; j++) {
+ int k = av_reverse[j] >> (8 - ln);
+ if (k < j)
+ FFSWAP(IComplex, z[k], z[j]);
+ }
+
+ /* pass 0 */
+
+ p = &z[0];
+ j = np >> 1;
+ do {
+ BF(p[0].re, p[0].im, p[1].re, p[1].im,
+ p[0].re, p[0].im, p[1].re, p[1].im);
+ p += 2;
+ } while (--j);
+
+ /* pass 1 */
+
+ p = &z[0];
+ j = np >> 2;
+ do {
+ BF(p[0].re, p[0].im, p[2].re, p[2].im,
+ p[0].re, p[0].im, p[2].re, p[2].im);
+ BF(p[1].re, p[1].im, p[3].re, p[3].im,
+ p[1].re, p[1].im, p[3].im, -p[3].re);
+ p+=4;
+ } while (--j);
+
+ /* pass 2 .. ln-1 */
+
+ nblocks = np >> 3;
+ nloops = 1 << 2;
+ np2 = np >> 1;
+ do {
+ p = z;
+ q = z + nloops;
+ for (j = 0; j < nblocks; j++) {
+ BF(p->re, p->im, q->re, q->im,
+ p->re, p->im, q->re, q->im);
+ p++;
+ q++;
+ for(l = nblocks; l < np2; l += nblocks) {
+ CMUL(tmp_re, tmp_im, mdct->costab[l], -mdct->sintab[l], q->re, q->im);
+ BF(p->re, p->im, q->re, q->im,
+ p->re, p->im, tmp_re, tmp_im);
+ p++;
+ q++;
+ }
+ p += nloops;
+ q += nloops;
+ }
+ nblocks = nblocks >> 1;
+ nloops = nloops << 1;
+ } while (nblocks);
+}
+
+
+/**
+ * Calculate a 512-point MDCT
+ * @param out 256 output frequency coefficients
+ * @param in 512 windowed input audio samples
+ */
+static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in)
+{
+ int i, re, im, n, n2, n4;
+ int16_t *rot = mdct->rot_tmp;
+ IComplex *x = mdct->cplx_tmp;
+
+ n = 1 << mdct->nbits;
+ n2 = n >> 1;
+ n4 = n >> 2;
+
+ /* shift to simplify computations */
+ for (i = 0; i <n4; i++)
+ rot[i] = -in[i + 3*n4];
+ memcpy(&rot[n4], &in[0], 3*n4*sizeof(*in));
+
+ /* pre rotation */
+ for (i = 0; i < n4; i++) {
+ re = ((int)rot[ 2*i] - (int)rot[ n-1-2*i]) >> 1;
+ im = -((int)rot[n2+2*i] - (int)rot[n2-1-2*i]) >> 1;
+ CMUL(x[i].re, x[i].im, re, im, -mdct->xcos1[i], mdct->xsin1[i]);
+ }
+
+ fft(mdct, x, mdct->nbits - 2);
+
+ /* post rotation */
+ for (i = 0; i < n4; i++) {
+ re = x[i].re;
+ im = x[i].im;
+ CMUL(out[n2-1-2*i], out[2*i], re, im, mdct->xsin1[i], mdct->xcos1[i]);
+ }
+}
+
+
+/**
+ * Apply KBD window to input samples prior to MDCT.
+ */
+static void apply_window(int16_t *output, const int16_t *input,
+ const int16_t *window, int n)
+{
+ int i;
+ int n2 = n >> 1;
+
+ for (i = 0; i < n2; i++) {
+ output[i] = MUL16(input[i], window[i]) >> 15;
+ output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15;
+ }
+}
+
+
+/**
+ * Calculate the log2() of the maximum absolute value in an array.
+ * @param tab input array
+ * @param n number of values in the array
+ * @return log2(max(abs(tab[])))
+ */
+static int log2_tab(int16_t *tab, int n)
+{
+ int i, v;
+
+ v = 0;
+ for (i = 0; i < n; i++)
+ v |= abs(tab[i]);
+
+ return av_log2(v);
+}
+
+
+/**
+ * Left-shift each value in an array by a specified amount.
+ * @param tab input array
+ * @param n number of values in the array
+ * @param lshift left shift amount. a negative value means right shift.
+ */
+static void lshift_tab(int16_t *tab, int n, int lshift)
+{
+ int i;
+
+ if (lshift > 0) {
+ for (i = 0; i < n; i++)
+ tab[i] <<= lshift;
+ } else if (lshift < 0) {
+ lshift = -lshift;
+ for (i = 0; i < n; i++)
+ tab[i] >>= lshift;
+ }
+}
+
+
+/**
+ * Normalize the input samples to use the maximum available precision.
+ * This assumes signed 16-bit input samples. Exponents are reduced by 9 to
+ * match the 24-bit internal precision for MDCT coefficients.
+ *
+ * @return exponent shift
+ */
+static int normalize_samples(AC3EncodeContext *s)
+{
+ int v = 14 - log2_tab(s->windowed_samples, AC3_WINDOW_SIZE);
+ v = FFMAX(0, v);
+ lshift_tab(s->windowed_samples, AC3_WINDOW_SIZE, v);
+ return v - 9;
+}
+
+
+#ifdef TEST
+/*************************************************************************/
+/* TEST */
+
+#include "libavutil/lfg.h"
+
+#define MDCT_NBITS 9
+#define MDCT_SAMPLES (1 << MDCT_NBITS)
+#define FN (MDCT_SAMPLES/4)
+
+
+static void fft_test(AC3MDCTContext *mdct, AVLFG *lfg)
+{
+ IComplex in[FN], in1[FN];
+ int k, n, i;
+ float sum_re, sum_im, a;
+
+ for (i = 0; i < FN; i++) {
+ in[i].re = av_lfg_get(lfg) % 65535 - 32767;
+ in[i].im = av_lfg_get(lfg) % 65535 - 32767;
+ in1[i] = in[i];
+ }
+ fft(mdct, in, 7);
+
+ /* do it by hand */
+ for (k = 0; k < FN; k++) {
+ sum_re = 0;
+ sum_im = 0;
+ for (n = 0; n < FN; n++) {
+ a = -2 * M_PI * (n * k) / FN;
+ sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
+ sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
+ }
+ av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n",
+ k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
+ }
+}
+
+
+static void mdct_test(AC3MDCTContext *mdct, AVLFG *lfg)
+{
+ int16_t input[MDCT_SAMPLES];
+ int32_t output[AC3_MAX_COEFS];
+ float input1[MDCT_SAMPLES];
+ float output1[AC3_MAX_COEFS];
+ float s, a, err, e, emax;
+ int i, k, n;
+
+ for (i = 0; i < MDCT_SAMPLES; i++) {
+ input[i] = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10;
+ input1[i] = input[i];
+ }
+
+ mdct512(mdct, output, input);
+
+ /* do it by hand */
+ for (k = 0; k < AC3_MAX_COEFS; k++) {
+ s = 0;
+ for (n = 0; n < MDCT_SAMPLES; n++) {
+ a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES));
+ s += input1[n] * cos(a);
+ }
+ output1[k] = -2 * s / MDCT_SAMPLES;
+ }
+
+ err = 0;
+ emax = 0;
+ for (i = 0; i < AC3_MAX_COEFS; i++) {
+ av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]);
+ e = output[i] - output1[i];
+ if (e > emax)
+ emax = e;
+ err += e * e;
+ }
+ av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax);
+}
+
+
+int main(void)
+{
+ AVLFG lfg;
+ AC3MDCTContext mdct;
+
+ mdct.avctx = NULL;
+ av_log_set_level(AV_LOG_DEBUG);
+ mdct_init(&mdct, 9);
+
+ fft_test(&mdct, &lfg);
+ mdct_test(&mdct, &lfg);
+
+ return 0;
+}
+#endif /* TEST */
+
+
+AVCodec ac3_encoder = {
+ "ac3",
+ AVMEDIA_TYPE_AUDIO,
+ CODEC_ID_AC3,
+ sizeof(AC3EncodeContext),
+ ac3_encode_init,
+ ac3_encode_frame,
+ ac3_encode_close,
+ NULL,
+ .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
+ .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
+ .channel_layouts = ac3_channel_layouts,
+};
diff --git a/libavcodec/ac3enc_fixed.h b/libavcodec/ac3enc_fixed.h
new file mode 100644
index 0000000000..2d512017cb
--- /dev/null
+++ b/libavcodec/ac3enc_fixed.h
@@ -0,0 +1,60 @@
+/*
+ * The simplest AC-3 encoder
+ * Copyright (c) 2000 Fabrice Bellard
+ * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
+ * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * fixed-point AC-3 encoder header.
+ */
+
+#ifndef AVCODEC_AC3ENC_FIXED_H
+#define AVCODEC_AC3ENC_FIXED_H
+
+#include <stdint.h>
+
+
+typedef int16_t SampleType;
+typedef int32_t CoefType;
+
+#define SCALE_COEF(a) (a)
+
+
+/**
+ * Compex number.
+ * Used in fixed-point MDCT calculation.
+ */
+typedef struct IComplex {
+ int16_t re,im;
+} IComplex;
+
+typedef struct AC3MDCTContext {
+ const int16_t *window; ///< MDCT window function
+ int nbits; ///< log2(transform size)
+ int16_t *costab; ///< FFT cos table
+ int16_t *sintab; ///< FFT sin table
+ int16_t *xcos1; ///< MDCT cos table
+ int16_t *xsin1; ///< MDCT sin table
+ int16_t *rot_tmp; ///< temp buffer for pre-rotated samples
+ IComplex *cplx_tmp; ///< temp buffer for complex pre-rotated samples
+} AC3MDCTContext;
+
+#endif /* AVCODEC_AC3ENC_FIXED_H */