aboutsummaryrefslogblamecommitdiffstats
path: root/libavcodec/mss3.c
blob: 327849f92b9bfd665479f10960b9102fd5e8eebc (plain) (tree)
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549


























                                                                               
                    
                     



























































































                                           








































































































































































































































































































































































































































                                                                        
                                       





                                               















                                                                      
                                                         












































                                                                       














                                                             
                                                
                                                                        




























































































































































































































                                                                               
                                       





                                                            
/*
 * Microsoft Screen 3 (aka Microsoft ATC Screen) decoder
 * Copyright (c) 2012 Konstantin Shishkov
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * Microsoft Screen 3 (aka Microsoft ATC Screen) decoder
 */

#include "avcodec.h"
#include "bytestream.h"
#include "dsputil.h"
#include "mss34dsp.h"

#define HEADER_SIZE 27

#define MODEL2_SCALE       13
#define MODEL_SCALE        15
#define MODEL256_SEC_SCALE  9

typedef struct Model2 {
    int      upd_val, till_rescale;
    unsigned zero_freq,  zero_weight;
    unsigned total_freq, total_weight;
} Model2;

typedef struct Model {
    int weights[16], freqs[16];
    int num_syms;
    int tot_weight;
    int upd_val, max_upd_val, till_rescale;
} Model;

typedef struct Model256 {
    int weights[256], freqs[256];
    int tot_weight;
    int secondary[68];
    int sec_size;
    int upd_val, max_upd_val, till_rescale;
} Model256;

#define RAC_BOTTOM 0x01000000
typedef struct RangeCoder {
    const uint8_t *src, *src_end;

    uint32_t range, low;
    int got_error;
} RangeCoder;

enum BlockType {
    FILL_BLOCK = 0,
    IMAGE_BLOCK,
    DCT_BLOCK,
    HAAR_BLOCK,
    SKIP_BLOCK
};

typedef struct BlockTypeContext {
    int      last_type;
    Model    bt_model[5];
} BlockTypeContext;

typedef struct FillBlockCoder {
    int      fill_val;
    Model    coef_model;
} FillBlockCoder;

typedef struct ImageBlockCoder {
    Model256 esc_model, vec_entry_model;
    Model    vec_size_model;
    Model    vq_model[125];
} ImageBlockCoder;

typedef struct DCTBlockCoder {
    int      *prev_dc;
    int      prev_dc_stride;
    int      prev_dc_height;
    int      quality;
    uint16_t qmat[64];
    Model    dc_model;
    Model2   sign_model;
    Model256 ac_model;
} DCTBlockCoder;

typedef struct HaarBlockCoder {
    int      quality, scale;
    Model256 coef_model;
    Model    coef_hi_model;
} HaarBlockCoder;

typedef struct MSS3Context {
    AVCodecContext   *avctx;
    AVFrame          pic;

    int              got_error;
    RangeCoder       coder;
    BlockTypeContext btype[3];
    FillBlockCoder   fill_coder[3];
    ImageBlockCoder  image_coder[3];
    DCTBlockCoder    dct_coder[3];
    HaarBlockCoder   haar_coder[3];

    int              dctblock[64];
    int              hblock[16 * 16];
} MSS3Context;


static void model2_reset(Model2 *m)
{
    m->zero_weight  = 1;
    m->total_weight = 2;
    m->zero_freq    = 0x1000;
    m->total_freq   = 0x2000;
    m->upd_val      = 4;
    m->till_rescale = 4;
}

static void model2_update(Model2 *m, int bit)
{
    unsigned scale;

    if (!bit)
        m->zero_weight++;
    m->till_rescale--;
    if (m->till_rescale)
        return;

    m->total_weight += m->upd_val;
    if (m->total_weight > 0x2000) {
        m->total_weight = (m->total_weight + 1) >> 1;
        m->zero_weight  = (m->zero_weight  + 1) >> 1;
        if (m->total_weight == m->zero_weight)
            m->total_weight = m->zero_weight + 1;
    }
    m->upd_val = m->upd_val * 5 >> 2;
    if (m->upd_val > 64)
        m->upd_val = 64;
    scale = 0x80000000u / m->total_weight;
    m->zero_freq    = m->zero_weight  * scale >> 18;
    m->total_freq   = m->total_weight * scale >> 18;
    m->till_rescale = m->upd_val;
}

static void model_update(Model *m, int val)
{
    int i, sum = 0;
    unsigned scale;

    m->weights[val]++;
    m->till_rescale--;
    if (m->till_rescale)
        return;
    m->tot_weight += m->upd_val;

    if (m->tot_weight > 0x8000) {
        m->tot_weight = 0;
        for (i = 0; i < m->num_syms; i++) {
            m->weights[i]  = (m->weights[i] + 1) >> 1;
            m->tot_weight +=  m->weights[i];
        }
    }
    scale = 0x80000000u / m->tot_weight;
    for (i = 0; i < m->num_syms; i++) {
        m->freqs[i] = sum * scale >> 16;
        sum += m->weights[i];
    }

    m->upd_val = m->upd_val * 5 >> 2;
    if (m->upd_val > m->max_upd_val)
        m->upd_val = m->max_upd_val;
    m->till_rescale = m->upd_val;
}

static void model_reset(Model *m)
{
    int i;

    m->tot_weight   = 0;
    for (i = 0; i < m->num_syms - 1; i++)
        m->weights[i] = 1;
    m->weights[m->num_syms - 1] = 0;

    m->upd_val      = m->num_syms;
    m->till_rescale = 1;
    model_update(m, m->num_syms - 1);
    m->till_rescale =
    m->upd_val      = (m->num_syms + 6) >> 1;
}

static av_cold void model_init(Model *m, int num_syms)
{
    m->num_syms    = num_syms;
    m->max_upd_val = 8 * num_syms + 48;

    model_reset(m);
}

static void model256_update(Model256 *m, int val)
{
    int i, sum = 0;
    unsigned scale;
    int send, sidx = 1;

    m->weights[val]++;
    m->till_rescale--;
    if (m->till_rescale)
        return;
    m->tot_weight += m->upd_val;

    if (m->tot_weight > 0x8000) {
        m->tot_weight = 0;
        for (i = 0; i < 256; i++) {
            m->weights[i]  = (m->weights[i] + 1) >> 1;
            m->tot_weight +=  m->weights[i];
        }
    }
    scale = 0x80000000u / m->tot_weight;
    m->secondary[0] = 0;
    for (i = 0; i < 256; i++) {
        m->freqs[i] = sum * scale >> 16;
        sum += m->weights[i];
        send = m->freqs[i] >> MODEL256_SEC_SCALE;
        while (sidx <= send)
            m->secondary[sidx++] = i - 1;
    }
    while (sidx < m->sec_size)
        m->secondary[sidx++] = 255;

    m->upd_val = m->upd_val * 5 >> 2;
    if (m->upd_val > m->max_upd_val)
        m->upd_val = m->max_upd_val;
    m->till_rescale = m->upd_val;
}

static void model256_reset(Model256 *m)
{
    int i;

    for (i = 0; i < 255; i++)
        m->weights[i] = 1;
    m->weights[255] = 0;

    m->tot_weight   = 0;
    m->upd_val      = 256;
    m->till_rescale = 1;
    model256_update(m, 255);
    m->till_rescale =
    m->upd_val      = (256 + 6) >> 1;
}

static av_cold void model256_init(Model256 *m)
{
    m->max_upd_val = 8 * 256 + 48;
    m->sec_size    = (1 << 6) + 2;

    model256_reset(m);
}

static void rac_init(RangeCoder *c, const uint8_t *src, int size)
{
    int i;

    c->src       = src;
    c->src_end   = src + size;
    c->low       = 0;
    for (i = 0; i < FFMIN(size, 4); i++)
        c->low = (c->low << 8) | *c->src++;
    c->range     = 0xFFFFFFFF;
    c->got_error = 0;
}

static void rac_normalise(RangeCoder *c)
{
    for (;;) {
        c->range <<= 8;
        c->low   <<= 8;
        if (c->src < c->src_end) {
            c->low |= *c->src++;
        } else if (!c->low) {
            c->got_error = 1;
            return;
        }
        if (c->range >= RAC_BOTTOM)
            return;
    }
}

static int rac_get_bit(RangeCoder *c)
{
    int bit;

    c->range >>= 1;

    bit = (c->range <= c->low);
    if (bit)
        c->low -= c->range;

    if (c->range < RAC_BOTTOM)
        rac_normalise(c);

    return bit;
}

static int rac_get_bits(RangeCoder *c, int nbits)
{
    int val;

    c->range >>= nbits;
    val = c->low / c->range;
    c->low -= c->range * val;

    if (c->range < RAC_BOTTOM)
        rac_normalise(c);

    return val;
}

static int rac_get_model2_sym(RangeCoder *c, Model2 *m)
{
    int bit, helper;

    helper = m->zero_freq * (c->range >> MODEL2_SCALE);
    bit    = (c->low >= helper);
    if (bit) {
        c->low   -= helper;
        c->range -= helper;
    } else {
        c->range  = helper;
    }

    if (c->range < RAC_BOTTOM)
        rac_normalise(c);

    model2_update(m, bit);

    return bit;
}

static int rac_get_model_sym(RangeCoder *c, Model *m)
{
    int prob, prob2, helper, val;
    int end, end2;

    prob       = 0;
    prob2      = c->range;
    c->range >>= MODEL_SCALE;
    val        = 0;
    end        = m->num_syms >> 1;
    end2       = m->num_syms;
    do {
        helper = m->freqs[end] * c->range;
        if (helper <= c->low) {
            val   = end;
            prob  = helper;
        } else {
            end2  = end;
            prob2 = helper;
        }
        end = (end2 + val) >> 1;
    } while (end != val);
    c->low  -= prob;
    c->range = prob2 - prob;
    if (c->range < RAC_BOTTOM)
        rac_normalise(c);

    model_update(m, val);

    return val;
}

static int rac_get_model256_sym(RangeCoder *c, Model256 *m)
{
    int prob, prob2, helper, val;
    int start, end;
    int ssym;

    prob2      = c->range;
    c->range >>= MODEL_SCALE;

    helper     = c->low / c->range;
    ssym       = helper >> MODEL256_SEC_SCALE;
    val        = m->secondary[ssym];

    end = start = m->secondary[ssym + 1] + 1;
    while (end > val + 1) {
        ssym = (end + val) >> 1;
        if (m->freqs[ssym] <= helper) {
            end = start;
            val = ssym;
        } else {
            end   = (end + val) >> 1;
            start = ssym;
        }
    }
    prob = m->freqs[val] * c->range;
    if (val != 255)
        prob2 = m->freqs[val + 1] * c->range;

    c->low  -= prob;
    c->range = prob2 - prob;
    if (c->range < RAC_BOTTOM)
        rac_normalise(c);

    model256_update(m, val);

    return val;
}

static int decode_block_type(RangeCoder *c, BlockTypeContext *bt)
{
    bt->last_type = rac_get_model_sym(c, &bt->bt_model[bt->last_type]);

    return bt->last_type;
}

static int decode_coeff(RangeCoder *c, Model *m)
{
    int val, sign;

    val = rac_get_model_sym(c, m);
    if (val) {
        sign = rac_get_bit(c);
        if (val > 1) {
            val--;
            val = (1 << val) + rac_get_bits(c, val);
        }
        if (!sign)
            val = -val;
    }

    return val;
}

static void decode_fill_block(RangeCoder *c, FillBlockCoder *fc,
                              uint8_t *dst, int stride, int block_size)
{
    int i;

    fc->fill_val += decode_coeff(c, &fc->coef_model);

    for (i = 0; i < block_size; i++, dst += stride)
        memset(dst, fc->fill_val, block_size);
}

static void decode_image_block(RangeCoder *c, ImageBlockCoder *ic,
                               uint8_t *dst, int stride, int block_size)
{
    int i, j;
    int vec_size;
    int vec[4];
    int prev_line[16];
    int A, B, C;

    vec_size = rac_get_model_sym(c, &ic->vec_size_model) + 2;
    for (i = 0; i < vec_size; i++)
        vec[i] = rac_get_model256_sym(c, &ic->vec_entry_model);
    for (; i < 4; i++)
        vec[i] = 0;
    memset(prev_line, 0, sizeof(prev_line));

    for (j = 0; j < block_size; j++) {
        A = 0;
        B = 0;
        for (i = 0; i < block_size; i++) {
            C = B;
            B = prev_line[i];
            A = rac_get_model_sym(c, &ic->vq_model[A + B * 5 + C * 25]);

            prev_line[i] = A;
            if (A < 4)
               dst[i] = vec[A];
            else
               dst[i] = rac_get_model256_sym(c, &ic->esc_model);
        }
        dst += stride;
    }
}

static int decode_dct(RangeCoder *c, DCTBlockCoder *bc, int *block,
                      int bx, int by)
{
    int skip, val, sign, pos = 1, zz_pos, dc;
    int blk_pos = bx + by * bc->prev_dc_stride;

    memset(block, 0, sizeof(*block) * 64);

    dc = decode_coeff(c, &bc->dc_model);
    if (by) {
        if (bx) {
            int l, tl, t;

            l  = bc->prev_dc[blk_pos - 1];
            tl = bc->prev_dc[blk_pos - 1 - bc->prev_dc_stride];
            t  = bc->prev_dc[blk_pos     - bc->prev_dc_stride];

            if (FFABS(t - tl) <= FFABS(l - tl))
                dc += l;
            else
                dc += t;
        } else {
            dc += bc->prev_dc[blk_pos - bc->prev_dc_stride];
        }
    } else if (bx) {
        dc += bc->prev_dc[bx - 1];
    }
    bc->prev_dc[blk_pos] = dc;
    block[0]             = dc * bc->qmat[0];

    while (pos < 64) {
        val = rac_get_model256_sym(c, &bc->ac_model);
        if (!val)
            return 0;
        if (val == 0xF0) {
            pos += 16;
            continue;
        }
        skip = val >> 4;
        val  = val & 0xF;
        if (!val)
            return -1;
        pos += skip;
        if (pos >= 64)
            return -1;

        sign = rac_get_model2_sym(c, &bc->sign_model);
        if (val > 1) {
            val--;
            val = (1 << val) + rac_get_bits(c, val);
        }
        if (!sign)
            val = -val;

        zz_pos = ff_zigzag_direct[pos];
        block[zz_pos] = val * bc->qmat[zz_pos];
        pos++;
    }

    return pos == 64 ? 0 : -1;
}

static void decode_dct_block(RangeCoder *c, DCTBlockCoder *bc,
                             uint8_t *dst, int stride, int block_size,
                             int *block, int mb_x, int mb_y)
{
    int i, j;
    int bx, by;
    int nblocks = block_size >> 3;

    bx = mb_x * nblocks;
    by = mb_y * nblocks;

    for (j = 0; j < nblocks; j++) {
        for (i = 0; i < nblocks; i++) {
            if (decode_dct(c, bc, block, bx + i, by + j)) {
                c->got_error = 1;
                return;
            }
            ff_mss34_dct_put(dst + i * 8, stride, block);
        }
        dst += 8 * stride;
    }
}

static void decode_haar_block(RangeCoder *c, HaarBlockCoder *hc,
                              uint8_t *dst, int stride, int block_size,
                              int *block)
{
    const int hsize = block_size >> 1;
    int A, B, C, D, t1, t2, t3, t4;
    int i, j;

    for (j = 0; j < block_size; j++) {
        for (i = 0; i < block_size; i++) {
            if (i < hsize && j < hsize)
                block[i] = rac_get_model256_sym(c, &hc->coef_model);
            else
                block[i] = decode_coeff(c, &hc->coef_hi_model);
            block[i] *= hc->scale;
        }
        block += block_size;
    }
    block -= block_size * block_size;

    for (j = 0; j < hsize; j++) {
        for (i = 0; i < hsize; i++) {
            A = block[i];
            B = block[i + hsize];
            C = block[i + hsize * block_size];
            D = block[i + hsize * block_size + hsize];

            t1 = A - B;
            t2 = C - D;
            t3 = A + B;
            t4 = C + D;
            dst[i * 2]              = av_clip_uint8(t1 - t2);
            dst[i * 2 + stride]     = av_clip_uint8(t1 + t2);
            dst[i * 2 + 1]          = av_clip_uint8(t3 - t4);
            dst[i * 2 + 1 + stride] = av_clip_uint8(t3 + t4);
        }
        block += block_size;
        dst   += stride * 2;
    }
}

static void reset_coders(MSS3Context *ctx, int quality)
{
    int i, j;

    for (i = 0; i < 3; i++) {
        ctx->btype[i].last_type = SKIP_BLOCK;
        for (j = 0; j < 5; j++)
            model_reset(&ctx->btype[i].bt_model[j]);
        ctx->fill_coder[i].fill_val = 0;
        model_reset(&ctx->fill_coder[i].coef_model);
        model256_reset(&ctx->image_coder[i].esc_model);
        model256_reset(&ctx->image_coder[i].vec_entry_model);
        model_reset(&ctx->image_coder[i].vec_size_model);
        for (j = 0; j < 125; j++)
            model_reset(&ctx->image_coder[i].vq_model[j]);
        if (ctx->dct_coder[i].quality != quality) {
            ctx->dct_coder[i].quality = quality;
            ff_mss34_gen_quant_mat(ctx->dct_coder[i].qmat, quality, !i);
        }
        memset(ctx->dct_coder[i].prev_dc, 0,
               sizeof(*ctx->dct_coder[i].prev_dc) *
               ctx->dct_coder[i].prev_dc_stride *
               ctx->dct_coder[i].prev_dc_height);
        model_reset(&ctx->dct_coder[i].dc_model);
        model2_reset(&ctx->dct_coder[i].sign_model);
        model256_reset(&ctx->dct_coder[i].ac_model);
        if (ctx->haar_coder[i].quality != quality) {
            ctx->haar_coder[i].quality = quality;
            ctx->haar_coder[i].scale   = 17 - 7 * quality / 50;
        }
        model_reset(&ctx->haar_coder[i].coef_hi_model);
        model256_reset(&ctx->haar_coder[i].coef_model);
    }
}

static av_cold void init_coders(MSS3Context *ctx)
{
    int i, j;

    for (i = 0; i < 3; i++) {
        for (j = 0; j < 5; j++)
            model_init(&ctx->btype[i].bt_model[j], 5);
        model_init(&ctx->fill_coder[i].coef_model, 12);
        model256_init(&ctx->image_coder[i].esc_model);
        model256_init(&ctx->image_coder[i].vec_entry_model);
        model_init(&ctx->image_coder[i].vec_size_model, 3);
        for (j = 0; j < 125; j++)
            model_init(&ctx->image_coder[i].vq_model[j], 5);
        model_init(&ctx->dct_coder[i].dc_model, 12);
        model256_init(&ctx->dct_coder[i].ac_model);
        model_init(&ctx->haar_coder[i].coef_hi_model, 12);
        model256_init(&ctx->haar_coder[i].coef_model);
    }
}

static int mss3_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
                             AVPacket *avpkt)
{
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
    MSS3Context *c = avctx->priv_data;
    RangeCoder *acoder = &c->coder;
    GetByteContext gb;
    uint8_t *dst[3];
    int dec_width, dec_height, dec_x, dec_y, quality, keyframe;
    int x, y, i, mb_width, mb_height, blk_size, btype;
    int ret;

    if (buf_size < HEADER_SIZE) {
        av_log(avctx, AV_LOG_ERROR,
               "Frame should have at least %d bytes, got %d instead\n",
               HEADER_SIZE, buf_size);
        return AVERROR_INVALIDDATA;
    }

    bytestream2_init(&gb, buf, buf_size);
    keyframe   = bytestream2_get_be32(&gb);
    if (keyframe & ~0x301) {
        av_log(avctx, AV_LOG_ERROR, "Invalid frame type %X\n", keyframe);
        return AVERROR_INVALIDDATA;
    }
    keyframe   = !(keyframe & 1);
    bytestream2_skip(&gb, 6);
    dec_x      = bytestream2_get_be16(&gb);
    dec_y      = bytestream2_get_be16(&gb);
    dec_width  = bytestream2_get_be16(&gb);
    dec_height = bytestream2_get_be16(&gb);

    if (dec_x + dec_width > avctx->width ||
        dec_y + dec_height > avctx->height ||
        (dec_width | dec_height) & 0xF) {
        av_log(avctx, AV_LOG_ERROR, "Invalid frame dimensions %dx%d +%d,%d\n",
               dec_width, dec_height, dec_x, dec_y);
        return AVERROR_INVALIDDATA;
    }
    bytestream2_skip(&gb, 4);
    quality    = bytestream2_get_byte(&gb);
    if (quality < 1 || quality > 100) {
        av_log(avctx, AV_LOG_ERROR, "Invalid quality setting %d\n", quality);
        return AVERROR_INVALIDDATA;
    }
    bytestream2_skip(&gb, 4);

    if (keyframe && !bytestream2_get_bytes_left(&gb)) {
        av_log(avctx, AV_LOG_ERROR, "Keyframe without data found\n");
        return AVERROR_INVALIDDATA;
    }
    if (!keyframe && c->got_error)
        return buf_size;
    c->got_error = 0;

    c->pic.reference    = 3;
    c->pic.buffer_hints = FF_BUFFER_HINTS_VALID | FF_BUFFER_HINTS_PRESERVE |
                          FF_BUFFER_HINTS_REUSABLE;
    if ((ret = avctx->reget_buffer(avctx, &c->pic)) < 0) {
        av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
        return ret;
    }
    c->pic.key_frame = keyframe;
    c->pic.pict_type = keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
    if (!bytestream2_get_bytes_left(&gb)) {
        *data_size = sizeof(AVFrame);
        *(AVFrame*)data = c->pic;

        return buf_size;
    }

    reset_coders(c, quality);

    rac_init(acoder, buf + HEADER_SIZE, buf_size - HEADER_SIZE);

    mb_width  = dec_width  >> 4;
    mb_height = dec_height >> 4;
    dst[0] = c->pic.data[0] + dec_x     +  dec_y      * c->pic.linesize[0];
    dst[1] = c->pic.data[1] + dec_x / 2 + (dec_y / 2) * c->pic.linesize[1];
    dst[2] = c->pic.data[2] + dec_x / 2 + (dec_y / 2) * c->pic.linesize[2];
    for (y = 0; y < mb_height; y++) {
        for (x = 0; x < mb_width; x++) {
            for (i = 0; i < 3; i++) {
                blk_size = 8 << !i;

                btype = decode_block_type(acoder, c->btype + i);
                switch (btype) {
                case FILL_BLOCK:
                    decode_fill_block(acoder, c->fill_coder + i,
                                      dst[i] + x * blk_size,
                                      c->pic.linesize[i], blk_size);
                    break;
                case IMAGE_BLOCK:
                    decode_image_block(acoder, c->image_coder + i,
                                       dst[i] + x * blk_size,
                                       c->pic.linesize[i], blk_size);
                    break;
                case DCT_BLOCK:
                    decode_dct_block(acoder, c->dct_coder + i,
                                     dst[i] + x * blk_size,
                                     c->pic.linesize[i], blk_size,
                                     c->dctblock, x, y);
                    break;
                case HAAR_BLOCK:
                    decode_haar_block(acoder, c->haar_coder + i,
                                      dst[i] + x * blk_size,
                                      c->pic.linesize[i], blk_size,
                                      c->hblock);
                    break;
                }
                if (c->got_error || acoder->got_error) {
                    av_log(avctx, AV_LOG_ERROR, "Error decoding block %d,%d\n",
                           x, y);
                    c->got_error = 1;
                    return AVERROR_INVALIDDATA;
                }
            }
        }
        dst[0] += c->pic.linesize[0] * 16;
        dst[1] += c->pic.linesize[1] * 8;
        dst[2] += c->pic.linesize[2] * 8;
    }

    *data_size = sizeof(AVFrame);
    *(AVFrame*)data = c->pic;

    return buf_size;
}

static av_cold int mss3_decode_init(AVCodecContext *avctx)
{
    MSS3Context * const c = avctx->priv_data;
    int i;

    c->avctx = avctx;

    if ((avctx->width & 0xF) || (avctx->height & 0xF)) {
        av_log(avctx, AV_LOG_ERROR,
               "Image dimensions should be a multiple of 16.\n");
        return AVERROR_INVALIDDATA;
    }

    c->got_error = 0;
    for (i = 0; i < 3; i++) {
        int b_width  = avctx->width  >> (2 + !!i);
        int b_height = avctx->height >> (2 + !!i);
        c->dct_coder[i].prev_dc_stride = b_width;
        c->dct_coder[i].prev_dc_height = b_height;
        c->dct_coder[i].prev_dc = av_malloc(sizeof(*c->dct_coder[i].prev_dc) *
                                            b_width * b_height);
        if (!c->dct_coder[i].prev_dc) {
            av_log(avctx, AV_LOG_ERROR, "Cannot allocate buffer\n");
            while (i >= 0) {
                av_freep(&c->dct_coder[i].prev_dc);
                i--;
            }
            return AVERROR(ENOMEM);
        }
    }

    avctx->pix_fmt     = PIX_FMT_YUV420P;
    avctx->coded_frame = &c->pic;

    init_coders(c);

    return 0;
}

static av_cold int mss3_decode_end(AVCodecContext *avctx)
{
    MSS3Context * const c = avctx->priv_data;
    int i;

    if (c->pic.data[0])
        avctx->release_buffer(avctx, &c->pic);
    for (i = 0; i < 3; i++)
        av_freep(&c->dct_coder[i].prev_dc);

    return 0;
}

AVCodec ff_msa1_decoder = {
    .name           = "msa1",
    .type           = AVMEDIA_TYPE_VIDEO,
    .id             = AV_CODEC_ID_MSA1,
    .priv_data_size = sizeof(MSS3Context),
    .init           = mss3_decode_init,
    .close          = mss3_decode_end,
    .decode         = mss3_decode_frame,
    .capabilities   = CODEC_CAP_DR1,
    .long_name      = NULL_IF_CONFIG_SMALL("MS ATC Screen"),
};