1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
/*
* This file is part of AtracDEnc.
*
* AtracDEnc is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* AtracDEnc is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with AtracDEnc; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "atrac3denc.h"
#include "transient_detector.h"
#include <assert.h>
#include <algorithm>
#include <iostream>
#include <cmath>
namespace NAtracDEnc {
using namespace NMDCT;
using namespace NAtrac3;
using std::vector;
void TAtrac3MDCT::Mdct(TFloat specs[1024], TFloat* bands[4], TFloat maxLevels[4], TGainModulatorArray gainModulators)
{
for (int band = 0; band < 4; ++band) {
TFloat* srcBuff = bands[band];
TFloat* const curSpec = &specs[band*256];
TGainModulator modFn = gainModulators[band];
TFloat tmp[512];
memcpy(&tmp[0], srcBuff, 256 * sizeof(TFloat));
if (modFn) {
modFn(&tmp[0], &srcBuff[256]);
}
TFloat max = 0.0;
for (int i = 0; i < 256; i++) {
max = std::max(max, std::abs(srcBuff[256+i]));
srcBuff[i] = TAtrac3Data::EncodeWindow[i] * srcBuff[256+i];
tmp[256+i] = TAtrac3Data::EncodeWindow[255-i] * srcBuff[256+i];
}
const vector<TFloat>& sp = Mdct512(&tmp[0]);
assert(sp.size() == 256);
memcpy(curSpec, sp.data(), 256 * sizeof(TFloat));
if (band & 1) {
SwapArray(curSpec, 256);
}
maxLevels[band] = max;
}
}
void TAtrac3MDCT::Mdct(TFloat specs[1024], TFloat* bands[4], TGainModulatorArray gainModulators)
{
static TFloat dummy[4];
Mdct(specs, bands, dummy, gainModulators);
}
void TAtrac3MDCT::Midct(TFloat specs[1024], TFloat* bands[4], TGainDemodulatorArray gainDemodulators)
{
for (int band = 0; band < 4; ++band) {
TFloat* dstBuff = bands[band];
TFloat* curSpec = &specs[band*256];
TFloat* prevBuff = dstBuff + 256;
TAtrac3GainProcessor::TGainDemodulator demodFn = gainDemodulators[band];
if (band & 1) {
SwapArray(curSpec, 256);
}
vector<TFloat> inv = Midct512(curSpec);
assert(inv.size()/2 == 256);
for (int j = 0; j < 256; ++j) {
inv[j] *= /*2 */ DecodeWindow[j];
inv[511 - j] *= /*2*/ DecodeWindow[j];
}
if (demodFn) {
demodFn(dstBuff, inv.data(), prevBuff);
} else {
for (uint32_t j = 0; j < 256; ++j) {
dstBuff[j] = inv[j] + prevBuff[j];
}
}
memcpy(prevBuff, &inv[256], sizeof(TFloat)*256);
}
}
TAtrac3Encoder::TAtrac3Encoder(TCompressedOutputPtr&& oma, TAtrac3EncoderSettings&& encoderSettings)
: Oma(std::move(oma))
, Params(std::move(encoderSettings))
, SingleChannelElements(Params.SourceChannels)
, TransientParamsHistory(Params.SourceChannels, std::vector<TTransientParam>(4))
{}
TAtrac3Encoder::~TAtrac3Encoder()
{}
TAtrac3MDCT::TGainModulatorArray TAtrac3MDCT::MakeGainModulatorArray(const TAtrac3Data::SubbandInfo& si)
{
switch (si.GetQmfNum()) {
case 1:
{
return {{ GainProcessor.Modulate(si.GetGainPoints(0)), TAtrac3MDCT::TGainModulator(),
TAtrac3MDCT::TGainModulator(), TAtrac3MDCT::TGainModulator() }};
}
case 2:
{
return {{ GainProcessor.Modulate(si.GetGainPoints(0)), GainProcessor.Modulate(si.GetGainPoints(1)),
TAtrac3MDCT::TGainModulator(), TAtrac3MDCT::TGainModulator() }};
}
case 3:
{
return {{ GainProcessor.Modulate(si.GetGainPoints(0)), GainProcessor.Modulate(si.GetGainPoints(1)),
GainProcessor.Modulate(si.GetGainPoints(2)), TAtrac3MDCT::TGainModulator() }};
}
case 4:
{
return {{ GainProcessor.Modulate(si.GetGainPoints(0)), GainProcessor.Modulate(si.GetGainPoints(1)),
GainProcessor.Modulate(si.GetGainPoints(2)), GainProcessor.Modulate(si.GetGainPoints(3)) }};
}
default:
assert(false);
return {};
}
}
TFloat TAtrac3Encoder::LimitRel(TFloat x)
{
return std::min(std::max((double)x, GainLevel[15]), GainLevel[0]);
}
void TAtrac3Encoder::ResetTransientParamsHistory(int channel, int band)
{
TransientParamsHistory[channel][band] = {-1 , 1, -1, 1, -1, 1};
}
void TAtrac3Encoder::SetTransientParamsHistory(int channel, int band, const TTransientParam& params)
{
TransientParamsHistory[channel][band] = params;
}
const TAtrac3Encoder::TTransientParam& TAtrac3Encoder::GetTransientParamsHistory(int channel, int band) const
{
return TransientParamsHistory[channel][band];
}
TAtrac3Encoder::TTransientParam TAtrac3Encoder::CalcTransientParam(const std::vector<TFloat>& gain, const TFloat lastMax)
{
int32_t attack0Location = -1; // position where gain is risen up, -1 - no attack
TFloat attack0Relation = 1;
const TFloat attackThreshold = 2;
{
// pre-echo searching
// relative to previous half frame
for (uint32_t i = 0; i < gain.size(); i++) {
const TFloat tmp = gain[i] / lastMax;
if (tmp > attackThreshold) {
attack0Relation = tmp;
attack0Location = i;
break;
}
}
}
int32_t attack1Location = -1;
TFloat attack1Relation = 1;
{
// pre-echo searching
// relative to previous subsamples block
TFloat q = gain[0];
for (uint32_t i = 1; i < gain.size(); i++) {
const TFloat tmp = gain[i] / q;
if (tmp > attackThreshold) {
attack1Relation = tmp;
attack1Location = i;
}
q = std::max(q, gain[i]);
}
}
int32_t releaseLocation = -1; // position where gain is fallen down, -1 - no release
TFloat releaseRelation = 1;
const TFloat releaseTreshold = 2;
{
// post-echo searching
// relative to current frame
TFloat q = gain.back();
for (uint32_t i = gain.size() - 2; i > 0; --i) {
const TFloat tmp = gain[i] / q;
if (tmp > releaseTreshold) {
releaseRelation = tmp;
releaseLocation = i;
break;
}
q = std::max(q, gain[i]);
}
}
return {attack0Location, attack0Relation, attack1Location, attack1Relation, releaseLocation, releaseRelation};
}
void TAtrac3Encoder::CreateSubbandInfo(TFloat* in[4],
uint32_t channel,
TAtrac3Data::SubbandInfo* subbandInfo)
{
auto relToIdx = [](TFloat rel) {
rel = 1.0/rel;
return (uint32_t)(RelationToIdx(rel));
};
for (int band = 0; band < 4; ++band) {
const TFloat* srcBuff = in[band];
const TFloat* const lastMax = &PrevPeak[channel][band];
std::vector<TAtrac3Data::SubbandInfo::TGainPoint> curve;
const std::vector<TFloat> gain = AnalyzeGain(srcBuff, 256, 32, false);
auto transientParam = CalcTransientParam(gain, *lastMax);
bool hasTransient = false;
if (transientParam.Attack0Location == -1 && transientParam.Attack1Location == -1 && transientParam.ReleaseLocation == -1) {
// No transient
ResetTransientParamsHistory(channel, band);
continue;
}
if (transientParam.Attack0Location == -1 && transientParam.Attack1Location == -1) {
// Release only in current frame - PostEcho. Not implemented yet.
// Note: "Hole like" transient also possible (if value is grather in next frame),
// but we keep peak value of this frame, so in next frame we will use this peak value
// for searching attack.
// Handling "Hole like" transients also not implemented. But it should be masked
SetTransientParamsHistory(channel, band, transientParam);
continue;
}
auto transientParamHistory = GetTransientParamsHistory(channel, band);
if (transientParamHistory.Attack0Location == -1 && transientParamHistory.Attack1Location == -1 && transientParamHistory.ReleaseLocation == -1 &&
transientParam.Attack0Location != -1 /*&& transientParam.Attack1Location == -1*/ && transientParam.ReleaseLocation == -1) {
// No transient at previous frame, but transient (attack) at border of first and second half - simplest way, just scale the first half.
//std::cout << "CASE 1: " << transientParam.Attack0Location << " " << transientParam.Attack0Relation << std::endl;
auto idx = relToIdx(transientParam.Attack0Relation);
//std::cout << "PREV PEAK: " << *lastMax << " " << idx << std::endl;
curve.push_back({idx, (uint32_t)transientParam.Attack0Location});
hasTransient = true;
}
//std::cout << "transient params band: " << band << " atack0loc: " << transientParam.Attack0Location << " atack0rel: " << transientParam.Attack0Relation <<
// " atack1loc: " << transientParam.Attack1Location << " atack1rel: " << transientParam.Attack1Relation <<
// " releaseloc: " << transientParam.ReleaseLocation << " releaserel: "<< transientParam.ReleaseRelation << std::endl;
//for (int i = 0; i < 256; i++) {
// std::cout << i << " " << srcBuff[i] << " | " << srcBuff[i-256] << std::endl;
//}
SetTransientParamsHistory(channel, band, transientParam);
if (hasTransient) {
subbandInfo->AddSubbandCurve(band, std::move(curve));
}
}
}
void TAtrac3Encoder::Matrixing()
{
for (uint32_t subband = 0; subband < 4; subband++) {
TFloat* pair[2] = {PcmBuffer.GetSecond(subband * 2), PcmBuffer.GetSecond(subband * 2 + 1)};
TFloat tmp[2];
for (uint32_t sample = 0; sample < 256; sample++) {
tmp[0] = pair[0][sample];
tmp[1] = pair[1][sample];
pair[0][sample] = (tmp[0] + tmp[1]) / 2.0;
pair[1][sample] = (tmp[0] - tmp[1]) / 2.0;
}
}
}
TPCMEngine<TFloat>::TProcessLambda TAtrac3Encoder::GetLambda()
{
std::shared_ptr<TAtrac3BitStreamWriter> bitStreamWriter(new TAtrac3BitStreamWriter(Oma.get(), *Params.ConteinerParams, Params.BfuIdxConst));
return [this, bitStreamWriter](TFloat* data, const TPCMEngine<TFloat>::ProcessMeta& meta) {
using TSce = TAtrac3BitStreamWriter::TSingleChannelElement;
for (uint32_t channel = 0; channel < meta.Channels; channel++) {
TFloat src[NumSamples];
for (size_t i = 0; i < NumSamples; ++i) {
src[i] = data[i * meta.Channels + channel] / 4.0;
}
{
TFloat* p[4] = {PcmBuffer.GetSecond(channel), PcmBuffer.GetSecond(channel+2), PcmBuffer.GetSecond(channel+4), PcmBuffer.GetSecond(channel+6)};
AnalysisFilterBank[channel].Analysis(&src[0], p);
}
}
if (Params.ConteinerParams->Js && meta.Channels == 2) {
Matrixing();
}
for (uint32_t channel = 0; channel < meta.Channels; channel++) {
vector<TFloat> specs(1024);
TSce* sce = &SingleChannelElements[channel];
sce->SubbandInfo.Reset();
if (!Params.NoGainControll) {
TFloat* p[4] = {PcmBuffer.GetSecond(channel), PcmBuffer.GetSecond(channel+2), PcmBuffer.GetSecond(channel+4), PcmBuffer.GetSecond(channel+6)};
CreateSubbandInfo(p, channel, &sce->SubbandInfo); //4 detectors per band
}
TFloat* maxOverlapLevels = PrevPeak[channel];
{
TFloat* p[4] = {PcmBuffer.GetFirst(channel), PcmBuffer.GetFirst(channel+2), PcmBuffer.GetFirst(channel+4), PcmBuffer.GetFirst(channel+6)};
Mdct(specs.data(), p, maxOverlapLevels, MakeGainModulatorArray(sce->SubbandInfo));
}
sce->Energy = CalcEnergy(specs);
//TBlockSize for ATRAC3 - 4 subband, all are long (no short window)
sce->ScaledBlocks = Scaler.ScaleFrame(specs, TBlockSize());
}
if (Params.ConteinerParams->Js && meta.Channels == 1) {
// In case of JointStereo and one input channel (mono input) we need to construct one empty SCE to produce
// correct bitstream
SingleChannelElements.resize(2);
// Set 1 subband
SingleChannelElements[1].SubbandInfo.Info.resize(1);
}
bitStreamWriter->WriteSoundUnit(SingleChannelElements);
return TPCMEngine<TFloat>::EProcessResult::PROCESSED;
};
}
} //namespace NAtracDEnc
|